Chapter 1 Overview of Database

Content

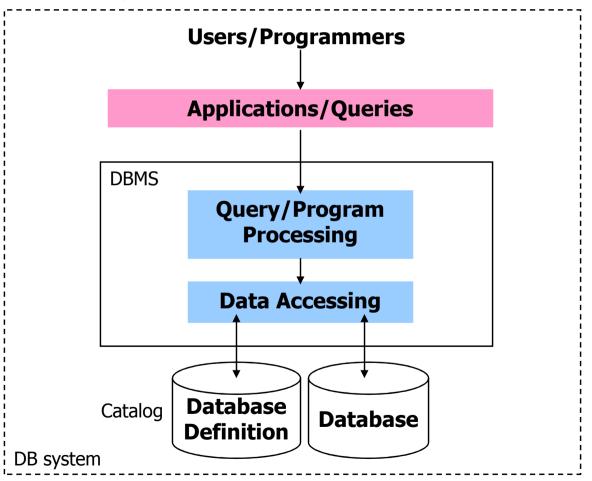
- Introduction
- The evolution of database systems
- Characteristics of the database approach
- Database users
- Architecture of a DBMS
- Properties of DBMS
- Data models
- Database languages

- Examples
 - Banking and finance
 - Customer information, accounts, loans, banking transactions
 - Information of holdings, sales and purchases
 - Education
 - Student information, course registrations and grades
 - Airline
 - Reservations and information of flights and ticket prices
 - Human resources
 - Information about employees, salaries, payroll taxes
 - ...

- Data
 - Facts that can be recorded and have meaning
 - Pieces of data are individual pieces of information

Example

- Name, address, phone number of customers
- Name, address, salary, tax status of employees
- Printing of reports such as sale, purchase, bill...
- Tracking inventories of items in warehouses/stores


- ...

- Database (DB)
 - A collection of related data
 - Contains information relevant to an enterprise
- Example: Corporate records
 - Sale, purchase
 - Payable and receivable accounts
 - Employees
 - Printing of employee's weekly paychecks

- Database (DB)
 - Represents some aspect of the real world
 - A logically coherent collection of data with some inherent meaning
 - Random assortment of data cannot correctly be a database
 - Is designed, built, and populated with data for a specific purpose, for intended group of users or applications

- Database Management System (DBMS)
 - A collection of programs that enables users to create and maintain a database
 - A general-purpose software system that facilitates
 - **Definition** specifying the data types, structures, and constraints for the data
 - Construction storing the data itself on some storage medium
 - Manipulation querying the database to retrieve data, updating the database to reflect changes, generating reports from the data
 - **Sharing** allowing multiple users/programs to access the database concurrently

Database System

Example

EMPLOYEE	LNAME	MNAME	FNAME	SSN	BIRTHDATE	SUPERSSN	DNO
	Tran	Hong	Quang	987987987	03/09/1969	987654321	4
	Nguyen	Thanh	Tung	3334455555	12/08/1955	888665555	5
	Nguyen	Manh	Hung	666884444	09/15/1962	333445555	5
	Tran	Thanh	Tam	453453453	07/31/1972	333445555	5

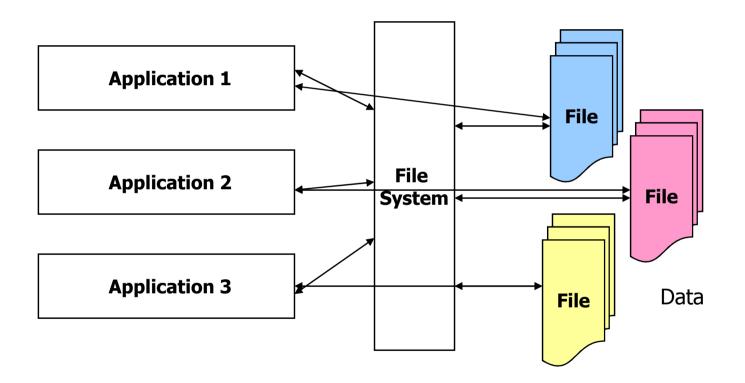
PROJECT	PNAME	PNUMBER	PLOCATION	DNUM
-	San pham X	1	VUNG TAU	5
	San pham Y	2	NHA TRANG	5
	San pham Z	3	TP HCM	5
	Tin hoc hoa	10	HA NOI	4

WORKS_ON	SSN	PNO	HOURS
	123456789	1	32.5
	123456789	2	7.5
	666884444	3	40.0
	453453453	1	20.0

Example

- Company database project management
 - Definition
 - Specify the structure of records, including data elements, data types
 - Construction
 - Store data to represent an employee, project, department... as a record
 - Manipulation
 - Querying: "Select the employees whose department is 5"
 - Updating: "Move the employee Nguyen Thanh Tung to department 1"

Content

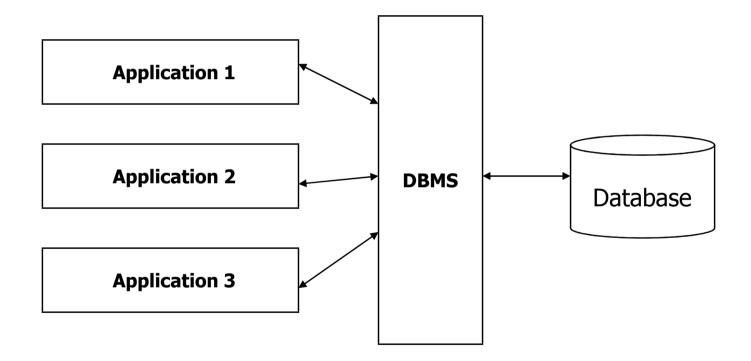

Introduction

The evolution of database systems

- Characteristics of the database approach
- Database users
- Architecture of a DBMS
- Properties of DBMS
- Data models
- Database languages

Evolution

File


An application program has its own data

Evolution

- Limitations
 - Data redundancy
 - Wasted storage space
 - Opportunities of the inconsistency
 - Data sharing is limited
 - Difficult recovery
 - Low security
- But, still be used in some applications
 - Small size DB
 - Storing and accessing data only, not including other processing operations
 - Fee costs less
 - Operation or maintenance

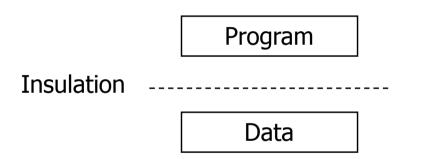
Evolution

Database

Content Introduction

The evolution of database systems

Characteristics of the database approach


- Self-describing
- Insulation between programs and data
- Data abstraction
- Views of data
- Sharing of data
- Database users
- Architecture of a DBMS
- Properties of DBMS
- Data models
- Database languages

Self-Describing

- The DB system contains not only the DB itself, but also a complete definition/description of the DB structure
- The definitions are stored in *catalog*
 - Contains information such as the structure of data, type and storage format of data items, and constraints on the data
- Information stored in catalog is called *meta-data* (data of data)
- Many applications can access to the DB
 - Refer to catalog, knowing the structure of files in specific DB (type and format of data)

Insulation

- The structure of data is stored in *catalog* separately from the access programs
 - Program-Data independence

- A little change in the structure happens
 - Application programs are rarely revised

Data abstraction

The DB system provides a conceptual representation of the data to hide certain details of how the data are stored and maintained

Example

- Data model is a type of data abstraction
 - Objects
 - Properties
 - Relationships
- These logical concepts are easier for user to understand than computer storage concepts

Views of data

- A DB has many users
- Each user may require a different *perspective or view* of the database
- A view may be
 - A subset of the database
 - Aggregate data that are derived from the database

Sharing of data

- A multiuser DBMS
 - Allows users to access the DB at the same time
 - Data for many applications are to be integrated and maintained in *a single DB*
- Using concurrency control mechanisms to access the data reasonably
 - Avoid data contention
 - Ensure the data will always be valid when they are accessed

Content

- Introduction
- The evolution of database systems
- Characteristics of the database approach

Database users

- Database administrator (DBA)
- Database designer
- End user
- Architecture of a DBMS
- Properties of DBMS
- Data models
- Database languages

Database administrator

- Many people use the same resources
 - Need a chief administrator to oversee and manage
- Responsibility
 - Administering the DB
 - Authorizing access to the DB
 - Coordinating and monitoring the use of DB
 - Acquiring software and hardware resources as needed

Database designer

- Responsibility
 - Identifying the data to be stored in the DB
 - Choosing appropriate structures to represent and store the DB
 - Communicating with all DB users to understand their requirements, to come up with a design that meet the requirements

Can be

- Staff of the DBA
- Other staffs taking responsibilities after the DB designed is completed

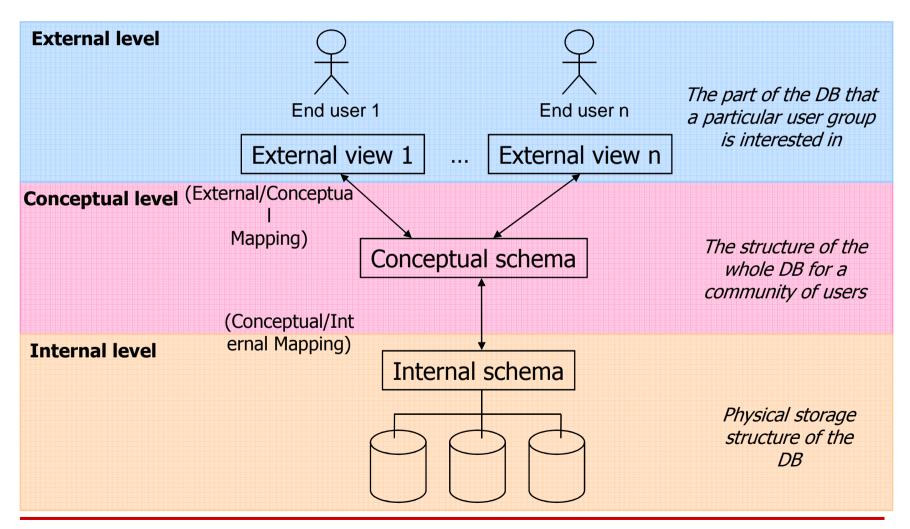
- People whose jobs require to access to the DB
 - Querying, updating, generating reports
- Categories
 - Casual end user
 - Naïve or parametric end user
 - Sophisticated end user

- People whose jobs require to access to the DB
 - Querying, updating, generating reports

Categories

- Casual end user
 - Occasionally access the DB
 - Need different information each time
 - Use sophisticated DB query language to specify requests
 - Middle or high level manager
- Naïve or parametric end user
- Sophisticated end user

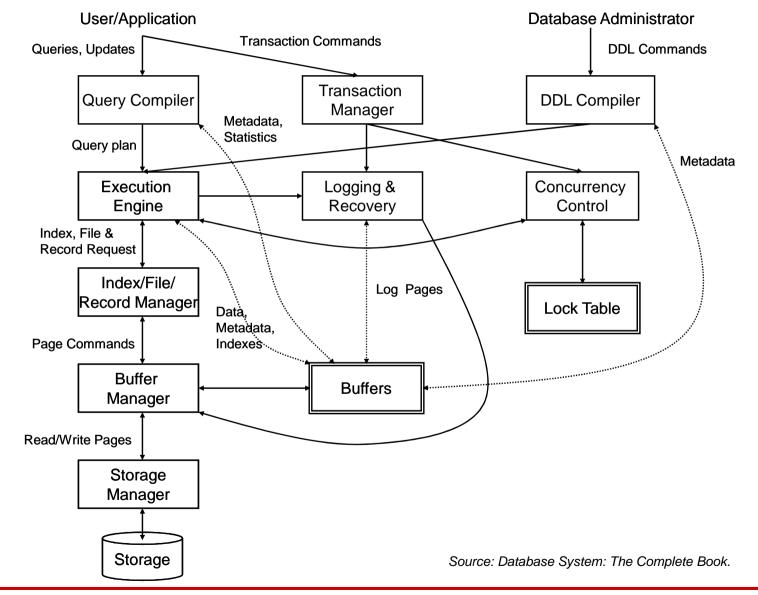
- People whose jobs require to access to the DB
 - Querying, updating, generating reports
- Categories
 - Casual end user
 - Naïve or parametric end user
 - Constantly query and update the DB
 - Use standard types of queries and updates that have been programmed and tested
 - Employee
 - Sophisticated end user

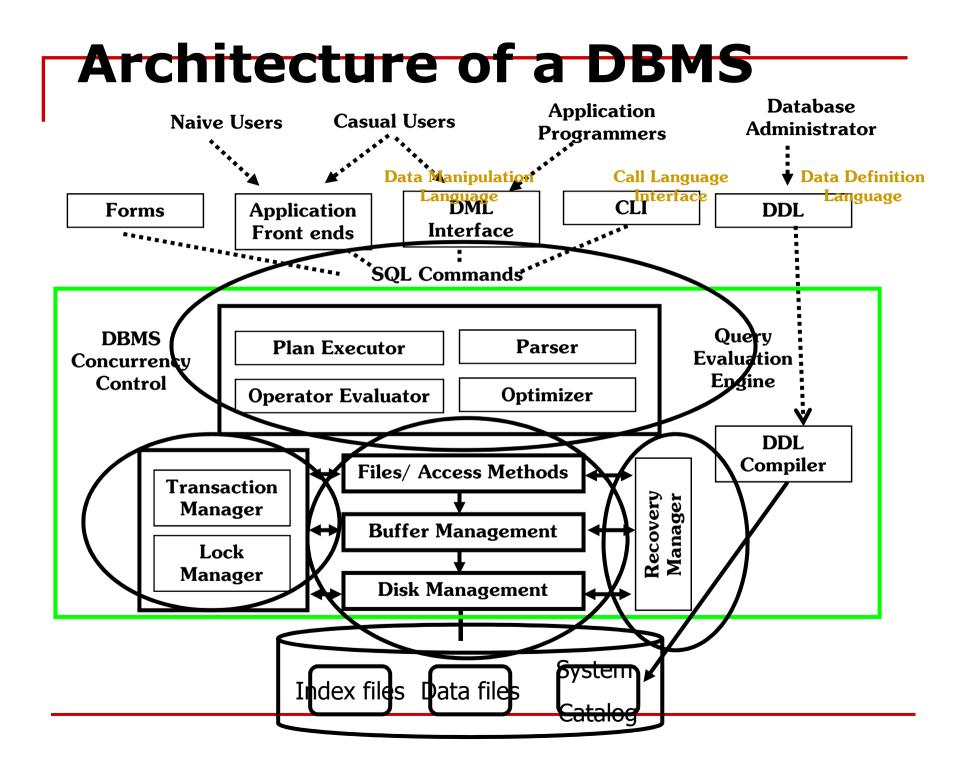

- People whose jobs require to access to the DB
 - Querying, updating, generating reports
- Categories
 - Casual end user
 - Naïve or parametric end user
 - Sophisticated end user
 - Be familiar with the facilities of the DBMS
 - Implement the applications to meet the complex requirements
 - Engineers, scientists, business analysts

Content

- Introduction
- The evolution of database systems
- Characteristics of the database approach
- Database users
- Architecture of a DBMS
- Properties of DBMS
- Data models
- Database languages

Architecture


Three-schema architecture



Architecture

- Data independence
 - Logic data independence
 - The capability to change the conceptual schema without any change external schemas or application programs
 - Example
 - * Adding/removing a record type or data item (expand/reduce DB)
 - * Changing constrains
 - Physical data independence
 - The capability to change the internal schema without having any change the conceptual schema
 - Example
 - * Physical files had to be reorganized to improve the performance of retrieval or update

Architecture

Content

- Introduction
- The evolution of database systems
- Characteristics of the database approach
- Database users
- Architecture of a DBMS
- Properties of DBMS
- Data models
- Database languages

Properties of DBMS

- Controlling redundancy
 - By placing all the data together, we do not have to search multiple files to collect this data
- Data sharing
 - In multiple user environment, concurrency data access is allowed
- Restricting unauthorized access
 - Users or user groups are given account numbers protected by passwords to gain access to the DB
- Providing multiple user interfaces
 - Provide query languages for casual users, programming language interfaces for programmers, forms and command codes for parametric users

Properties of DBMS

- Enforcing integrity constraints
 - Integrity constraints
 - Rules/conditions are derived from the meaning/semantics of the data or the miniworld it represents
 - Some constraints
 - Can be specified to the DBMS and automatically enforced
 - May have to be checked by update programs
- Providing backup and recovery
 - Provide facilities for recovering from hardware and software failures
 - Make sure the DB is restored to the state it was before

Properties of DBMS

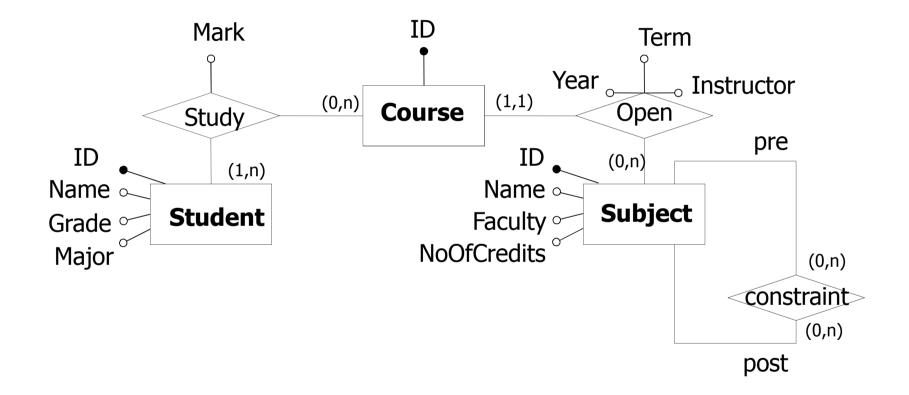
- Others
 - Potential for enforcing standards
 - Permit DBA to define and enforce standards among database users in a large organization
 - Flexibility
 - It may be necessary to change the structure of a DB as requirements change without affecting the stored data and the existing application programs
 - Reduced application development time
 - Availability of up-to-date information
 - As soon as one user's update is applied to the DB, all other users can immediately see this update

Content

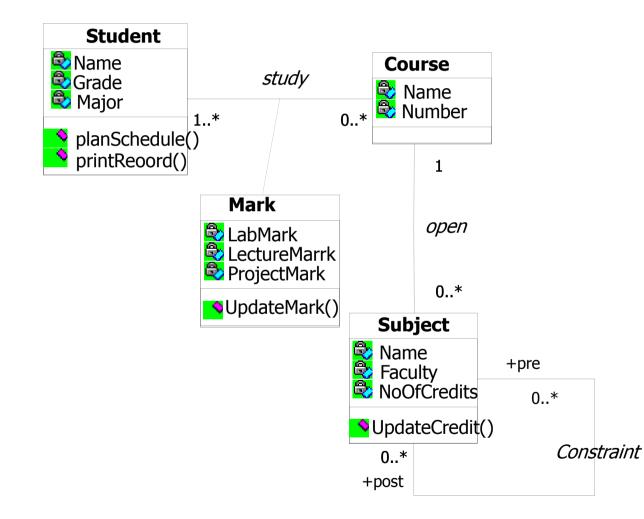
- Introduction
- The evolution of database systems
- Characteristics of the database approach
- Database users
- Architecture of a DBMS
- Properties of DBMS
- Data models
- Database languages

Data models

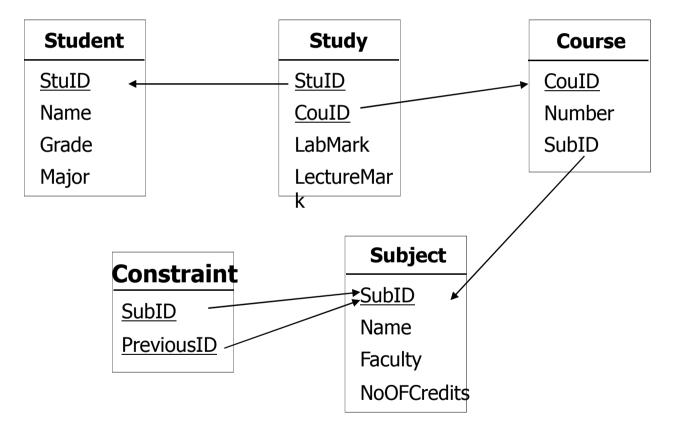
- Definition
 - A collection of *concepts* that can be used to describe the *structure of a DB*
 - Data types, relationships, and constraints
 - Including a set of basic operations for specifying retrievals and updates on the DB

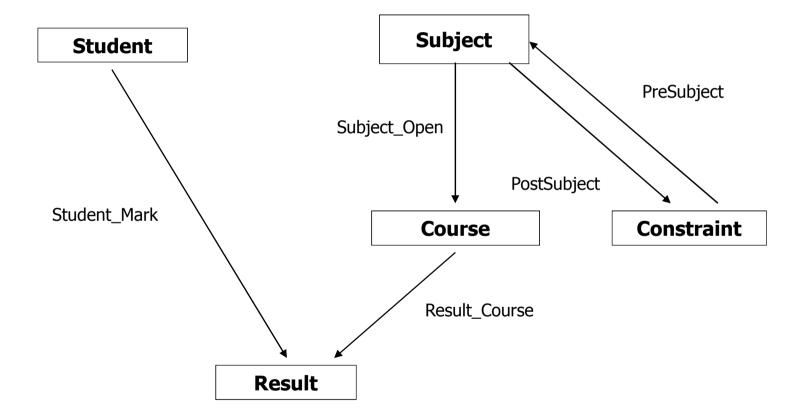

Categories

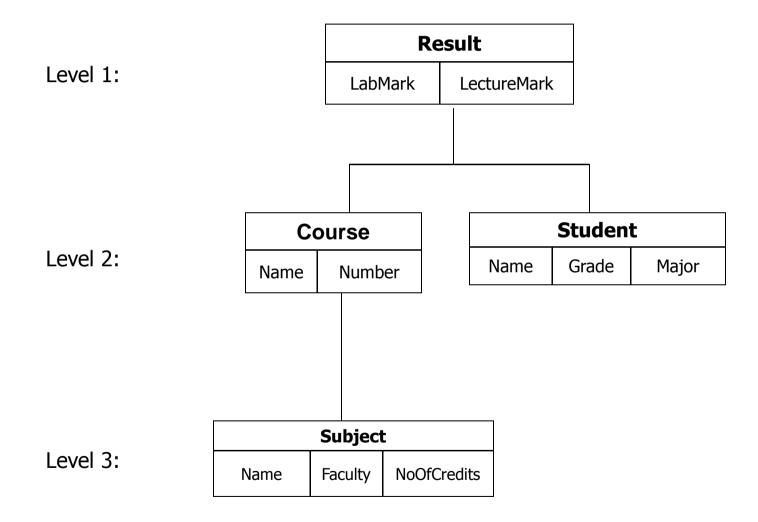
- High level or conceptual data models
- Representational or implementation data models
- Low level or physical data models


Data models

- High level data model
 - Provide concepts that are close to the way users perceive data
 - Eg: entity relationship model, object-oriented model...
- Implementation data model
 - Provide concepts that may be understood by end users, but that are not too far from the way data is organized within the computer
 - Eg: relational model, network and hierarchical models...
- Low level data model
 - Provide concepts the describe the details of how data is stored in the computer


Example of ER Model


Example of Object-Oriented Model


Example of relational model

Example of network data model

Example of hierarchical data model

Content

- Introduction
- The evolution of database systems
- Characteristics of the database approach
- Database users
- Architecture of a DBMS
- Properties of DBMS
- Data models
- Database languages

Database language

- DDL Data Definition Language
 - Identify descriptions of the schema constructs
 - Store the schema description in the DBMS catalog
- SDL Storage Definition Language
 - Specify the internal schema and the mappings between two schemas
- VDL View Definition Language
 - Specify user views and their mapping to the conceptual schema

Database language

- DML Data Manipulation Language
 - Provide a set of operations including retrieval, insertion, deletion and modification of the data
 - Two types
 - High level (nonprocedural)
 - * Entered interactively from a display monitor/terminal
 - * Embedded in a general-purpose programming language
 - Low level (procedural)
 - * Must be embedded in a general-purpose programming language

Discussion

When will we use or not use the DB approach?

