Chapter 3 Relational Data Model

Content

- Introduction
- Concepts
- Constraints
- From E/R diagram to relational design

Introduction

- Was first introduced by E. F. Codd
 - "A Relation Model for Large Shared Data Banks", Communications of ACM, 1970
- Commercial implementation
 - By IBM
 - System R (1974), SQL/DS (1981), DB2 (1983)
 - Oracle (1979)
 - By Sybase
 - SQL Server (1987), Adaptive Server Enterprise (1996)
 - By Microsoft
 - SQL Server (1989)
 - Access (1992)

Introduction

- Open source implementation
 - MySQL
 - By MySQL AB, 1995
 - PostgreSQL
 - Ingres project at the University of California, Berkeley, 1980s
 - By many developers, released in 1996
 - SQLite
 - By D. Richard Hipp working for General Dynamics, 2000

Introduction

- Provide a simple way to represent data
 - The relation: a two-dimensional table
- The theoretical background
 - Set theory of mathematical logic

Content

Introduction

Concepts

- Relation
- Attribute
- Schema
- Tuple
- Domain
- Characteristics of relation
- Notations
- Contraints
- From E/R diagram to relational design

Relation

- Relational model presents the DB as a collection of relations
 - A relation = a two-dimensional table

Each row is one employee entity

Relation name is EMPLOYEE

Relation

- Includes
 - Name
 - Set of columns
 - Fixed
 - Named
 - Has data types
 - Set of rows
 - Changed by time
- A row ~ A real-world entity or relationship
- A relation ~ An entity set or relationship

Attribute

- The names for columns of the relation
- Describes the meaning of entries in the column below

All values in a column are of the same data type

Schema

- Schema of a relation
 - Name
 - Set of attributes

Schema

Database schema

Database schema

- A design consist of one or more relational schemas

EMPLOYEE(SSN, FNAME, LNAME, BIRTHDATE, ADDRESS, SEX, SALARY, DNO) DEPARTMENT(DNUMBER, DNAME, MGRSSN, MGRSTARTDATE) DEPT_LOCATION(DNUMBER, DLOCATION) DEPENDENT(SSN, DEPENDENT_NAME, Sex, BDate, Relationship) PROJECT(PNAME, PNUMBER, PLOCATION, DNUM)

Tuple

- Row of a relation
 - Except the header row containing the attribute names
- Contains many components
 - One component for each attributes of the relation

Domain

Each attribute of a relation associates with a *domain*

- A particular elementary type
- A component of each tuple
 - Is atomic
 - Has a *value* that belongs to the domain of the corresponding attribute
- Example
 - FName: string, DOM(FName): the set of strings
 - Salary: integer, DOM(Salary): the set of integers

Characteristics of relation

The order of tuples in a relation is not important

LNAME	FNAME	BIRTHDATE	ADDRESS	SEX	SALARY	DNO
Nguyen	Tung	12/08/1955	638 NVC Q5	Nam	40000	5
Bui	Hang	07/19/1968	332 NTH Q1	Nu	25000	4
Le	Nhu	06/20/1951	291 HVH QPN	Nu	43000	4
Nguyen	Hung	09/15/1962	null	Nam	38000	5

The order of values in a tuple is important

<Nguyen, Tung, 12/08/1955, 638 NVC Q5, Nam, 40000, 5>

Differs from

<Nguyen, Tung, 12/08/1955, 638 NVC Q5, *40000, Nam*, 5>

Characteristics of relation

- Each value of components in a tuple
 - Atomic or
 - NULL
- Relations are sets of tuples, not lists of tuples
 - There are no identical tuples

Relational model notation

Relation schema

- Given A₁, A₂, ..., A_n are attributes
- Has domains D₁, D₂, ..., D_n respectively
- Is denoted by R(A₁:D₁, A₂:D₂, ..., A_n:D_n)
- Example
 - EMPLOYEE(SSN:DOM(integer), FNAME:DOM(STRING), LNAME:DOM(STRING), BIRTHDAY:DOM(DATE), ADDRESS:DOM(STRING), SEX:DOM(STRING), SALARY:DOM(INTEGER), DNO:DOM(INTEGER))
- The degree of a relation is the number of attributes of its relation schema
 - EMPLOYEE is a relation schema of degree 8

Relational model notation

- Relation instances
 - A relation r of relation schema R(A₁, A₂, ..., A_n), denoted by r(R), is a set of tuples r = {t₁, t₂, ..., t_k}
 - Where each t_i is an ordered list of n values $t_i {=} {<} v_1, \, v_2, \, \ldots, \, v_n {>}$
 - Each v_i is a member of DOM(A_i) or NULL value

	FNAME	LNAME	BIRTHDATE	ADDRESS	SEX	SALARY	DNO
t ₁	Tung	Nguyen	12/08/1955	638 NVC Q5	Nam	40000	5
t ₂	Hang	Bui	07/19/1968	332 NTH Q1	Nu	25000	4
t ₃	Nhu [`] \	Le	06/20/1951	291 HVH QPN	Nu	43000	4
t ₄	Hung ``	Nguyen	09/15/1962	null	Nam	38000	5
	,	V _i					

Summary of denotations

- The relation schema R of the degree n
 - $R(A_1, A_2, ..., A_n)$
- The attribute set of R
 - R+
- Relations
 - R, S, P, Q
- Tuples
 - t, u, v
- The domain of the attribute A
 - DOM(A)
- The value at the attribute A of the tth tuple
 - t.A or t[A]

Content

- Introduction
- Concepts

Constraints

- Superkey
- Key
- Primary key
- Reference
- Foreign key
- From E/R diagram to relational design

Constraint

- Integrity constraint
 - Rules, conditions need to satisfy for all of instances of relational database
- Constraints
 - Defined when the relation schema is modeled
 - Checked when the data in relations are modified

Superkey

- Definition
 - Assume SK is a subset of attributes of R, SK $\neq \emptyset$
 - SK is the super key if

$\forall r, \forall t1, t2 \in r, t1 \neq t2 \implies t1[SK] \neq t2[SK]$

Any two distinct tuples have the different values at the superkey

Remark

- No two tuples in any state r of R can have the same value for superkey
- Every relation has at least one default superkey

Example

Find all superkeys of R

R	Α	В	С	D
	Х	1	10	а
	Х	2	20	а
	У	1	40	b
	У	1	40	С
	Z	1	50	d

Key

- Definition
 - Assume K is a subset of attributes of R, K $\neq \emptyset$
 - K is a key if
 - K is a superkey of R and
 - $\forall \mathbf{K}' \subset \mathbf{K}, \mathbf{K}' \neq \mathbf{K}, \mathbf{K}'$ is not the superkey of R

A key is the minimal superkey

- Remark
 - The value of a key identifies uniquely each tuple in the relation
 - A key is a *property* of the relation schema
 - Time-invariant: a constraint should hold on every valid state
 - A key is determined from the meaning of attributes
 - A relation has more than one key

Primary key

- Designate one of the key as the primary key (PK)
 - The value for PK is constrained to be not null
 - Underline the attributes of PK when displaying its relation schema
- The choice of PK
 - Influence some implementation issues
 - Usually with a single attribute or a small number of attributes

Reference

- R refers to S when
 - An attribute A of a tuple in relation R receives a value from an attribute B of relation S
 - Must refer to an existing tuple

S		DNAM	1E	DNUMBER					
		Nghien o	cuu	5	<u> </u>				
		Dieu hanh		4					
			Quan I	ly	1				\mathbf{i}
				1		1	1		
	FNAME	LNAME	BIRTHDATE	ADDRESS		SEX	SALARY	DNO	_]
R	Tung	Nguyen	12/08/1955	638	NVC Q5	Nam	40000	5 🚽	
	Hang	Bui	07/19/1968	332	NTH Q1	Nu	25000	4	
	Nhu	Le	06/20/1951	291 H	ivh qpn	Nu	43000	4	
	Hung	Nguyen	09/15/1962	Ва	Ria VT	Nam	38000	5	

Foreign key

- Examine two relation schemas R and S
 - Assume FK is a set of attributes of R, FK $\neq \emptyset$
 - FK is a foreign key of R if
 - Attributes in FK have the same domains as the primary key attributes PK of S
 - A value of FK in a tuple $t_1 \in R$
 - * Either is a value of PK for some tuple $t_2 \in S$
 - * Or is null

Example

EMPLOYEE(<u>SSN</u> , FNAME, LNAME, BIRTHDATE, ADDRESS, SEX, SALA	RY, DNO)
DEPARTMENT(DNAME, <u>DNUMBER</u>)	
	Foreign key
Primary key	

Foreign key

- Remark
 - An attribute can both participate in PK and participate in FK
 - A FK can refer to its own relation
 - Many FKs might refer to the same primary key
 - Referential constraint = Foreign key constraint

Example EMPLOYEE FNAME MINIT LNAME SSN **BDATE** ADDRESS SEX SALARY SUPERSSN DNO DEPARTMENT DNUMBER DNAME MGRSSN MGRSTARTDATE DEPT LOCATIONS DNUMBER DLOCATION PROJECT PNAME **PNUMBER** PLOCATION DNUM WORKS ON HOURS ESSN PNO DEPENDENT DEPENDENT_NAME ESSN SEX RELATIONSHIP BDATE

Content

- Introduction
- Concepts
- Constraints

From E/R diagrams to relational design

- Rules

- (1) Entity set
 - Turn each entity set (except weak entity set) into a relation with the same set of attributes

- (2) Relationship
 - (2a) Many-Many
 - Create a new relation
 - * Relation name is the name of the relationship
 - * Attributes are the key attributes of connected entity sets

- (2) Relation
 - (2b) One-Many
 - Adding the key of the many-relation to the one-relation

EMPLOYEE(SSN, FNAME, LNAME, BIRTHDATE, ADDRESS, SEX, SALARY, DNUMBER)

- (2) Relationship
 - (2c) One-One
 - Either adding the key of a relation to another relation
 - Or adding the key to both relations

- (3) Weak entity set
 - Turn into a relation
 - Has the same name
 - Add the key of related entity sets

- (4) Subclass
 - Turn into a relation
 - Has the same name
 - Add the key of the superclass

