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Finite Difference Method

Introduction

Math Modeling and Simulation of Physical Processes

I Describe the physical phenomenon

I Model the physical phenomenon to become mathematical
equations(PDE)

I Simulate the mathematic equations (discrete solution)

I Compare the discrete solution and experiment result
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Finite Difference Method

Introduction

Some kind of Partial Differential Equation (PDE)

I Elliptic equation
I Diffusion equation
I Poisson’s equation

I Parabolic equation
I Heat equations

I Hyperbolic equation
I Wave equation
I The equation for conservation laws
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Finite Difference Method

Elliptic Equation on 1D

Laplace equation

Laplace equation

We consider the partial differential equation on ]0, 1[
−uxx(x) = f (x) for all x ∈]0, 1[

u(0) = 0

u(1) = 0

(1)

To find the dicrete solution of this equation, there are many
methods, we will choose a method which is the simplest methed, it
is the finite difference scheme.
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Finite Difference Method

Elliptic Equation on 1D

Numerical Scheme

Mesh

0 ≡ x0 x1 x2 x3 xi−1 xi x6 xN−1 xN ≡ 1

Ti

u0 u1 u2 u3 ui−1 ui u6 uN−1 uN

Let us consider a uniform partion with N + 1 points xi for all
i = 0, 1, 2, · · · ,N (see figure). We have space step is ∆x = 1

N ,
then

xi = i∆x

Our purpose is the value of the function at points xi

ui ' u(xi ) for all i = 0, 1, 2, · · · ,N
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Finite Difference Method

Elliptic Equation on 1D

Numerical Scheme

Approximation of derivatives

∂u

∂x
(xi ) =

ui+1 − ui

∆x
forward difference

∂u

∂x
(xi ) =

ui − ui−1

∆x
backward difference

∂u

∂x
(xi ) =

ui+1 − ui−1

2∆x
central difference
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Finite Difference Method

Elliptic Equation on 1D

Numerical Scheme

Approximation of derivatives (Cont.)
Use the Taylor series expansion at xi

u(xi+1) =u(xi ) +
∂u

∂x
(xi )(xi+1 − xi ) +

∂2u
∂x2 (xi )

2!
(xi+1 − xi )

2

+
∂3u
∂x3 (xi )

3!
(xi+1 − xi )

3 + 0((xi+1 − xi )
4)

Or

ui+1 =ui +
∂u

∂x
(xi )∆x +

∂2u
∂x2 (xi )

2!
∆2x +

∂3u
∂x3 (xi )

3!
∆3x + 0(∆4x)

(2)

We can approximate the derivative ∂u
∂x (xi ) that

∂u

∂x
(xi ) =

ui+1 − ui

∆x
+ 0(∆x)
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Finite Difference Method

Elliptic Equation on 1D

Numerical Scheme

Approximation of derivatives
It is similar, we obtain

ui−1 =ui −
∂u

∂x
(xi )∆x +

∂2u
∂x2 (xi )

2!
∆2x −

∂3u
∂x3 (xi )

3!
∆3x + 0(∆4x)

(3)

We can approximate the derivative ∂u
∂x (xi ) that

∂u

∂x
(xi ) =

ui − ui−1

∆x
+ 0(∆x)

Let (2)-(3), we have

ui+1 − ui−1 = 2
∂u

∂x
(xi )∆x + 2

∂3u
∂x3 (xi )

3!
∆3x + 0(∆4x)

We can also approximate the derivative ∂u
∂x (xi ) that

∂u

∂x
(xi ) =

ui+1 − ui−1

2∆x
+ 0(∆2x)
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Finite Difference Method

Elliptic Equation on 1D

Numerical Scheme

Approximation of derivative at boundary

x0 x1 x2

We use the Taylor series expansion at x0

u(x1) = u(x0) +
∂u

∂x
(x0)(x1 − x0) +

∂2u
∂x2

2!
(x1 − x0)2 + 0((x1 − x0)3)

Or

u(x1) = u(x0) +
∂u

∂x
(x0)∆x +

∂2u
∂x2

2!
∆2x + 0(∆3x) (4)

And

u(x2) = u(x0) + 2
∂u

∂x
(x0)∆x + 2

∂2u

∂x2
∆2x + 0(∆3x) (5)
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Finite Difference Method

Elliptic Equation on 1D

Numerical Scheme

Approximation of the derivatives at boundary (Cont.)

From (4), we have

∂u

∂x
(x0) =

u(x1)− u(x0)

∆x
+ 0(∆x)

=
u1 − u0

∆x
(6)

Combining (4) and (5), there holds

u(x2)− 4u(x1) = −3u(x0)− 2
∂u

∂x
(x0) + 0(∆3x)

or

∂u

∂x
(x0) =

−3u0 + 4u1 − u2

2∆x
+ 0(∆2x) (7)
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Finite Difference Method

Elliptic Equation on 1D

Numerical Scheme

Approximation of the second order derivatives
Using again the Taylor series expansion, there holds

ui+1 = ui +
∂u

∂x
(xi )∆x +

∂2u
∂x2 (xi )

2!
∆2x +

∂3u
∂x3 (xi )

3!
∆3x + 0(∆4x)

and

ui−1 = ui −
∂u

∂x
(xi )∆x +

∂2u
∂x2 (xi )

2!
∆2x −

∂3u
∂x3 (xi )

3!
∆3x + 0(∆4x)

Adding two previous approximate equations side by side, we have

ui+1 + ui−1 = 2ui +
∂2u

∂x2
(xi )∆2x + 0(∆4x) (8)

or

∂2u

∂x2
(xi ) =

ui+1 − 2ui + ui−1

∆2x
+ 0(∆2x) (9)
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Finite Difference Method

Elliptic Equation on 1D

Numerical Scheme

Discretizing Laplace equation

From the first equation of (1), we have

−∂
2u

∂x2
(xi ) = f (xi ) for all i = 1, ...,N − 1

Using the approximation in (9), there holds

−ui+1 − 2ui + ui−1

∆2x
= fi for all i = 1, ...,N − 1, (10)

where fi = f (xi ) for i = 1, ...,N − 1.
Using the Dirichlet boundary condition, we obtain

u0 = 0 and uN = 0
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Finite Difference Method

Elliptic Equation on 1D

Numerical Scheme

Dicrete equations

Linear system for the scheme

i = 1, 2u1−u2
∆2x

= f1

i = 2, −u1+2u2−u3
∆2x

= f2

i = 3, −u2+2u3−u4
∆2x

= f3

. . .

i = N − 2
−uN−2+2uN−2−uN−1

∆2x
= fN−2

i = N − 1,
−uN−2+2uN−1

∆2x
= fN−1
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Finite Difference Method

Elliptic Equation on 1D

Numerical Scheme

Matrix form AU = F , A ∈ RN × RN , U,F ∈ RN ,

A =
1

∆2x



2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 0 · · · 0 0
0 0 0 −1 2 −1
0 0 0 0 −1 2



U =



u1

u2

u3
...

uN−2

uN−1


F =



f1

f2

f3
...

fN−2

fN−1


The matrix A remains tridiagonal and symmetric positive definite
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Finite Difference Method

Elliptic Equation on 1D

Numerical Scheme

Other types of boundary condition

� Dirichlet Neumann Boundary Condition: u(0) = ∂u
∂x (1) = 0.

I Using the backward diffence at 1, it means that

∂u

∂x
(1) =

uN − uN−1

∆x
= 0 ⇒ uN−1 = uN

Only changing the last equation in the linear system:

−uN−2 + uN−1

∆2x
= fN−1
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Finite Difference Method

Elliptic Equation on 1D

Numerical Scheme

Other types of boundary condition

Then the linear system for the scheme

i = 1, 2u1−u2
∆2x

= f1

i = 2, −u1+2u2−u3
∆2x

= f2

i = 3, −u2+2u3−u4
∆2x

= f3

. . .

i = N − 2
−uN−3+2uN−2−uN−1

∆2x
= fN−2

i = N − 1,
−uN−2+uN−1

∆2x
= fN−1
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Finite Difference Method

Elliptic Equation on 1D

Numerical Scheme

Other types of boundary condition (Cont.)

I Using the second order approximation of the derivative at 1, it
means that

∂u

∂x
(1) =

−3uN + 4uN−1 − uN−2

2∆x
= 0

Implying

uN =
4uN−1 − uN−2

3

Changing only the last equation in the linear system, the last
equation becomes

−uN−2 + uN−1

∆2x
=

3

2
fN−1
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Finite Difference Method

Elliptic Equation on 1D

Numerical Scheme

Other types of boundary condition (Cont.)

Then the linear system for the scheme

i = 1, 2u1−u2
∆2x

= f1

i = 2, −u1+2u2−u3
∆2x

= f2

i = 3, −u2+2u3−u4
∆2x

= f3

. . .

i = N − 2
−uN−3+2uN−2−uN−1

∆2x
= fN−2

i = N − 1,
−uN−2+uN−1

∆2x
= 3

2 fN−1
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Finite Difference Method

Elliptic Equation on 1D

Numerical Scheme

Other types of boundary condition (Cont.)

I Using the central diffrence at 1, it means that

∂u

∂x
(1) =

uN+1 − uN−1

2∆x

Implying
uN+1 = uN−1

We discretize additionally at point xN = 1, there holds

−uN−1 + 2uN − uN+1

∆2x
= fN

where fN = f (xN). Combining with discrete boundary
condition, we have

−uN−1 + uN

∆2x
=

fN
2
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Finite Difference Method

Elliptic Equation on 1D

Numerical Scheme

Other types of boundary condition (Cont.)

Then the linear system for the scheme

i = 1, 2u1−u2
∆2x

= f1

i = 2, −u1+2u2−u3
∆2x

= f2

i = 3, −u2+2u3−u4
∆2x

= f3

. . .

i = N − 1
−uN−2+2uN−1−uN

∆2x
= fN−1

i = N,
−uN−1+uN

∆2x
= 1

2 fN
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Finite Difference Method

Elliptic Equation on 1D

Numerical Scheme

Other types of boundary condition (Cont.)

� Non-homogeneous Dirichlet Boundary Condition:

u(0) = α, u(1) = β.

The first and last equations will be changed in the linear system, it
means that

u0 = α⇒ 2u1 − u2

∆2x
= f1 +

α

∆2x
,

uN = β ⇒ −uN−2 + 2uN−1

∆2x
= fN−1 +

β

∆2x
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Finite Difference Method

Elliptic Equation on 1D

Numerical Scheme

Other types of boundary condition (Cont.)

Then the linear system for the scheme

i = 1, 2u1−u2
∆2x

= f1 + α
∆2x

i = 2, −u1+2u2−u3
∆2x

= f2

i = 3, −u2+2u3−u4
∆2x

= f3

. . .

i = N − 2
−uN−3+2uN−2−uN−1

∆2x
= fN−2

i = N − 1,
−uN−2+2uN−1

∆2x
= fN−1 + β

∆2x
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Finite Difference Method

Elliptic Equation on 1D

Experiment tests

Experiment test

We set up with the following exact solution u(x) and function f (x)

f (x) = 12x2 − 6x

u(x) = x3(1− x)
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Exact solution

Discrete solution
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Exact solution

Discrete solution
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Finite Difference Method

Elliptic Equation on 1D

Experiment tests

Experiment test
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Exact solution

Discrete solution
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Exact solution

Discrete solution
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Exact solution

Discrete solution
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Exact solution

Discrete solution
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Finite Difference Method

Elliptic Equation on 1D

Experiment tests

Experiment test
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Comparison between exact and discrete solutions with N=128

 

 

Exact solution

Discrete solution
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Exact solution

Discrete solution
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Finite Difference Method

Elliptic Equation on 1D

Norms

Norms
We definite

U =



u0

u1

u2
...

uN−1

uN


and Û =



u(x0)
u(x1)
u(x1)

...
u(xN−1)

u(xN)


and Error E = U − Û containt the errors at each grid point.
To estimate the amplitude of error vector, we define somes norm
on it.

Definition (L∞h -norm)

‖E‖∞,h = max
0≤i≤N

|Ei | = max
0≤i≤N

|ui − u(xi )|
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Finite Difference Method

Elliptic Equation on 1D

Norms

Norms

We put hi = |xi+1 − xi | for all i = 0, ...,N − 1

Definition (L1
h-norm)

‖E‖+
1,h =

∑N−1
i=0 |Ei |hi =

∑N
i=0 |ui − u(xi )|hi

‖E‖−1,h =
∑N

i=1 |Ei |hi−1 =
∑N

i=1 |ui − u(xi )|hi−1

Definition (L2
h-norm)

‖E‖+
2,h =

∑N−1
i=0 |Ei |2hi =

∑N
i=1 |ui − u(xi )|2hi

‖E‖−2,h =
∑N

i=1 |Ei |2hi−1 =
∑N

i=1 |ui − u(xi )|2hi−1
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Finite Difference Method

Elliptic Equation on 1D

Local Truncation Error

Local Truncation Error
We can replace discrete solution ui by exact solution u(xi ) in (10).
In general, the exact solution won’t satisfy this equation, which
define τi

τi = − 1

h2
(u(xi−1)− 2u(xi ) + u(xi+1))− f (xi ) for all i = 1, · · · ,N − 1

(11)

Using Taylor series, we get

τi = −
[

u′′(xi ) +
1

12
h2u′′′′(xi ) + O(h4)

]
− f (xi ) (12)

Using our original differential equation (1) this becomes

τi = − 1

12
h2u′′′′(xi )− O(h4) = O(h2)
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Finite Difference Method

Elliptic Equation on 1D

Global Error

Global Error
We define τ to be the vector with component τi then

τ = AÛ − F (13)

also

AÛ = τ + F (14)

To obtain a relation between the local error τ and the global error
E = U − Û, we get

AE = −τ (15)

This is simply the matrix form of the system of equations

1

h2
(Ei−1 − 2Ei + Ei+1) = −τi for all i ∈ [1,N − 1] (16)

with the boundary conditions

E0 = EN = 0 (17)
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Finite Difference Method

Elliptic Equation on 1D

Stability

Let A−1 be the inverse of the matrix A. Then solving the system
(15) gives

E = −A−1τ

and taking norms gives

‖E‖ = ‖A−1τ‖ ≤ ‖A−1‖‖τ‖ (18)

We know that ‖τ‖ = O(h2) and we are hoping the same will be
true of ‖E‖ = O(h2). It is clear what we need for this to be true:
we need ‖A−1‖ to be bounded by some constant independent of h
as h→ 0:

‖A−1‖ ≤ C for h sufficiently small
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Finite Difference Method

Elliptic Equation on 1D

Stability

Stability

Then we will have

‖E‖ ≤ C‖τ‖ (19)

so ‖E‖ goes to zero at least as fast as ‖τ‖.

Definition
Suppose a finite difference method for Laplace equation gives a
sequence of matrix equations of the form AU = F . We say that the
method is stable if A−1 exists for all h sufficiently small (for h < h0

, say) and if there is a constant C , independent of h, such that

‖A−1‖ ≤ C for all h < h0 (20)
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Finite Difference Method

Elliptic Equation on 1D

Consistency

Consistency

We say that a method is consistent with the differential equation
and boundary conditions if

‖τ‖ → 0 as h→ 0 (21)
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Finite Difference Method

Elliptic Equation on 1D

Convergence

Convergence

A method is said to be convergent if ‖E‖ → 0 as h→ 0.
Combining the ideas introduced above we arrive at the conclusion
that

consistency + stability =⇒ convergence (22)

This is easily proved by using (20) and (21) to obtain the bound

‖E‖ ≤ ‖A−1‖‖τ‖ ≤ C‖τ‖ → 0 as h→ 0 (23)
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Finite Difference Method

Elliptic Equation on 1D

Stability in L2
h norm

Stability in L2 norm

Since the matrix A is symmetric, the L2
h-norm of A is equal to its

spectral radius

‖A‖2,h = ρ(A) = max
1≤p≤N−1

λp (24)

where λp refers to the pth eigenvalue of the matrix A.
The matrix A−1 is also symmetric, and the eigenvalues of A−1 are
simply the inverses of the eigenvalues of A, so

‖A−1‖2,h = max
1≤p≤N−1

λ−1
p = ( min

1≤p≤N−1
λp)−1 (25)

So all we need to do is compute the eigenvalues of A and show
that they are bounded away from zero as h→ 0
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Finite Difference Method

Elliptic Equation on 1D

Stability in L2
h norm

Stability in L2 norm

We will now focus on one particular value of h = 1
N . Then the

N − 1 eigenvalues of A are given by

λp =
2

h2
(1− cos(πph)) for all p = 1, · · · ,N − 1 (26)

The eigenvector up corresponding to p has components up for
j = 1, · · · ,N − 1 given by

up
j = sin(πpjh) (27)

This can be verified by checking that Aup = λpup. The j th
component of the vector Aup is
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Finite Difference Method

Elliptic Equation on 1D

Stability in L2
h norm

Stability in L2 norm

(Aup)j = − 1

h2
(up

j−1 − 2up
j + up

j+1)

= − 1

h2
(sin(πp(j − 1)h)− 2 sin(πpjh) + sin(πp(j + 1)h))

= − 1

h2
(2 sin(πpjh) cos(πph)− 2 sin(πpjh))

= λpup
j

From (26), we see that the smallest eigenvalue of A is

λ1 =
2

h2
(1− cos(πh))

=
2

h2
(

1

2
π2h2 − 1

24
π4h4 + O(h6))

= π2 + O(h2)
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Finite Difference Method

Elliptic Equation on 1D

Stability in L2
h norm

Stability in L2 norm

This is clearly bounded away from zero as h→ 0, so we see that
the method is stable in the L2

h-norm. Moreover we get an error
bound from this:

‖E‖2,h ≤ ‖A−1‖2,h‖τ‖2,h ≈
1

π2
‖τ‖2,h (28)

Since τj ≈ h2

12 u′′′′(xj), we expect ‖τ‖2,h ≈ h2

12‖u
′′′′‖2,h = h2

12‖f
′′‖2,h
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Finite Difference Method

Elliptic Equation on 1D

Other way to prove the convergence

Stability
we define discrete L2

h-norm

‖u‖2
2,h =

N−1∑
i=0

u2
i h

Multiplying (10) by ui then sum over i = · · · ,N − 1, we get

N−1∑
i=1

(ui − ui−1)ui

h2
+

(ui − ui+1,j)ui ,j

h2
=

N−1∑
i=1

fiui

We can change the index in the sum, we have

N−1∑
i=1

(ui − ui−1)ui

h2
+

N∑
i=2

(ui−1 − ui )ui−1

h2
=
∑
i=1

fiui

CuuDuongThanCong.com https://fb.com/tailieudientucnttcu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


Finite Difference Method

Elliptic Equation on 1D

Other way to prove the convergence

Stability
Sine u0 = uN = 0, then

N∑
i=1

(ui − ui−1)2

h2
=

N−1∑
i

fiui

We can write again

N∑
i=1

(Dx−u)2
i =

N−1∑
i=1

fiui , (29)

where

(Dx−u)i =
ui − ui−1

h
Let’s define the discrete H1

h -norm

‖|u|‖2
1,h =

N∑
i=1

(Dx−u)2
i ,jh
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Finite Difference Method

Elliptic Equation on 1D

Other way to prove the convergence

Stability

Applying Holder inequality, there hold

h
N−1∑
i=1

fiui ≤

(
N−1∑
i=0

hf 2
i

)1/2(N−1∑
i=0

hu2
i

)1/2

= ‖f ‖2,h‖u‖2,h

From (29), we get

‖|u|‖2
1,h ≤ ‖f ‖2,h‖u‖2,h (30)
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Finite Difference Method

Elliptic Equation on 1D

Other way to prove the convergence

Stability

Lemma
There exists a constant positive CΩ such that

‖u‖2,h ≤ CΩ‖|u|‖1,h

Proof: Since u0 = 0 then

ui =
i∑

i ′=1

(ui ′ − ui ′−1) =
i∑

i ′=1

ui ′ − ui ′−1

h
.h =

i∑
i ′=1

(Dx−u)i ′ .h

Thus

u2
i ≤

i∑
i ′=1

h
i∑

i ′=1

(Dx−u)2
i ′h ≤

N−1∑
i ′=1

(Dx−u)2
i ′h = ‖|u|‖2

1,h
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Finite Difference Method

Elliptic Equation on 1D

Other way to prove the convergence

Stability

So

‖u‖2
2,h =

N−1∑
i=1

hu2
i ≤

N−1∑
i=1

h‖|u|‖2
1,h = h(N − 1)‖|u|‖2

1,h ≤ ‖|u|‖2
1,h

We have completed the proof of the lemma. Using the lemma and
(30), we get

‖|u|‖1,h ≤ ‖f ‖2,h
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Finite Difference Method

Elliptic Equation on 1D

Other way to prove the convergence

Consistency

Let L be the differential operator, û be a exact solution of the
following equation:

Lu(x) = f (x), for all x ∈ Ω

Let Lh be the discrete differential operator of L, and u be the
discrete solution, we have

Lhui = fi for all i ∈ [1,N − 1]
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Finite Difference Method

Elliptic Equation on 1D

Other way to prove the convergence

Consistency (Cont.)

Definition
A finite differential scheme is said to be consistent with the partial
differential equation it present, if for any smooth solution u, the
truncation error of the scheme:

τi = Lhû(xi )− f (xi ) for all i ∈ [1,N − 1]

tends uniformly forward to zero when h tends to zero, that mean
that

lim
h→0
‖τ‖∞,h = 0
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Finite Difference Method

Elliptic Equation on 1D

Other way to prove the convergence

Consistency (Cont.)

Lemma
Suppose û ∈ C 4(Ω). Then, the numerical scheme in (10) is
cosistent and second-order accuracy for the norm ‖ · ‖∞
Proof: We write again the definition L, Lh operators of our case:

L(û)(xi ) = −∂
2û

∂x2
(xi )

Lh(û)(xi ) = − û(xi−1)− 2û(xi ) + û(xi+1)

h2

By using the fact that

L(û)(xi ) = −∂
2û

∂x2
(xi ) = f (xi )
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Finite Difference Method

Elliptic Equation on 1D

Other way to prove the convergence

Consistency (Cont.)

We have

τi = Lh(û)(xi )− f (xi ) = Lh(û)(xi )− L(û)(xi )

Using the defintion of L and Lh, there holds

τi =− û(xi−1)− 2û(xi ) + û(xi+1)

h2
+
∂2û

∂x2
(xi )

Using the Taylor series expansion respect x, there exists
ηi ∈ [xi−1, xi+1] such that

− û(xi−1)− 2û(xi ) + û(xi+1)

h2
+
∂2û

∂x2
(xi ) =

−h2

12

∂4û

∂x4
(ηi )
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Finite Difference Method

Elliptic Equation on 1D

Other way to prove the convergence

Consistency (Cont.)

we get

τi = −h2

12

∂4û

∂x4
(ηi ) = −h2

12

∂2f

∂x2
(ηi )

Thus,

‖τ‖∞,h ≤
h2

12
‖∂

2f

∂x2
‖∞

and

‖τ‖2,h ≤
h2

12
‖∂

2f

∂x2
‖2,h
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Finite Difference Method

Elliptic Equation on 1D

Other way to prove the convergence

Convergence

Lemma
Let u be the exact solution and uh be the discrete solution, there
holds

lim
h→0
‖|û − u|‖1,h = 0.

Proof: We have

τi = Lh(û)(xi )− f (xi ) = Lh(û)(xi )− Lh(u)(xi ) = Lh(û − u)(xi )

Using the proof of stability, we have

‖|û − u|‖1,h ≤ ‖τ‖2,h ≤
h2

12
‖∂f 2

∂x2
‖2,h
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