
BIOSTATISTICS 
TOPIC 5: SAMPLING DISTRIBUTION II 

THE NORMAL DISTRIBUTION 
 
 
 
   The normal distribution occupies the central position in statistical theory and 

practice. The distribution is remarkable and of great importance, not only because 
most naturally occurring phenomena with continuous random variables follow it 
exactly, and not because it is a useful model in all but abnormal circumstances. The 
importance of the distribution lie in its convenient mathematical properties leading 
directly to much of the theory of statistics available as a basis for practice, in its 
availability as an approximation to other distributions, in its direct relationship to 
sample means from virtually any distribution, and in its application to many random 
variables that either are approximately normally distributed or can be easily 
transformed to approximate variables. 

   The word "normal" as used in describing the normal distribution should not 
be construed as meaning "usual" or "typical", "physiological" or "most common". In 
particular, a distribution that does not follow this distribution should be named "non-
normal distribution" rather than "abnormal distribution". This problem of 
terminology has led many authors to refer to the distribution as Gaussian distribution, 
but this substitutes for a historical inaccuracy. In 1718, De Moivre, a great French 
mathematician, had derived a mathematical expression for the normal density in his 
1718 tract Doctrine of Chances. Like Poisson's previous work, De Moivre's theorem 
did not initially attract the attention it deserved; it did however finally catch the eye 
of Pierre-Simon Marquis de Laplace (another great French mathematician and 
philosopher), who generalised it and included in his influential Theorie Analytique 
des Probabilites published in 1812. Carl F. Gauss, a great German mathematician, 
was the one who had developed the mathematical properties and shown the 
applicability of the De Moivre's distribution to many natural "error" phenomena, 
hence the distribution is sometimes referred to as Gaussian distribution.  

   So, how does the distribution work? The normal distribution was originally 
stated in the following way. Suppose that 1000 people use the same scale to weigh a 
package that actually weighs 1.00 kg, there will be values above and below 1.00 kg; 
if the probability of an error on either side of the true value is 0.5, a frequency plot of 
observed weights will have a strong tendency around 1.00 kg (Figure 1). The error 
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about the true value may be defined as a random variable X which is continuous over 
the range − ∞  to +∞ . The probability distribution of the errors was called the error 
distribution. However, since the distribution was found to describe many other 
natural and physical phenomena, it is now generally known as the normal 
distribution. We will, therefore, use the term "normal" rather than De Moivre or 
Gaussian distribution. 

frequency

1 kg

True value

 

Figure 1: Plot of central tendency of observe weights around true mean of 1 kg. 
 
 
I. CHARACTERISTICS OF RANDOM VARIABLES 
 
   Let us take the following cases.  
 
 Example 1: (a) Dr X has followed Mrs W for many years and found that her BMD 

was measured by DPX-L fluctuated around a mean of 1.10 g/cm2 and standard 
deviation of 0.07 g/cm2. At a recent assessment, her BMD was 1.05 g/cm2. Is it 
reasonable to put her on a treatment?  

 
 (b) Mrs P has entered a clinical trial involving the evaluation of a drug treatment for 

osteoporosis. At baseline, multiple measurements of BMD (g/cm2) was taken and the 
results are as follows: 

0.95, 0.93, 0.97 
 After 6 months of treatment, the BMD was remeasured and found to be: 

1.02, 1.05, 1.10, 1.03 
 She, however, complained that the medicine has made her slightly weak and other 

problems. Should you advise her to continue with the trial ? 
 
   We know that BMD or any other quantitative measurements are subject to 

random errors. But how much error was attributable to chance fluctuation and how 
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much was due to systematic variation is a crucial issue. So, before answering this 
question (from a statistical point of view) properly, we will consider a fundamental 
distribution in statistics - the normal distribution. 

 
   The normal random variable is a continuous variable X that may take on any 

value between − ∞  to +∞ (while real world phenomena are bounded in magnitude), 
and the probabilities associated with X can be described in the following probability 
distribution function (pdf): 
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 where µ and σ2 are the mean and variance, respectively. These are, of course, 
parameters, and since they are the only quantities that must be specified in order to 
calculate the value of the probability.  

 
   For example, if µ = 50 and σ2 = 100, we can calculate various probabilities 

as follows:  
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 20 0.03989 0.011109 0.00044 
 30 0.03989 0.135335 0.00540 
 40 0.03989 0.606531 0.02420 
 50 0.03989 1.000000 0.03989 
 60 0.03989 0.606531 0.02420 
 70 0.03989 0.135335 0.00540 
 80 0.03989 0.011109 0.00044 
    

 
 A plot of f(x) and x resembles the bell-shape (Figure 2) 
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Figure 2: Graph of a normal distribution with  
mean = 50 and variance = 100. 

 
 It could be seen from this distribution that, the normal has the following properties: 
 
 (a) The probability function f(x) is non-negative. 
 (b) The area under the curve given by the function is equal to 1. 
 (c) The probability that the value X take on any value between x1 and x2  is 

represented by the area under the curve between the two points (Figure 3) 
 

f(x)

x1 x2  
Figure 3: The probability that X takes value between x1 and x2 . 

 
 
 (A) EFFECT OF THE MEAN AND VARIANCE 
 
   We mentioned earlier that the normal probability distribution function (pdf) 

is determined by two parameters, namely, the mean (µ ) and variance (σ2). We can 
observe the effect of changing the value of either of these parameters. Since the mean 
describes the central tendency of a distribution, a change in the mean value have the 
effect of shifting the whole curve intact to the right or left a distance corresponding to 
the amount of change (Figure 4A). On the other hand, for a fixed value of µ, 
changing in the variance σ2 has effect of locating the inflexion points closer to or 
farther from the mean, and since the total area under the curve is still equal to 1, this 



5 

results in values clustered more closely or less closely about the mean (Figure 4B; 
please excuse my drawing!).  

 
 
 

f(x)

Mean Mean Mean  
(A) 

 
 

f(x)

Mean  
(B) 

 
Figure 4 (A): The effect of changing in mean and (B) in standard deviation. 

 
 

 (B) MEAN AND VARIANCE OF A NORMAL RANDOM VARIABLE 
 
   It could be shown (by calculus) that the expected value (mean) and variance 

of the normal random variable are µ  and σ2, respectively. For brevity we write X ~ 
N(µ , σ2) to mean that "X is normally distributed with mean µ  and variance σ2".  

 
 
II. THE STANDARD NORMAL DISTRIBUTION 
  
   The normal distribution is, as we have noted, really a large family of 

distributions corresponding to the many different values of µ  and σ2. In attempting 
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to tabulate the normal probabilities for various parameter values some transformation 
is necessary.   

 
   We have already seen in Topic 2 what happens to the mean and variance of 

any variable (say Y) when we make the transformation 

Z = Y − µ
σ

 ; 

 we obtain a new variable Z with mean zero and variance 1. This also holds true for a 
normal variable; in fact, we obtain an even better result by such a transformation, as 
follows: 

 
  THEOREM: If X is normally distributed with mean µ  and σ2, the transformation 

Z X
=

− µ
σ

 results in a variable Z which is also normally distributed, but with mean 

zero and variance 1; that is:  
 
    Given:   X ~ N(µ , σ2)  

    Transformation:  Z X
=

− µ
σ

 

    Result:   Z ~ N(0, 1)   [2] 
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   Geometrically, this transformation is a conversion the basic scale of x values 

in order that we measure on a standard scale with mean value corresponding to µ  and 
with a measurement of 1 standard deviation. In other words, the standardised normal 
variable represent the measurements in the numbers of standard deviation units 
above or below the mean. (Figure 5) 

 
   This result is not to be taken lightly - it is very important result. For many 

types of probability distribution functions, analogous results can also be held. In fact, 
whatever the distribution of a random variable X - normal or non-normal, continuous 
or discrete - the z-transformation will simplify to the transformed variable to have a 
zero mean and unit variance. 
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Figure 5 (A) Normal random variable with original scale and (B) its corresponding 

standardised normal variable with scale as the number of standard deviation units. 
 

 
III. THE USE OF TABLES FOR THE STANDARD NORMAL DISTRIBUTION 
 
 If Z ~ (0, 1), then we have the following results: 
 
 (a) the area under the curve (AUC) between points located 1 standard deviation (SD) 

in each direction from the mean is 0.6826. 
 
 (b) the AUC between points located 2 SD in each direction from the mean is 0.9546; 
 
 (c) the AUC between points located 3 SD in each direction from the mean is 0.9974 
 
 These results are shown in Figure 6. 
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Figure 6: Area under the standardised normal distribution curve 
 
 The probabilities (AUC) for various values of z are tabulated in several statistical 

texts. I reproduce here one of such table for your reference and working purpose. In 
the following examples (and exercises), use of this Table is required.  

 
 DETERMINING PROBABILITIES 

 
 Example 2: Use the table of the normal distribution to find the following 

probabilities:  
  (a) P(z < 1.75)   (b) P(z < -2.76)  (c) P(z > -1.15) 
  (d) P(0.78 < z < 1.32)  (e) P(-1.18 < z < 1.46) (f) P(-1.56 <z <-0.68) 
 Answer: (a) P(z < 1.75) = 0.9599. 
   (b) P(z < -2.76) = 0.0029. 
   (c) P(z > -1.15) = 1 - P(z < 1.15) = 1 - 0.1251 = 0.8749. 
   (d) P(0.78 < z < 1.32) = P(z < 1.32) - P(z < 0.78) 
      = 0.9066 - 0.7823  
      = 0.1243. 
   (e) P(-1.18 < z < 1.46) = P(z < 1.46) - P(z < -1.18) 
      = 0.9278 - 0.1190 = 0.8088. 
   (f) P(-1.56 <z <-0.68)  = P(z < -0.68) - P(z <-1.56) 
      = 0.2482 - 0.0594 = 0.1888. 
 
 Example 3: The mean and standard deviation of  lumbar spine BMD (among elderly 

women) in a community is 1.026 g/cm2 and 0.19 g2/cm4, respectively.  
 (a) What is the probability that a woman selected randomly from this community 

would have a BMD less than 0.9 g/cm2.  
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 (b) If 100 women are to be selected from this community, how many women would 
have BMD  (i) less than 0.9 g/cm2 or greater than 1.1 g/cm2; 

   (ii) between 0.8 g/cm2 and 1.20 g/cm2. 
 
 In order to answer these questions, we need to use the standardised normal 

distribution (eg z-transformation). Now the ( ) σµ /−= xZ  for question (a) would be 
( ) 19.0/026.19.0 −=Z  = -0.66, therefore: 

 
   P(LSBMD < 0.9) = P(Z < -0.66) = 0.2546 or 25.46%. 
 
 (See Figure 7A) 
 (b) Similarly P(LSBMD > 1.1) = P(Z > 0.39)  
         = 1 - P(Z < 0.39) 
         = 1 - 0.652 = 0.348 or 34.8%. 
 
 So the probability that lumbar spine BMD less than 0.9 g/cm2 or greater than 

1.1g/cm2 is the sum of 25.4 + 34.8 = 60.2%; it follows that if 100 women were 
selected, 60 women would have BMD in the range (Figure 7B). 

 
 Part (ii) of question (b), by using the standardised normal distribution, we have: 
   P(LSBMD>0.8) = P(Z > -1.19)  
       = 1 - P(Z < -1.19) 
       = 1 - 0.117 
       = 0.883 
 and P(LSBMD<1.2) = P(Z < 0.92) = 0.179, 
 
 then, the probability that LSBMD lies between 0.8 g/cm2 and 1.20 g/cm2 is simply 

0.883 - 0.179 = 0.704 or 70.4%. In 100 randomly selected women, we would expect 
to see 70 women with BMD in this range (Figure 7C).  // 
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f(x)

0
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 Figure 7 Shaded are represent the probability that (A) P(Z<-0.66),  (B) P(Z<-0.66 or 

Z>0.39) and (C) P(-1.19 < Z < 0.82). 
 
 DETERMINING THE PERCENTILES.  
 
 Example 4: Suppose that the mean and variance of BMD is 1.026 g/cm2 and 0.19 

g2/cm4, respectively. What is the 1st and 99th percentiles of BMD?  
 
 We can use the Table of the Standardised Normal Distribution (SND) to solve this 

problem. We see from this table that the 99th percentile of the SND is z(0.99) = 2.33 
and z(0.01) = -2.33. (Note that these numbers are only approximate, the actual 
numbers are 2.326 and -2.326, respectively, but for now it is sufficient for our 
purpose). What this means is that the BMD limits are therefore located 2.33 standard 
deviation on either side of the mean, i.e. at the BMD: 

    1.026 - 2.33( 0 19. ) = 0.01 g/cm2  
   and  1.026 + 2.33( 0 19. ) = 2.04 g/cm2 . 
 In other words, P(0.01 < BMD < 2.04) = 0.98. (Figure 8) 
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Figure 8. 
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 We mentioned earlier that these are only approximation, the actual values can be 
more accurately computed. Listed below are exact values of z for some common 
percentiles: 

 
SELECTED PERCENTILES: 

Entry is z(a) where P[Z < z(a)] = a 
   

 a 0.10 0.05 0.025 0.02 0.01 0.005 0.001 
 z(a) -1.282 -1.645 -1.960 -2.054 -2.326 -2.576 -3.090 
 
 a: 0.90 0.95 0.975 0.98 0.99 0.995 0.999 
 z(a) 1.282 1.645 1.960 2.054 2.326 2.576 3.090 
   

 
 
IV. THE CENTRAL LIMIT THEOREM AND THE EXACT DISTRIBUTION 

OF X . 
 
   Some of the most important properties which make much of statistical 

inference possible are expressed in the central limit theorem (CLT). This section 
discusses the meaning and implications of this great theorem. 

 
   Most of the statistical inference and estimation are techniques are based on 

the normal distribution. However, since the samples used in these techniques are 
taken from the real world, they have a distribution far from normal. The CLT allows 
us to use normal distribution theory to infer about the population from a nonnormal 
sampling distribution. To do this, we work with the mean of sample data, not the 
individual values.  

 
 The CLT may be stated as follows: 
 
  The population may have any unknown distribution with a mean µ  and a finite 

variance σ2. Take sample of size n from the population. As the size of n 
increases, the distribution of sample means will approach a normal distribution 
with mean µ  and a finite variance σ2/n. .  
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 Because the mathematical proof for this statement is quite "heavy", we adopt a 

procedural approach to illustrate the theorem. Assume there is a population X which 
has some distribution with mean µ  and variance σ2. The CLT may be illustrated by 
the following steps:  

 
  (a) Determine n; 
  (b) Take a random sample of size n and calculate the sample mean x ; 
  (c) Plot x  on a histogram of x  values; 
  (d) Repeat steps (b) and (c) for k samples; 
  (e) Calculate the mean and standard deviation of thex  histogram. Call these x  and 

sx ; 
  (f) Compare x  and sx  with µ and σ / n ; 

  (g) Determine a larger n value and repeat steps (b) to (f); 
  (h) Compare the shapes of the x  histogram to notice the tendency toward a normal 

distribution. 
 
 (See also Figure 8) 
 
 

µ

σ

sample sample

sample

sample

n3(x3) n4(x4)n2(x2)n1(x1)

POPULATION X

Histogram of mean values from k samples  
 

Figure 8: The CLT is illustrated by taking samples of size n  
and plotting means to observe the tendency toward  

the normal probability distribution function. 
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 Several researchers mistakenly understand that the CLT theorem will apply in any 

data set with significant size. This is not true. The most important thing to remember 
when using the results of the CLT us that we are working with the distribution of 
sample means, x , not the original X population. The standard normal distribution 

transformation is used with µ = x  and σ σx n= / . The form is: Z X

n
=

− µ
σ /

. 

 
 THE DISTRIBUTION OF x . 
 
   In practice, the CLT means that if we have a population with mean µ and 

variance σ2, and that we randomly select a sample of n subjects from this population 
and find the mean and standard deviation of this sample to be x  and s, then it could 
be reasoned that the mean and variance x  (not X) are: 

 
    mean of x  = µ 
 and   variance of x  = s n2 /  
 i.e.  S.D of x  = s n/ . 
 
   This relation may be used either to calculate probabilities for observed mean 

values or to determine the required sample size such that the observed x  is within a 
specified range around the true population mean µ.  

 
 Example 6: Suppose that a paediatric population in which systolic blood pressure was 

normally distributed with mean µ = 115 and variance σ2 = 15. If a random sample of 
size 25 is selected from this population, find P(110 < x  < 120), where x  is the 
sample mean. 

 
 According to the CLT, the sample mean x  is normally distributed with mean 115 and 

standard deviation of σ / /n = =15 25 3. The z-value corresponding to 110 and 
120 are -1.67 and +1.67, respectively. The required probability is 0.9051.  //  

 
V. APPLICATIONS OF THE NORMAL DISTRIBUTION. 
 
(A) TEST OF HYPOTHESIS 
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 (a)  We are now using the normal distribution theory to tackle two questions in 
Example 1.  In question (a) we are given "population" mean and standard deviation of 
BMD of Mrs W as 1.1 g/cm2 and 0.07 g/cm2, respectively. Since BMD is normally 
distributed, under normal circumstances, we would expect that 95% of the times, her 
BMD would lie between (1.1 - 0.07× 2 =) 0.96 g/cm2  and  (1.1 + 0.07× 2 =) 1.24 
g/cm2. Therefore, a measurement of 1.05 g/cm2 lies well within this expected range. 
Put it other way, a BMD of 1.05 is equivalent to a z value of 
1 05 1 10 0 07 0 71. . / . .− = − ; hence, the probability that her BMD is less than 1.05 

g/cm2 is equivalent to P(Z < -0.71) which is equal to 0.24. That is, there is a 24% 
chance that her BMD would be less than 1.05 g/cm2, so from a statistical viewpoint, 
it may be not necessary to put her on a drug treatment.  

 
 (b) In question (b), if the treatment had no effect, then we would expect the 

BMD in the two occasions would be similar, i.e. the difference would be centred 
around 0. However, The mean baseline BMD for Mrs P is:  

      x1
0 95 0 93 0 97

3
0 95=

+ +
=

. . . .  g/cm2 

 and her follow-up mean is:  x2
1 02 1 05 1 1 1 03

4
1 05=

+ + +
=

. . . . .  g/cm2 

 So, an improvement of 1.05 - 0.95 = 0.10 g/cm2 was observed. Now, BMD 
measurements are subject to random errors, it is reasonable to ask whether this is a 
real improvement or just due to chance. If the former is true case, we probably would 
advise her to continue with the treatment; however if the latter is the case, then a 
discontinuation of treatment would probably be appropriate. 

 
 In Topic 2, we mentioned briefly a general idea that x1 and x2  are two means of size 

n1 and n2  , respectively, from populations with means µ1 and µ2   and standard 
deviation σ1 and σ2, then: x1 - x2  is approximately normally distributed with mean 

µ1 - µ2   and standard deviation σ σ σ
x x n n1 2

1
2

1

2
2

2
− = + . If σ1

2 = σ2
2 = σ2 then this reduces 

to 

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 In our problem the baseline and follow-up measurements could be considered as x1 

and x2 . We already see that x1 = 0.95  g/cm2 and x2  = 1.05  g/cm2. We could assume 
that the variance of two occasions are the same, so we could estimate the pooled 
variance as follows: 
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       = 0.00092 
 and the standard deviation of the difference is:  
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      = 0.023  
 
  Under the theory of the normal distribution, the probability that there is a 95% 

chance that her true improvement in BMD varies between 0.1-0.023(2) = 0.054 g/cm2 

to 0.1+0.023(2) = 0.146 g/cm2. We note that 0 is not in the interval, so it is unlikely 
that the improvement of 0.10 g/cm2 was due to chance. This means that we are 
confident that Mrs P's BMD has been improved significantly. She should probably be 
advised to continue with the treatment.  

 
 We will return to deal with this kind of tests in a later topic. 
 
 
(B) THE NORMAL APPROXIMATION TO BINOMIAL DISTRIBUTION 
 
   The normal  distribution is an exact distribution for continuous data which 

can take on any value from − ∞  to +∞ . Since not many problems can assume all 
these values (especially not below 0) most uses are approximations to other discrete 
or continuous variables. The most common is the normal approximation to the 
discrete binomial. It can be shown (by De Moivre in 1733) that if X~B(x; n, p); that 
is:  

    mean    µ = np  
   and  variance  σ2 = npq (i.e. standard deviation = npq ),  

 
   then the variable 
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      Z X X np
npq

=
−

=
−µ

σ
 

 has a limit of the standardised normal distribution (SND) as n increases. Thus, Z~N(0, 
1). In other words, the binomial asymptotically approaches the SND as n increases. 
The approximation is very accurate when p is close to 0.5 because of the symmetry of 
the binomial distribution. As p deviates from 0.5, n must be larger for good 
approximation.  

 
   Since there is an asymptotic relation between the binomial and Poisson 

distributions (Topic 4) and between the binomial and normal distributions, there is 
one between the Poisson and normal distribution. If X is a Poisson variable with mean 

and variance equal to λ, the transformation Z X
=

− λ
λ

 is approximately a SND.  

 
 Example 5: The rate of operative complications in a vascular surgery is 20%. This 

includes all complications ranging from wound separation of infection to death. In a 
series of 50 such procedures, what is the probability that there will be at most 5 
patients with operative complication ? 

 
 We assume that there is no systematic variation in the pattern of occurrence and non-

occurrence of complications. Then for 50 procedures we would expect to have a 
mean of 50 0 2 10× =.  complications with variance ( ) 82.012.050 =−×× , i.e. standard 

deviation 8 2 8284= . .  
 
 Now the probability that there will be at most 5 patients with complication (P(X < 5)) 

can be found be using the z-transformation:  
 

     z X
=

−
=

−
= −

µ
σ

5 10
2 8284

1 59
.

.  

 
 So:  P(X < 5) = P(z < -1.59) 
       =  0.0559 or 5.6%.     
 
 whereas the exact value (by using the binomial probability formula) is: 

   P(X < 5) = Cx
x x

x

50 50

0

5

0 2 0 8. . −

=
∑  =   // 
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VI. HOW TO FIT A NORMAL DISTRIBUTION 
 
 Example 6: Suppose that we have a set of data on weight from a group of 195 

students as follows: 
 
  Weight Midpoint No. of students 
  (Interval)  (Frequency) 
       
  62-63 62.5 2 
  64-65 64.5 16 
  66-67 66.5 30 
  68-69 68.5 48 
  70-71 70.5 48 
  72-73 72.5 39 
  74-75 74.5 11 
  76.7 76.5 1 
       

 
 Is the distribution of weight in this group of students normally distributed ? 
 
 The question is simple, yet the answer requires somewhat laborious solution. The 

idea is that to know whether the distribution is normal, we need to calculated the 
expected frequencies of the number of subjects under the hypothesis of the normal 
distribution. If the expected frequencies do not differ significantly from the observed 
frequencies, then it is reasonable to conclude that the data are normally distributed; 
otherwise, not normally distributed.  

 
 Now, the mean weight calculated from the grouped data is 69.47 kg and the standard 

deviation (SD) is 2.8164 kg. In order to calculate the expected frequencies for the 
normal distribution with this mean and SD, we need to determine the area or 
probability under the normal curve for each interval (by using the midpoint); this 
probability is present in column 4 of the following table. The expected number of 
students in each interval is then equal to the product of this probability and the 
sample size (n=195); the expected frequencies are given in column 5 of the table 
below. 
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  Weight Midpoint z P(z<x) No. of students 
  (Interval) (x) value  Expected Observed 
  (1) (2) (3) (4) (5) (6) 
     
  62-63 62.5 -2.12 0.017 3 2 
  64-65 64.5 -1.41 0.062 12 16 
  66-67 66.5 -0.70 0.162 32 30 
  68-69 68.5  0.01 0.262 51 48 
  70-71 70.5 0.72 0.260 50 48 
  72-73 72.5 1.43 0.159 31 39 
  74-75 74.5 2.14 0.060 12 11 
  76.7 76.5   0.016 3 1 
     
 

 As can be seen from this table, there is a close agreement between observed and 
expected frequencies. There is a formal test whether the differences are statistically 
significant, which we will introduce in the next few topics, however, for now it is 
reasonable to conclude that the data are normally distributed.  

 
 
VII. NORMAL- RELATED DISTRIBUTIONS 
 
 In the last few sections, we have been primarily concerned with using the standard 

normal distribution - mainly because we needed to make probability statements about 
the sample mean, set of confidence intervals, and test hypotheses about the sample 
mean when the variance is assumed to be known. Primarily because of the CLT, we 
have used the sample mean as our basic sample statistic. 

 
 Now, many times, we wish to make probability statements about a statistic, construct 

confidence intervals, and test hypotheses concerning a parameter by using a statistic 
for which we must know the sampling distribution. Generally, when we must 
construct a confidence interval for or test a hypothesis about an unknown parameter 
we must find an appropriate pivotal quantity; a primary requirement for such an entry 
is that we must know the characteristics of a distribution.  
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 In this section, we only learn about the relationship between the normal distribution 
and its related distributions such as the Chi square, F, and t distributions - we will not 
dwell into the theory or examples these distributions. 

 
 
(A) THE CHI SQUARE DISTRIBUTION. 
 
 In Example 6, we remarked that the observed and expected frequencies distribution 

of weight in 195 students was quite close and hence justifies for a conclusion of 
normal distribution of weight. We did this without any formal test. Chi square (χ2 ) 
distribution can be used for such a test.  In fact, χ2   is one of the most important 
distributions in statistics. It can also be used for conducting tests of independence and 
set confidence interval for the variance of a normal population, which we will explore 
in a next topic. 

 
 DEFINITION: Given a sequence of k independent random variables Z Z Zk1 2, ,....,  such 

that each is normally distributed with mean zero and variance of 1, we define the chi 
square variable with k degrees of freedom as U Z Z Zk= + + +1

2
2
2 2...  and write U k~ χ2 . 

 
 In other words, a chi square variable with k degrees of freedom is the sum of squares 

of k independent standard normal variables.  
 
 What do we mean by degrees of freedom (df)? A rather strict interpretation is that 

the number of df associated with a chi square variable is the number of independent 
(standard normal) random variables that conceptually go into the make-up of the 
variable. For a more intuitive understanding of the term, let us compare two ways of 
estimating the variance of a population by taking a sample of size n - first when we 
know the value of the population mean µ, and then when we do not know µ.  

 

   In the first instance, we estimate the variance by ( )∑ −
=

n

i
i nx

1

2 /µ ; here, the n 

terms xi − µ  are all independent, hence each makes an independent contribution to 
the estimation of the variance. Thus we do not lose any degrees of freedom in 
estimating the variance.  
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   In the second instance, we do not µ, we must replace it by the sample mean 

x  and estimate the variance by ( )∑ −
=

n

i
i nxx

1

2 / . Now recall that ( )∑ −
=

n

i
i xx

1
 = 0. This 

means that the n terms x xi −  are not independent because, as soon as we know n-1 of 
the terms, the value of the remaining term is fixed. This fact, resulting from our use 
of an estimate of µ  (which is x ) rather than µ  itself, causes us to lose one degree of 
freedom in estimating the variance. Ultimately, we will see that, in the general 
problem of estimation, we lose a df for each parameter that is replaced by a sample 
estimate. 

 
   Conceptually, the Chi square distribution with k df could be generated as 

follows: 
 
  (a) Take one observation from each of the k independent standard normal 

distributed samples: z z zik1 2, ,...,  
  (b) Square each observation and compute a single observation from a chi square 

distribution as: U Z Z Zi i i ik= + + +1
2

2
2 2....  

  (c) Repeat steps (a) and (b) for an infinite number of samples, that is, for i = 1, 2, . . 
. ∞ 

  (d) Compile the probability distribution of the Ui . The result will be the probability 
distribution of U, a chi square variable with k df. 

 
  Consider the following problem: we have a series of values xi , i = 1, 2, . . ., n, with 

sample mean x  and variance s2 . We know that variance of this whole population (in 
which the sample was drawn from) is σ2. It is interesting to see that:  

 

   ∑ 





 −

=

n

i

i xx
1

2

σ
 = 

( )
2

1

2

σ

∑ −
=

n

i
i xx

  

 Since ( )∑ −=
=

n

i
i xx

n
s

1

22 1 , therefore the above expression becomes: 

   ∑ 





 −

=

n

i

i xx
1

2

σ
 = ns2

2σ
   

 But the unbiased estimate of σ2 is ( )∑ −
−

=
=

n

i
i xx

n 1

2
1

1σ̂ , hence: 

   ∑ 





 −

=

n

i

i xx
1

2

σ
 = ns2

2σ
 =   ( )

2

2ˆ1
σ

σ−n   [5] 
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 This variable is distributed according to the Chi square distribution with n-1 df. 
 
 This important result shows that if we know $σ2 (the estimate sample variance) then 

we can use the Chi square distribution to test whether $σ2 is equal to a population 
variance σ2.  

 
 Example 7: A sample of 10 subjects show that the variance of lumbar spine BMD is 

0.19 g2/cm4. It was however known that the variance of LSBMD in the general 
population was 0.15 g2/cm4. Is there evidence that the sample was biased? 

 

 Using [5], we have U = 9 0 19
0 15
× .

.
 = 11.4.  Now at the significance level of 5% and 9 

df, we would expect the chi square value to be 16.92. The observed value of 11.4 is 
well below this critical value, we therefore have reasonable evidence to believe that 
there was no bias in the sampling scheme.  // 

 
 
(B) THE F DISTRIBUTION. 
 
 We are concerned here with another important distribution which was named after an 

eminent statistician Sir Ronald A. Fisher - the F distribution.  
 
 DEFINITION: If U and V are independently distributed chi-square variables with m 

and n degrees of freedom (df), respectively, then the ratio W U m
V n

=
/
/

 is distributed 

according to the F distribution with m and n df. 
 
   Conceptually, an F distribution with m and n df would result if we were able 

to perform the following processes: 
 
  (a) Take one observation (say ui ) from the variable U and one observation (vi ) from 

the variable V; 
  (b) Compute a single observation from an F distribution with m and n df as: 

w u m
v ni

i

i

=
/
/

.  

  (c) Repeat steps (a) and (b) for an infinite number of samples (i = 1, 2, . . . , ∞) 
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  (d) Compile the probability distribution of the wi . The result is the probability 
distribution of W, an F distribution with m and n df. 

 
 
 If X follows an F distribution with m and n df, it is symbolically written as: X ~ Fm n, . 

Mathematically, it can be shown that if X ~ Fm n,  , then 1
X

Fn m~ , .  

 
 In the previous section we stated that if U and V are independently distributed Chi 

square variables with n1 1−  and n2 1−  df, respectively, then: 
 

   
( )

2
112

1

1

1

2
11

~ −
=
∑ −

= n

n

i
j XX

U χ
σ

 

 and  
( )

2
122

2

2

1

2
22

~ −
=
∑ −

= n

n

i
j XX

V χ
σ

 

 Now, let m = n1 1−  and n = n2 1− , according to the definition of the F distribution, we 
have:  

   

( )
( )

( )
( )1/

1/

/
/

22
2

2

1

2
22

12
1

1

1

2
11

−
∑ −

−
∑ −

=

=

=

n
XX

n
XX

nV
mU

n

i
j

n

i
j

σ

σ  ~ Fn n1 21 1− −, . 

 Rearranging the right-hand term and substituting the sample values for two specific 
samples, we obtain the formula for computing an observed value of the above 
statistic, that is: 

    

( )
( )

( )
( )

2
2

2
2

2
1

2
1

2
2
2

2

1

2
22

1
2
1

1

1

2
11

/ˆ
/ˆ

1

1
σσ
σσ

σ

σ
=

−

∑ −

−

∑ −

=

=

n

XX

n

XX

n

i
j

n

i
j

  [6] 

 where $σ1
2 and $σ2

2 are the unbiased estimates of the population variances for 
population 1 and 2, respectively. Thus, [6] is a function of σ1

2 and σ2
2 (the unknown 
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variances). The distribution however holds regardless of the true values of σ1
2 and σ2

2 
. Therefore, under the unique condition (and only such condition) that σ1

2 =σ2
2 , [5] 

can be written as: 

     F =
$

$

σ
σ

1
2

2
2    [7] 

 
 This result ([7]) is often used to test for the equality of two variances.  
 
 Example 8: A sample of 10 subjects show that the variances of lumbar spine and 

femoral neck BMD are 0.19 g2/cm4 and 0.12 g2/cm4.  Is there evidence that the two 
variances are different ?  

 
 We use the F statistic: F = 0.19/0.12 = 1.58, now this statistic is distributed with 9 

numerator df and 9 denominator df . The critical value at 5% level for F9 9, = 3.18. 

Since the observed F value is below the expected value (of 3.18), we conclude that 
there is evidence suggesting the equality of two variances. 

 
 
(C) THE T DISTRIBUTION. 
 
 In most of the discussions so far, we have assumed that either the mean or the 

variance of a variable is known. If, however, either of the above assumptions is not 
satisfied, we must determine other ways of making probability statements. We can 
determine what happens when one assumption is met and the other is not. This is 
precisely what was done by W. S. Gossett, a statistician who, while working for a 
tobacco company in England, wrote under the pseudonym "Student".  

 
 Gossett derived the exact distribution of the statistic 
 

    

( ) ( )∑ −
−

−
=

−

=

n

i
i XX

nn

X
n

X

1

2

1
1/ˆ

µ
σ

µ  

 for situations in which a sample of any size n is selected from a normal population 
having an unknown variance. This distribution is also known as the "Student's 
distribution".  
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 DEFINITION: If Z and U are independent random variables such that Z is distributed 
normally with mean 0 and variance 1, and U is distributed according to the Chi 
square distribution with k df, then the statistic W = Z U k/ /  is distributed 
according to the t distribution with k df. 

 
  Conceptually, an F distribution with m and n df would result if we were able to 

perform the following processes: 
 
  (a) Take one observation (say zi ) from the variable Z and one observation (ui ) from 

the variable U; 
  (b) Compute a single observation from a t distribution with ka df as: 

w z u ki i i= / / .  

  (c) Repeat steps (a) and (b) for an infinite number of samples (i = 1, 2, . . . , ∞) 
  (d) Compile the probability distribution of the wi . The result is the probability 

distribution of W, a t distribution with k df. 
  
 

 In sample statistic, we could infer from the above definition: If 2
1

1

2

~ −
=
∑ 







 −
n

n

i

i XX χ
σ

 

and ( )1,0~
/

N
n

X
σ

µ− , then:  

    1

1

2
~

1
1

/
−

=
∑ 







 −
−

−

n
n

i

i

t
XX

n

n
X

σ

σ
µ

 

 This formula can be simplied to obtain: 

   
( ) ( ) ( )∑ −

−

−
=

∑ −
−

−

==

n

i
i

n

i
i XX

nn

X

XX
nn

X

1

2

1

2

1
1

1
11

µ

σ
σ

µ  ~ tn−1  [8] 

  
 This relation provides us immediately with a pivotal quantity for problems involving 

a normal distributed population with unknown variance. Thus, the essential steps for 
making a one-tail, 100α  percent significance test concerning the mean µ of a normal 
population with unknown variance can be carried out with sound theoretical 
background. 
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 We do not give example in this sub-section as we will deal with this distribution 
extensively in the next topic.  

 
 
 
VIII. EXERCISES 
 
1. The distribution of lumbar spine BMD in a NSW population is as follows: for males, 

mean = 1.24 g/cm2 and standard deviation = 0.21 g/cm2 ; for females, mean = 1.02 
g/cm2 and standard deviation = 0.19 g/cm2.  Write the complete probability 
distribution function of BMD for males and females. 

 
2. Use the normal probability distribution function in [1] and the idea of function (which 

you have learned in Topic 1) to determine the value of f(x) for the following cases: 
 (a) µ = 0, σ = 0.5 and x = 0.5 
 (b) µ = -5σ = 2 and x = -8 
 (c µ = 2050= 158 and x = 2130. 
 
3. Given that Z is a standard normal variable, determine the following probabilities: 
 (a) P(Z > 1.78)   (b) P(Z < 1.25) 
 (c) P(Z > -1.20)   (d) P(Z < -2.58) 
 (e) P(1.29 < Z < 2.15)  (e) P(-2.74 < Z < -1.40) 
 (f) P(-1.3 < Z < 1.3)  (g) P(-1.45 < Z < 2.01) 
 
4. Suppose that weight (denoted by X) of a group of boys is normally distributed with a 

mean of 44 kg and standard deviation of 5 kg. Find: 
 (a) P(40 < Z < 48) 
 (b) P(Z < 42)  
 (c) P(Z > 45) 
 (d) Between what two values does the middle 90% of weights lie ? 
 (e) Your son (also in this age group) weighs 38 kg. Should you fear that he is 

abnormally light and doomed never to become a football player ? 
 
5. For the weight in question 1, a random sample of 10 boys are selected and weighed. 

Let the sample mean be x . Find: 
 (a) P(42 < x  < 46) 
 (b) P(x  < 40) 



26 

 (c) P(x  > 48) 
 (d) Between what two values does the middle 95% lies ? 
 (e) If x  = 38, would this indicate an unusual sample of boys ? 
 
6. Mr WP is started on treatment. He has the following blood pressures (BP) at his next 

4 visits: 86, 92, 82 and 84. 
 (a) Assuming that the standard deviation of his blood pressure is 5, about average, 

compute the 80% and 95% confidence intervals for his mean blood pressure. What is 
your confidence that his mean BP is below 90 mmHg. 

 (b) Use the measurements to estimate his standard deviation (s). 
 (c) Compute the 80% and 95% confidence limits for his mean blood pressure using s, 

n. 
 
7. Mr WP is followed and his average BP over many visits is 85 mmHg. Suppose that 

his true standard deviation for individual measurements is 6 mmHg. 
 (a) How often would you expect a reading of 95 mmHg or higher ? 100 or higher ? 
 (b) On the next visit, his BP is 95 mmHg. How would you settle whether his average 

BP is no longer below the goal of 90 mmHg ? 
 
8. The probability that an individual with a rare disease will be cured is 1%. A random 

sample of 600 persons with the disease is selected; find the probability that 1 person 
is cured, using (a) Binomial distribution theory and (b) Normal approximation. 

 
9. The following statement was found in a popular medical journals: "As the sample 

size increases, the distribution of the data becomes approximately normal, by virtue 
of the Central Limit Theorem". Explain what is wrong with the statement? 

 
10. A surgeon wants to conduct a clinical trial to estimate the average time to recovery 

for patients benefiting from a new therapy for advanced breast cancer. For the 
standard therapy, the time to recovery is 110 weeks, and the variation among 
respondents is such that the standard deviation is 24 weeks. How many patients are 
needed in the trial, if the surgeon is to be 95% confident of estimating the average 
time to recovery to within 10 weeks? Assume that the variation among patients is 
comparable to the standard therapy. 
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11. The acidity of human blood measured on the pH scale is normal random variable with 
mean 7.2. Determine the standard deviation if the probability that the pH level is 
greater than 7.47 is 0.0359. 

 


