Chapter 4 Relational Algebra

Content

- Introduction
- Relational algebra
- Set operations on relations
- Selection
- Projection
- Cartesian production
- Join operation
- Division operation
- Other operations
- Update operations

Introduction

- Consider manipulations on the relation EMPLOYEE
 - Add a new employee
 - Move the employee whose name "Tung" to department 1
 - List names and birth dates of employees whose salary are over 20000

	in the second se		Address	in the second		
Tung	Nguyen	12/08/1955	638 NVC Q5		40000	
Hang	Bui	07/19/1968	332 NTH Q1	an a		
Nhu	Le	06/20/1951	291 HVH QPN	in the second seco	43000	d din Kara
Hung	Nguyen	09/15/1962				9 9 9 9 9 9 9 1 1 9 1 1 1 1 1 1 1 1 1 1
Quang	Pham	11/10/1937	450 TV HN		55000	

Introduction

- Study database programming
 - How the user can ask queries of the database
 - Select
 - How the user can modify the contents of the database
 - Insert, delete and update
- Relational model
 - Relational Algebra
 - Present a query by expressions
 - Relational Calculus
 - Present the result of a query
 - SQL (Structured Query Language)

Review

- Algebra
 - Operators
 - Atomic operands
- In algebra arithmetic
 - Operators : +, -, *, /
 - Operand Variable : x, y, z
 - Constant
 - Expression
 - (x+7) / (y-3)
 - (x+y)*z and/or (x+7) / (y-3)

Relational algebra

- Variables Relations
 - Set
- Operators
 - Set operations
 - Union ∪
 - Intersection \cap
 - Difference -
 - Retrieve parts of a relation
 - Selection σ
 - Projection π
 - Combine tuples of two relations
 - Cartesian product ×
 - Join 🖂

Relational algebra

- Constant
 - Instance of the relation
- Expression
 - A query
 - A sequence of relational algebra operations
- Operands and results of expressions
 - Sets

Content

- Introduction
- Relational algebra
- Set operations
- Selection
- Projection
- Cartesian product
- Join operation
- Division operation
- Other operations
- Update operations

Set operation

- Relation is a set of tuples
 - The union $R \cup S$
 - The intersection $R \cap S$
 - The difference R S
- Union Compatibility
 - Two relation schemas R(A₁, A₂, ..., A_n) and S(B₁, B₂, ..., B_n) are union compatibility if
 - The same degree n
 - And $DOM(A_i)=DOM(B_i)$, $1 \le i \le n$
- The result of \cup , \cap , and operations
 - Relation

Union

- Given two relations R & S that are union compatible
- The union of R and S
 - Notation $R \cup S$
 - A relation consists of tuples that are in R or S or both (an element appears only one)

$$\mathsf{R} \cup \mathsf{S} = \{ \mathsf{t} / \mathsf{t} \in \mathsf{R} \lor \mathsf{t} \in \mathsf{S} \}$$

Intersection

- Given two relations R & S that are union compatible
- The intersection of R and S
 - Denotation $R \cap S$
 - A relation consists of tuples that are in R and S

$$\mathsf{R} \cap \mathsf{S} = \{ \mathsf{t} / \mathsf{t} \in \mathsf{R} \land \mathsf{t} \in \mathsf{S} \}$$

α 2 β 3	S	Α	В
		α β	2 3

$\mathbf{R} \cap \mathbf{S}$	А	В
	α	2

Difference

- Given two relations R & S that are union compatible
- The difference of R and S
 - Denotation R S
 - A relation consists of tuples that are in R but not in S

$$\mathsf{R} - \mathsf{S} = \{ \mathsf{t} / \mathsf{t} \in \mathsf{R} \land \mathsf{t} \notin \mathsf{S} \}$$

S	А	В
	α	2
	β	3

R – S	А	В
	α	1
	β	1

Properties

Commutative

 $R \cup S = S \cup R$ $R \cap S = S \cap R$

Associative

 $R \cup (S \cup T) = (R \cup S) \cup T$ $R \cap (S \cap T) = (R \cap S) \cap T$

Content

- Introduction
- Relational algebra
- Set operations

Selection

- Projection
- Cartesian product
- Join operation
- Division operation
- Other operations
- Queries in relational algebra

Selection

- Is applied to relation R to produce a new relation with a subset of R's tuples
- Tuples in the resulting relation satisfy some condition
 C
- Denotation $\mathbf{\sigma}_{c}(R)$
- C is a Boolean expression made up of <u>clauses</u>
 - <attribute> <comparison operator> <constant>
 - <attribute> <comparison operator> <attribute>

•<comparison op> : < , > , \leq , \geq , \neq , =

•Clauses are connected by Boolean operator : \land , \lor , \neg

Selection

- The result is a relation
 - The same list of attributes as R
 - The number of tuples is less than or equal to the number of tuples of R

R	А	В	С	D
	α	α	1	7
	α	β	5	7
	β	β	12	3
	β	β	23	10

А	В	С	D
α	α	1	7
β	β	23	10

Selection

Selection operator is commutative

$$\boldsymbol{\sigma}_{_{C1}}(\boldsymbol{\sigma}_{_{C2}}(R)) = \boldsymbol{\sigma}_{_{C2}}(\boldsymbol{\sigma}_{_{C1}}(R)) = \boldsymbol{\sigma}_{_{C1 \land C2}}(R)$$

- List all employees who work in department 4
 - Relation: EMPLOYEE
 - Attribute: DNo
 - Condition: DNo=4

$\sigma_{\text{DNo=4}}$ (EMPLOYEE)

- Select tuples for all employees who either work in department 4 and make over \$25,000 per year or work in department 5 and make over \$30,000
 - Relation: EMPLOYEE
 - Attributes: SALARY, DNO
 - Condition:
 - (SALARY>25000 and DNO=4) or
 - (SALARY>30000 and DNO=5)

$\sigma_{(SALARY>25000 \land DNO=4) \lor (SALARY>30000 \land DNO=5)}$ (EMPLOYEE)

Content

- Introduction
- Relational algebra
- Set operations
- Selection

Projection

- Cartesian product
- Join operation
- Division operation
- Other operations
- Update operations

Projection

- Is used to produce from a relation R a new relation that has only some of R's columns
- Denotation $\pi_{A1, A2, ..., Ak}(R)$
- The result is a relation
 - Has k attributes
 - The number of tuples is less than or equal to the number of tuples of R

С

1

1

1

2

β

30

40

Projection

Projection operator is not commutative

$$\pi_{X,Y}(R) = \pi_{X}(\pi_{Y}(R))$$

$$\pi_{A_{1, A_{2, ..., An}}}(\pi_{A_{1, A_{2, ..., Am}}}(R)) = \pi_{A_{1, A_{2, ..., An}}}(R), n \le m$$

List out the name and salary of employees

 $\pi_{\text{LNAME, FNAME, SALARY}}$ (EMPLOYEE)

Find the SSN of employees who either work on projects or have dependents

Find the SSN of employees who work on projects and have dependents

Find the SSN of employees who do not have any dependents

Extended projection

- Extending the projection operator to allow it to compute with components of tuples
- Denotation $\pi_{\text{F1, F2, ..., Fn}}$ (E)
 - E is a relation algebra expression
 - F1, F2, ..., Fn are arithmetic expressions involving
 - Attributes in E
 - Constants
 - Arithmetic operators (a + b : sum)
 - String operators (c || d : concatenate)

List out the employees' name and salary increased by 10%

 $\pi_{\text{LNAME, FNAME, SALARY*1.1}}$ (EMPLOYEE)

Sequences of operations

- Apply several relational algebra operations one after one
 - A single relational algebra expression

 $\pi_{A1, A2, ..., Ak}(\sigma_{C}(R)) \qquad \sigma_{C}(\pi_{A1, A2, ..., Ak}(R))$

- Break down a complex expression into simpler steps
 - Step 1 $\mathbf{O}_{C}(R)$

• Step 2
$$\pi_{A1, A2, ..., Ak}$$
 (the result of step 1)

Assignment operator

- Is often used to receive the result of an operation
 - The intermediate result in a sequence of operations
- Denotation \leftarrow
- Example
 - <u>Step 1:</u> $S \leftarrow \mathbf{O}_{C}(R)$
 - Step 2: RESULT $\leftarrow \pi_{{\scriptscriptstyle{A1, A2, ..., Ak}}}(s)$

Rename operator

- Is used to rename either the relation name or attribute name
 - Relation

Examine R(B, C, D)

 $\rho_{S}(R)$: Rename the name of relation R to S

- Attribute

 $\rho_{\text{X, C, D}}(\text{R})$: Rename the name of attribute B to X

Rename the name of relation R to S and the name of attribute B to X

 $\rho_{S(X,C,D)}(R)$

- List out the name of employees who work in department 4
- <u>Case 1:</u> $\pi_{\text{LNAME, FNAME}}(\sigma_{\text{DNO}=4}(\text{EMPLOYEE}))$

Content

- Introduction
- Relational algebra
- Set operations
- Selection
- Projection
- Cartesian product
- Join operation
- Division operation
- Other operations
- Update operations

Cartesian product

- Cross-product
 - Is used to combine tuples from two relations in a combinatorial fashion
- Denotation R × S
- The result is a relation Q
 - Q has one tuple for each combination of tuples, one from R and one from S
 - If R has *u* tuples and S has *v* tuples,
 - Then Q will have (*u* × *v*) tuples
 - If R has *n* attributes and S has *m* attributes,
 - Then Q will have (n + m) attributes $(R^+ \cap S^+ = \emptyset)$

Cartesian product

Example

R	А	В
	α	1
	β	2

S	R	С	D
	α	10	+
	β	10	+
	β	20	-
	γ	10	-

 $R \times S$

А	В	Х	С	D
α	1	α	10	+
α	1	β	10	+
α	1	β	20	-
α	1	γ	10	-
β	2	α	10	+
β	2	β	10	+
β	2	β	20	-
β	2	γ	10	-

 $\rho_{(\text{X},\text{C},\text{D})}(\text{S})$

Cartesian product

R	А	В
	α	1
	β	2

S	В	С	D
	α	10	+
	β	10	+
	β	20	-
	γ	10	-

	unambiguous					
	a contraction and a second					
R ×S	А	R.B	Ś.B	С	D	
	α	1	α	10	+	
	α	1	β	10	+	
	α	1	β	20	-	
	α	1	γ	10	-	
	β	2	α	10	+	
	β	2	β	10	+	
	β	2	β	20	-	
	β	2	γ	10	-	
Cartesian product

Cartesian product is often followed by a selection operation

 $R \times S$

$$\mathbf{O}_{A=S.B}(R \times S)$$

For each department, list out the information of the manager

-	DNAME	DNUMBER	R MGRSSN	MGRSTART	DAT			
	Nghien cuu	5	33344555	5 05/22/19	88			
	Dieu hanh DNAME D	4 NUMBER	98798798 MGRSSN 88866555	7 01/01/19 MGRSTARTDA	95 AT SSN	FNAME	LNAME	
N	ghien cuu	5	333445555	05/22/1988	333445555	Tung	Nguyen	
C	Dieu hanh	FNAME	987887987	BIRTHDATE5	ADDRESS ⁸⁷	stexng	SALARY	DNO
_	Quan ly 333445555	1 Tung	888665555 Nguyen	06/19/1981 12/08/1955	888665555 638 NVC Q5	Vinh Nam	Pham 40000	5
	999887777	Hang	Bui	07/19/1968	332 NTH Q1	Nu	25000	4
	987654321	Nhu	Le	06/20/1951	291 HVH QPN	Nu	43000	4
	987987987	Hung	Nguyen	09/15/1962	Ba Ria VT	Nam	38000	5

- Step 1:
 - Cartesian product DEPARTMENT & EMPLOYEE
 EMP_DEP ← (DEPARTMENT × EMPLOYEE)
- Step 2:
 - Select tuples that satisfy the condition MgrSSN=SSN

$$\mathsf{RESULT} \leftarrow \mathbf{O}_{\mathsf{MGRSSN}=\mathsf{SSN}}(\mathsf{EMP_DEP})$$

Find the highest salary in company

FNAME	LNAME	 SALARY		 SALARY	
Tung	Nguyen	 40000	•	40000	
Hang	Bui	 25000	••••	 25000	
Nhu	Le	 43000		 43000	
Hung	Nguyen	 38000		38000	

- Step 1:
 - Select salaries which are not the highest one

 $\texttt{R1} \leftarrow (\pi_{\texttt{SALARY}}(\texttt{EMPLOYEE}))$

 $\mathsf{R2} \leftarrow \sigma_{\mathsf{EMPLOYEE.SALARY}\,<\,\mathsf{R1.SALARY}}(\mathsf{EMPLOYEE}\,\times\,\mathsf{R1})$

 $\texttt{R3} \gets \pi_{\texttt{EMPLOYEE.SALARY}}(\texttt{R2})$

• <u>Step 2:</u>

- Let do the difference of the set of salary and salary in R3

 $\texttt{RESULT} \gets \pi_{\texttt{SALARY}} (\texttt{EMPLOYEE}) - \texttt{R3}$

Find the departments that have the same locations as the department 5

Which locations does the department 5 have?

DNUMBER	DLOCATION
1	TP HCM
4	HA NOI
5	VUNGTAU
5	NHATRANG
5	TP HCM
5 5 5	VUNGTAU NHATRANG TP HCM

Which departments will have locations which are in that set

DNUMBE	DLOCATION
	TP HCM
4	HA NOI
5	VUNGTAU
5	NHATRANG
5	TP HCM

- <u>Step 1:</u>
 - Find the locations of the department 5

 $\mathsf{LOC_DEP5}(\mathsf{Loc}) \leftarrow \pi_{\mathsf{DLOCATION}}(\sigma_{\mathsf{DNUMBER}=5}(\mathsf{DEPT_LOCATIONS}))$

- Step 2:
 - Select the departments that have the same locations as LOC_DEP5

 $R1 \leftarrow \sigma_{\text{DNUMBER}\neq5} \text{(DEPT_LOCATIONS)}$ $R2 \leftarrow \sigma_{\text{DLOCATION}=\text{LOC}} (R1 \times \text{LOC}_\text{DEP5})$ $\text{RESULT} \leftarrow \pi_{\text{DNUMBER}} (R2)$

Content

- Introduction
- Relational algebra
- Set operations
- Selection
- Projection
- Cartesian product
- Join operation
 - Natural join
 - Theta join
 - Equi join
- Divide operation
- Other operations
- Update operations

- Is used to combine related tuples from 2 relations into single tuples
- Denotation R \vee S
 - $R(A_1, A_2, ..., A_n)$ and $S(B_1, B_2, ..., B_m)$
- Result is a relation Q
 - Has (n + m) attributes Q(A₁, A₂, ..., A_n, B₁, B₂, ..., B_m)
 - A tuple of Q is a combination of tuples from R and S satisfying some join condition
 - The form : $A_i \theta B_i$
 - A_i : the attribute from R, B_i : the attribute from S
 - A_i and B_i have the same domain
 - θ : comparison operators \neq , =, <, >, \leq , \geq

- Categories
 - Theta join pairs tuples using one specific condition
 - Denotation $R \bowtie_c S$
 - C refers to an arbitrary condition for attributes
 - *Equijoin* when C involves equality comparisons only
 - Natural join
 - Denote $R \bowtie S$ or R * S
 - $R^+ \cap S^+ \neq \emptyset$
 - Only one join attribute is kept

Example of theta join

 $R \bowtie_{B < D} S$

Α	В	С	D	Е
1	2	3	3	1
1	2	3	6	2
4	5	6	6	2

 $R \bowtie_C S = \mathcal{O}_C(R \times S)$

Example of equijoin

Α	В	С	D	Е
1	2	3	3	1
4	5	6	6	2

$$\mathsf{R} \Join_{\mathsf{C}=\mathsf{S},\mathsf{C}} \mathsf{S}$$

А	В	С	S.C	D
1	2	3	3	1
4	5	6	6	2

Example of natural join

Find the employees whose salary are greater than the salary of the employee 'Tùng'

EMPLOYEE(LNAME, FNAME, SSN, ..., **SALARY**, DNO)

 $\texttt{R1(SAL)} \gets \pi_{\texttt{SALARY}}(\sigma_{\texttt{FNAME=`Tung'}}(\texttt{EMPLOYEE}))$

 $\mathsf{RESULT} \gets \mathsf{EMPLOYEE} \Join_{\mathsf{SALARY} > \mathsf{SAL}} \mathsf{R1}$

RESULT(LNAME, FNAME, SSN, ..., SALARY, DNO, SAL)

For each employee, find the information of the department that he/she is working for

EMPLOYEE(LNAME, FNAME, SSN, ..., **DNO**) DEPARTMENT(DNAME, **DNUMBER**, MGRSSN, MGRSTARTDATE)

 $\mathsf{RESULT} \leftarrow \mathsf{EMPLOYEE} \bowtie_{\mathsf{DNO}=\mathsf{DNUMBER}} \mathsf{DEPARTMENT}$

RESULT(LNAME, FNAME, SSN, ..., DNO, DNAME, DNUMBER, ...)

Find the locations for each department

DEPARTMENT(DNAME, **DNUMBER**, MGRSSN, MGRSTARTDATE) DEPT_LOCATIONS(**DNUMBER**, DLOCATION)

$\mathsf{RESULT} \leftarrow \mathsf{DEPARTMENT} \bowtie \mathsf{DEPT_LOCATIONS}$

RESULT(DNAME, **DNUMBER**, MGRSSN, MGRSTARTDATE, DLOCATION)

For each department, list out the information of the manager

Find the highest salary in company

Find the departments that have the same locations as the department 5

A complete set of relational algebra operations

- The set of relational algebra operations {σ, π, ×, −,
 ∪} is called a <u>complete set</u>
 - Any of other relational algebra operations can be expressed as a sequence of operations from this set
 - Example
 - $R \cap S = R (R S)$
 - $\mathsf{R} \bowtie_{\mathsf{C}} \mathsf{S} = \mathbf{O}_{\mathsf{C}}(\mathsf{R} \times \mathsf{S})$

Content

- Introduction
- Relational algebra
- Set operations
- Selection
- Projection
- Cartesian product
- Join operation
- Division operation
- Other operations
- Update operations

Division

- Is used to retrieve tuples from R that satisfy <u>all</u> tuples from S
- Denotation R ÷ S
 - R(Z) and S(X)
 - Z is attribute set of R, X is attribute set of S
 - X ⊆ Z
- Result is a relation T(Y)
 - Has Y=Z-X
 - Includes tuples t, if for all t_S∈ S, there exists a tuple t_R∈ R with 2 conditions
 - $t_R(Y) = t$
 - $t_R(X) = t_S(X)$

Division

Example

R	А	В	С	D	Е
	α	а	α	а	1
	α	а	γ	а	1
	α	а	γ	b	1
	β	а	γ	а	1
	β	а	γ	b	3
	γ	а	γ	а	1
	γ	а	γ	b	1
	γ	а	β	b	1

S	D	E
	а	1
	b	1

R	•	S
R	•	S

А	В	С
α	а	γ
γ	а	γ

Find the SSN of employees who work on all the projects

Find the SSN of employees who work for all projects that the department 4 controls

Division

Express the division operation by the complete set of relational algebra operations

$$\begin{array}{l} {
m Q1} \leftarrow \pi_{
m Y}({
m R}) \ {
m Q2} \leftarrow {
m Q1} imes {
m S} \ {
m Q3} \leftarrow \pi_{
m Y}({
m Q2} - {
m R}) \ {
m T} \leftarrow {
m Q1} - {
m Q3} \end{array}$$

Content

- Introduction
- Relational algebra
- Set operations
- Selection
- Projection
- Cartesian product
- Join operation
- Division operation

Other operations

- Aggregation operators
- Grouping
- Outer join
- Update operations

Aggregation operators

- Input : the collections of values from the DB
- Output : a single value
- Include
 - AVG
 - MIN
 - MAX
 - SUM
 - COUNT

Aggregation operators

Example

R	А	В	
	1	2	
	3	4	
	1	2	
	1	2	

SUM(B) = 10AVG(A) = 1.5MIN(A) = 1MAX(B) = 4COUNT(A) = 4

Grouping

- Is used to consider a relation in groups, corresponding to the value of columns
- Denotation

G1, G2, ..., Gn ${\cal F}_{\rm F1(A1),\ F2(A2),\ ...,\ Fn(An)}({\sf E})$

- E is relational algebra expression
- G1, G2, ..., Gn : grouping attributes
- F1, F2, ..., Fn : aggregation operators
- A1, A2, ..., An : aggregated attributes

Groping

Example

А	SUM_C
α	14
β	3
γ	10

The number of employees and the average salary of the company

For each department, find the number of employees and the average salary

Find the name of departments that have the largest number of employees

Find the name of employees who work the largest number of projects

Outer join

- Is used to avoid the loss of information
 - A theta join is taken first
 - Then, the tuples that failed to join with any tuple of the other relation are added to the result
- Three cases
 - Left outer join $\Box \bowtie$
 - Right outer join
 - Left and right outer join _>
List out the name of employees and the name of department that they are the manager <u>if any</u>

R1
$$\leftarrow$$
 EMPLOYEE $\square \bowtie _{\text{SSN=MGRSSN}}$ DEPARTMENT
RESULT $\leftarrow \pi_{\text{FNAME,LNAME,DNAME}}$ (R1)

FNAME	LNAME	DNAME
Tung	Nguyen	Nghien cuu
Hang	Bui	null
Nhu	Le	null
Vinh	Pham	Quan ly

List out the name of departments and the number of employees of that department

If a department has just been established and not yet been arranged the employees, then what will be the result?

Content

- Introduciton
- Relational algebra
- Set operations
- Selection
- Projection
- Cartesian product
- Join operation
- Division operation
- Other operations
- Update operations

Update operations

- The content of the database can be updated by update operations
 - Insertion
 - Deletion
 - Update
- These operations are expressed by an assignment operation

 $R_{new} \leftarrow operations on R_{old}$

Insertion operation

Is expressed

 $R_{new} \leftarrow R_{old} \cup E$

- R is a relation
- E is a relational algebra expression
- Example
 - Assign the employee whose SSN is 123456789 the project with SSN is 20 and the number of working hours is 10

WORKS_ON \leftarrow WORKS_ON \cup ('123456789', 20, 10)

Deletion operation

Is expressed

 $R_{new} \leftarrow R_{old} - E$

- R is a relation
- E is a relational algebra expression
- Example
 - Delete all work assignments of the employee 123456789

WORKS_ON \leftarrow WORKS_ON – $\sigma_{\text{SSN='123456789'}}$ (WORKS_ON)

Remove work assignments that have locations in 'Ha Noi'

Update operation

Is expressed

$$\mathsf{R}_{\mathsf{new}} \leftarrow \pi_{\mathsf{F1, F2, ..., Fn}} \left(\mathsf{R}_{\mathsf{old}}
ight)$$

- R is a relation
- Fi is an arithmetic expression that results in the new value for attributes
- Example
 - Increase working hours to 1.5 times for all employees

WORKS_ON $\leftarrow \pi_{\text{SSN, PNO, HOURS*1.5}}$ (WORKS_ON)

Increase working hours to 1.5 times for assignments that are over 30 hours, the remain will be increased to 2 times

