
BIOSTATISTICS 
TOPIC 9: ANALYSIS OF CORRELATIONS 

II. MULTIPLE REGRESSION ANALYSIS 
 

 
 
 
PREDICTION AS A SCIENCE ? 
 
 Some years ago, I read a book which has a the following conversation (not precise 
words): "A bar man asks Andy Capp which one he would choose - money, power, 
happiness, or the ability to foretell the future? 'Foretell the future', Andy answers: 'that way 
I can make money. Money will bring me power, and then I will be happy' ".  
 
 It is probably fair to say that the dream of being able to predict the future is as old 
as human nature. Many of us normally disdain the notion of "fortune-telling", which is 
quite curious because science itself revolves around methodologies for telling the future. In 
fact, we merely use a different vocabulary. In contrast to fortune-telling, we talk about 
calculations instead of predictions, laws instead of fate, and statistical fluctuations instead 
of accidents. Yet, the aim of the scientific method is the same. From the observation of past 
events, we derive laws that, when verified, enable us to predict future outcomes. 
 
 Taking for instance, the concept that all animals die at the same age sounds 
implausible, if we measure age in years and months and days, but it becomes rather logical 
if we count the number of heartbeats. It is the only heartbeat that differs from animal to 
animal. Small ones, like mice, live about 3 years but their heartbeat is very rapid. Middle-
size ones such as rabbits, dogs, sheep etc. have a slower heartbeat and live between 12 and 
20 years. Elephants live more than 50 years but have a slow heartbeat. It is not surprised 
that a famous professor has claimed that "most mammals living free in nature (not in homes 
or zoos) have accumulated about one billion heartbeats on average when they die". It looks 
like we can predict life expectancy of animals from their heartbeats. But still, we need to 
have a systematic way of doing this. Modern science has given us the regression analytical 
technique to achieve this aim. We are going to discuss some practical aspects of this 
technique in this topic. 
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I. INTRODUCTION 
 
 In the last topic we consider regression model with one independent variable. Quite 
frequently in the analysis of data, we wish to study the dependence of a random variable Y 
on several variables x x xp1 2, ,..., . In this topic, we will extend the idea to include more than 

one independent variable in the equation. The technique is called multiple linear 
regression.  
 
 For the purpose of illustration, let us now consider a numerical data set resulting 
from a study which examined the heat generated during the hardening of Portland cements, 
which was assumed to be a function of the chemical composition, the following variables 
were measured: 
 
 x1 : amount of tricalcium aluminate  
 x2  : amount of tricalcium silicate 
 x3 : amount of tetracalcium alumino ferrite 
 x4  : amount of dicalcium silicate 
 Y : heat evolved in calories per gram of cement. 
 
 Table 1: Observed data  
  
 i x1 x2  x3 x4  Y 
  

 1 7 26 6 60 78.5 
 2 1 29 15 52 74.3 
 3 11 56 8 20 104.3 
 4 11 31 8 47 87.6 
 5 7 52 6 33 95.9 
 6 11 55 9 22 109.2 
 7 3 71 17 6 102.7 
 8 1 31 22 44 72.5 
 9 2 54 18 22 93.1 
 10 21 47 4 26 115.9 
 11 1 40 23 34 83.8 
 12 11 66 9 12 113.3 
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 13 10 68 8 12 109.4 
  
 
 Variables x1, x2 , x3 and x4  were measured as percent of weight of the clinkers from 
which the cement was made. Under the assumption that the heat generated during 
hardening is a linear function of the four variables, we postulate the model: 
 
  ( )4321 ,,, xxxxYY µµ =  

        =  β β β β β0 1 1 2 2 3 3 4 4+ + + +x x x x  
 
 This model postulates that at the point ( )iiii xxxx 4321 ,,,  (ith row of the data matrix), 

the expected value (or mean) of the heat is equal to β β β β β0 1 1 2 2 3 3 4 4+ + + +x x x xi i i i .  The 
measured value yi  is thus considered as a realisation of a random variable Yi , which 
consists of the above mean plus a random deviation ei : 
 
  Y x x x x ei i i i i i= + + + + +β β β β β0 1 1 2 2 3 3 4 4  
  
 The random error ei  are usually assumed to be mutually independent and to follow a 
normal distribution with mean 0 and a common variance σ2.  
 
 In general, the coefficients β β β β0 1 2 3, , ,  and β4  are unknown. Regression methods 
are used to estimate them and to test hypotheses about them. The intercept β0  is the value 
of µY  at the point (0, 0, 0, 0). β1, β2 , β3  and β4  are called partial regression coefficients. 
They can be interpreted as follows: µY  increases by β j  if x j  increases by 1 while all other 

x-variables remain unchanged. Often, β0  is referred to as the constant, which comes from 
the fact that β0  can be considered as the partial regression coefficient for a variable x0 that 
takes always the constant value x i0 1= . We prefer to call β0  the intercept. 
 
 Some more terminology: Y is called dependent variable or response variable. The 
x j  are called regressors or independent variables (although they need not be independent 
from each other  in a statistical sense). It is important to remark that  x j  are not considered 

as random variables but rather as variables whose values have been fixed by the 
investigator. If the x j  are random, then the conclusions are conditional on the realised 

values. 
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 In practice, the linear model will hardly ever be valid exactly. In many cases, 
however, in the domain considered, it is good approximation to the real, more complex  
world. Moreover, it is rarely be possible to know, or take into account, all the quantities 
influencing the mean µY . The deviation ei  from the linear model can be thought of as the 
sum of many unknown or uncontrollable influences and, possibly, of a measurement error. 
 
 Let us now summarise the model as follows: 
 
 (a) The mean µY  of the random variable Y depends linearly on the regressors x1, x2 , 
x3 and x4  : 
  ( )4321 ,,, xxxxYY µµ =  

        =  β β β β β0 1 1 2 2 3 3 4 4+ + + +x x x x  
 
 (b) In each point ( )iiii xxxx 4321 ,,, , the deviations ei  from µY  are normally 

distributed with mean 0 and constant variance σ2: 
 
  ( )2,0~ σNei  

 
 (c) The deviations ei  are mutually independent. 
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II. LEAST SQUARES ESTIMATION AND RESIDUALS 
 
2.1. TYPICAL OUTPUT FROM A COMPUTER PROGRAM 
 
 The procedure of estimation of parameters in multiple regression analysis is 
complex. Nowadays, this mechanical task is normally handled by a computer program. The 
following output was produced by the SAS statistical analysis system: 
 
 
 
Model: MODEL1 
Dependent Variable: Y 
 
                              Analysis of Variance 
 
                                 Sum of         Mean 
        Source          DF      Squares       Square      F Value       Prob>F 

 
        Model            4   2667.89944    666.97486      111.479       0.0001 
        Error            8     47.86364      5.98295 
        C Total         12   2715.76308 

 
            Root MSE       2.44601     R-square       0.9824 
            Dep Mean      95.42308     Adj R-sq       0.9736 
            C.V.           2.56333 

 
                              Parameter Estimates 
 
                       Parameter      Standard    T for H0: 
      Variable  DF      Estimate         Error   Parameter=0    Prob > |T| 
 
      INTERCEP   1     62.405369   70.07095921         0.891        0.3991 
      X1         1      1.551103    0.74476987         2.083        0.0708 
      X2         1      0.510168    0.72378800         0.705        0.5009 
      X3         1      0.101909    0.75470905         0.135        0.8959 
      X4         1     -0.144061    0.70905206        -0.203        0.8441 

 
 In the following sections, we will discuss the significance as well as meaning of 
these numerical values.  
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2.2. LEAST SQUARES ESTIMATION 
 
 The unknown coefficients β β β β0 1 2 3, , ,  and β4  are estimated as follows: for each 
observation yi , we form the deviation from the unknown mean µY  at the point 
( )iiii xxxx 4321 ,,, . The sum of the n squared differences: 

 

  ( )∑ −−−−−=
=

n

i
iiiii xxxxyS

1

2
443322110 βββββ  

 
will be called the sum of squares. The latter is considered as a function of the p + 1 = 4 + 1 
= 5 parameters β β β β0 1 2 3, , ,  ,β4   and, by principle of least squares, we determine that 
particular 4-dimensional hyperplane (i.e. the value of  β β β β0 1 2 3, , ,  ,β4  ) for which S is 
minimal. The value b b b b b0 1 2 3 4, , , ,   which minimise S are called least square estimates for 
β β β β0 1 2 3, , ,  ,β4 . Thus we have: 
 

  ( ) SxxxxySSE
n

i
iiiii ≤∑ −−−−−=

=1

2
443322110 βββββ  

 
SSE is variously called the error sum of squares or  residual sum of squares or 
minimum sum of squares. The computation of the coefficients bjrequires the solution of a 

system of linear equations in 5 variables. However, we are not going to discuss this 
technical aspect in this note.  
 
 Now, having obtained bj , we can compute for observation the estimated value 

(often called predicted value or fitted value): 
 
  $y b b x b x b x b xi i i i i= + + + +0 1 1 2 2 3 3 4 4  
 
which indicates the value of the estimated hyperplane at the point ( )iiii xxxx 4321 ,,, .  
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2.3. RESIDUAL ANALYSIS 
 
 We will also compute the residuals, which is the deviations of the measured values 
yi  from their predicted counterparts: 
 
  $ $e y yi i i= −  
 
 SSE can then be written as: 
 
  SSE = ( )22 ˆˆ iii yye −=  

 
 If n is large, we can consider the list of residuals $ei  (i = 1, 2, 3, . . ., n) assuming the 
validity of the model, approximately as a random sample from a normal distribution with 
mean 0. The variance of the residuals is estimated by: 
 

   s SSE
n p

2

1
=

− −
 

 
 i.e the standard deviation of the residuals is:  
 

  s SSE
n p

=
− −1

 

 
 where p is the number of x-variables (in our example, p = 4). 
 
 s is also called the standard error of regression. 
 

 In our example, we obtained the equation: 
 
  $µY  = 62.418 + 1.551x1 + 0.510x2  + 0.102x3 - 0.144x4  
  
 Based on this equation, we can calculate the predicted value of y (denoted by $y ) for 
any given values of x1, x2 , x3  and x4 . This predicted value together with observed value is 
tabulated in the Table 2.  
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Table 2: Observed, predicted values of y and residuals. 
  
 i yi  $yi  $ei  
  

  1 78.5 78.495 0.005 
  2 74.3 72.789 1.511 
  3 104.3 105.971 -1.671 
  4 87.6 89.328 -1.728 
  5 95.9 95.648 0.252 
  6 109.2 105.274 3.926 
  7 102.7 104.148 -1.448 
  8 72.5 75.676 -3.176 
  9 93.1 91.722 1.378 
  10 115.9 115.619 0.281 
  11 83.8 81.810 1.990 
  12 113.3 112.326 0.974 
  13 109.4 111.693 -2.293 
  

 
 
with a residual sum of squares of : 
 
  SSE = ( )22 ˆˆ iii yye −=  = 47.945 

 
 and the standard deviation of residuals: 
 
  s = 2.45. 
 

The method of least squares gives a "best-fitting" hyperplane whether the assumptions 
stated earlier is satisfied or not. However, if the assumptions are valid, the least squares 
estimators have some important properties: the quantities b b b b b0 1 2 3 4, , , ,  are unbiased 
estimates of the parameters β β β β0 1 2 3, , ,  ,β4 . Among all possible unbiased estimators, 
which are linear functions of the yi , the least squares estimators have the smallest variance. 
The quantity s2  is an unbiased estimator of σ2. Moreover, from the assumption that the ei  



9 

are independent and normally distributed, it follows that the least squares estimators 
b b b b b0 1 2 3 4, , , ,   are also normally distributed. 
 
 In order to validate the assumptions made, it is very important to examine the 
residuals. A histogram of the residuals is a possible aid for visualising possible violations 
of the normality assumptions. Also important is a scatterplot of the pairs ( )ii ey ˆ,ˆ , i.e. of the 

residuals versus the predicted values, which often reveals whether or not the underlying 
linear model is correct. 
 
 If the assumptions are satisfied, the residuals should scatter around 0 and there 
should be no dependency on the predicted value of y. Non-constant variance of the 
residuals, non-linear dependency and other forms of violations of the model assumptions 
can be uncovered by means of this simple plot. 
 
 Table 2 also gives a list of the predicted values of y and residuals computed from 
the actual equation relating y on the 4 x-variables. .A plot of  residuals and predicted values 
of y ( )ii ey ˆ,ˆ  is shown in Figure 1. It seems that there is no relationship between the two 

variables, and hence the assumption of random residuals seem to satisfied. 
 
 Occasionally, scatterplot of the residuals versus individual independent x variables 
can also furnish information about non-linear dependencies. If a residual is extremely large 
in absolute value, we may be suspicious of an outlier, or the linear model may not be valid 
for that particular point. We are not going to give more details on residual analysis since it 
is an extensive topic of statistical research.  
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Figure 1: Plot of residuals versus predicted value of Y. 
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III. ANALYSIS OF VARIANCE 
 
 An analysis of variance partitions the overall variation between the observations Y 
into variation which has been accounted for by the regression on X and residual or 
unexplained variation. Thus, we can say: 
 
    Total variation     =  Variation explained    +  Residual 
      about the mean      by regression model        variation 
 
In ANOVA notation, we can write equivalently: 
 
  SSTO    =  SSR +  SSE 
or,  

  ( ) ( ) ( )∑ −+∑ −=∑ −
===

n

i
ii

n

i
i

n

i
i yyyyyy

1

2

1

2

1

2 ˆˆ  

 
 Now, SSTO is associated with n-1 df. For SSR, there are five parameters (b0, b1, b2, 

b3 and b4) in the model, but the constraint ( )∑ −
=

n

i
i yy

1
ˆ  = 0 takes away 1df, hence it has 

finally 4 df. For SSE, there are n residuals (ei); however, 5 df are lost because of two 
constraints on the ei's associated with estimating the parameters β0, β1  , β2 , β3 , and β4 by the 
normal equations see Topic 8). 
 
 We can assemble these data in an ANOVA table as follows: 
 
   
 Source df SS MS 
   

 Regression 4 SSR = ( )∑ −
=

n

i
i yy

1

2ˆ  MSR = SSR/4 

 Residual error n - 5 SSE = ( )∑ −
=

n

i
ii yy

1

2ˆ  MSE = SSE / (n-5) 

 Total n - 1 SSTO = ( )∑ −
=

n

i
i yy

1

2  
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 In our example, the corresponding numerical values for the analysis are: 
 
 
 Table 3: Analysis of variance of model  
  $µY  = 62.418 + 1.551x1 + 0.510x2  + 0.102x3 - 0.144x4  
   
 Source df SS MS 
   
 Regression 4 2667.90 666.97 
 Residual error 8 48.76 5.98 
 Total 12 2175.76 
   

 

 In this example, the total sum of squares about the mean is  ( )∑ −
=

13

1

2ˆ
i

i yy  = 2715.76 

and the sum of squares "explained" by the regression equation is ( )∑ −
=

13

1

2ˆ
i

i yy  = 2667.90, 

which leaves a residual sum of squares of ( )∑ −
=

13

1

2ˆ
i

i yy = 47.86. Consequently, the 

proportion of total variation of y attributable to the model is 2667.90 / 2715.76 = 0.9824  or 
98.24%. We will discuss the "adjusted R2" in a later part of this topic. 
 
 Since the data set has 13 observations, therefore there are 12 df associated with the 
total sum of squares. On the other hand, the model has 5 parameters (including the 
intercept), therefore the number of degrees of freedom (df) associated with the equation is 
4, hence the mean square due to the model is 2667.90 / 4 = 666.97. That makes the number 
of df associated with the residual sum of squares of 8 and hence its mean square is 47.86 / 8 
= 5.98. By definition, the F test of significance of the model is given by F = 666.97 / 5.98 = 
111.479 which is statistically highly significant, compared with the theoretical F value of  
3.84 at α = 0.05 with numerator and denominator df of 4 and 8, respectively.  
 
 The residual mean square (MSE) could be treated as an estimate of variance of the 
model. Thus, the "root MSE", which is actually the square root of MSE, can be treated as 
an estimate of standard deviation of the model e.g. 5 98. =2.45. Now, the observed 
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variance of y is ( )∑ −
=

13

1

2ˆ
i

i yy /12 = 2715.76 / 12 = 226.31. After accounted for by the model 

(with 4 variables), the variance is only 5.98, a reduction of 97.3%. This is a respectable 
number ! 
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3.1. OVERALL TEST OF SIGNIFICANCE  
 
 The linear model with p partial regression coefficients is only meaningful if at least 
one coefficient is different from zero (significant). We compare the full model 
 

µ β β βY p px x= + + +0 1 1 ...  

 
 with the reduced model 

µ βY = 0  
 
by eliminating all p variables simultaneously, i.e. by putting: 
 

β β β0 1 0= = = =... p  

 
 The least squares estimate of β0  turns out to be the sample mean of Y, i.e. b Y0 = ; 
the corresponding SSE is: 
 

( )∑ −=
=

n

i
i yySSE

1

2
0  

 
 This is in fact referred to as "Total" SS in the ANOVA table.  
 

 The question is then "do the four variables significantly explained the observed 
variation of the data?". This question can be addressed by calculating the overall F statistic 
which is: F = 666.97/5.98 = 111.29. This value is compared (at α = 0.05) with 95% 
quantile of the F distribution with 4 and 8 DF, respectively.  Now, F0 95 4 8 3 84. , , .= . Thus, 

there is strong evidence that at least one of the partial regression coefficients is different 
from zero, and we can not dispense with all regressors.  
 
 All major computer programs for regression analysis calculate the ANOVA table 
for the overall test of significance and the associated F statistic. In contrast to our 
terminology, the SS in the ANOVA table are virtually labelled as follows in the computer 
printout: "TOTAL" (for the reduced model µ βY = 0), "RESIDUAL" (for the full model 
µ β β βY p px x= + + +0 1 1 ... ) and "REGRESSION" (for the sum of squares associated with the 
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reduction). Our terminology has the advantage of reminding the user that actually 
mathematical models are being compared and not just the sums of squares. 
 
 

3.2. COEFFICIENT OF DETERMINATION 
 
 In addition to the overall F value, one often computes the coefficient of 
determination R2 , which is defined as follows: 
 

R SSE SSE
SSE

2 0 4

0

=
−  =  

( )

( )∑ −

∑ −
−

=

=
n

i
i

n

i
i

yy

yy

1

2
1

2ˆ
1  

 
(note: the subscript k in SSE refers to the SSE due to k variables in the model; thus, SSE 4  
referred to the SSE due to 4 variables in the model, while SSE 0  refers to the SSE of the 
model without any independent variable) 
 
 This quantity is often interpreted as the proportion of the variability of Y explained 
by the regression on x1, x2 , . . . , xp. In our examples, R2 0 982= . , which says that 98.2% of 

the variability (not variance) of Y is accounted for the independent variables x1 to x4 . If no 
linear dependency exists, then R2  lies near 0; in this case of a strong linear dependency, 
however, near 1. When interpreting the coefficient of determination, however, caution is 
advised, because for n < p+1, one has $y yi i= , and thus R2 1= . Interpreting  R2  is 
meaningful only when n is considerably larger than p. 
 
 The root R R= 2  is called the multiple correlation coefficient between Y and x1, 
x2 , . . . , xp. R is equal to the correlation coefficient of the pair ( $ ,y yi i ). In our example, R = 

0.991. 
 
 

3.3. ADJUSTED R2  
 
 Some statisticians have suggested that the coefficient of determination should be 
modified to recognise the number of independent variables in the model. The reason is that 
this coefficient can generally be made larger if additional independent variables are added 



15 

to the model. To see this, note that SSE tends to be smaller with each additional 
independent variable, while SSTO remains fixed. A measure that recognises the number of 
independent variables in the model is called the adjusted coefficient of determination and is 
denoted by Ra

2 : 
 







×

−
−

−=
SSTO
SSE

pn
nRa

112  

 
 In our example, the adjusted Ra

2  is 0.974, which is not greatly different to that of 
0.982. 
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IV. MODEL BUILDING AND ANALYSIS OF VARIANCE 
 
 Once the multiple regression equation has obtained, we would like to know whether 
it is necessary to include all independent variables in the equation. We can single out two 
cases in which a regressor can be removed from the model without any loss of information: 
 
 (a) There is no relationship between x j  and Y; 
 (b) The influence of x j  on Y is affected through other variables. This possibility can 

be illustrated most simply by means of a simulated example. Assume that the following 
model is valid: 
 
  y x x= +1 22  
 
 Assume, at the same time, that the variable x x x3 1 2= +  has been measured too. We 
can therefore also write the model as: 
 
  y x x= +2 3 
 
 or as y x x= −2 3 1 
 
 finally, we can also describe y as a linear function of all three regressors, e.g. 
 
  y x x x= + −2 31 2 3  
 
 In this model, one variable is clearly redundant - even though y is functionally 
dependent on x1, x2  and x3. In practice it is often difficult to recognise such functional 
dependencies between the regressors. Often a functional relationship is confounded with a 
measurement error, or it is not exactly linear. 
 
 In both cases, we speak of redundancy: the variable x j  in case (1) or one of the 

variables x x x1 2 3, ,  in case (2) can be removed from the model without loss of information, 
i.e. it is redundant. We try to simplify the model through elimination of redundant 
regressors. As possibility 2 shows, however, redundancy does not mean that the regressor 
has no influence.  
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 The removal of variable x j  from the model is done by setting the parameter β j  

equal to zero. For simplicity of notation we assume that the variables are ordered in such a 
way that the parameters to be set equal to zero are the last ones. The model with all p 
regressors  
 
  µ β β β β βY p px x x x= + + + + +0 1 1 2 2 3 3 ....  

 
will be called the full (or alternative model). By the so-called linear restriction, i.e. by 
setting, say: 
 
  β β3 0= = =.... p  

 
 a simplified model  
 
   µ β β βY x x= + +0 1 1 2 2  
 
 is obtained. The latter is called reduced model or null model.  
 
 The full and reduced models can be compared as follows. For both models one 
estimates the parameters and computes the corresponding residual sum of squares. The 
latter shall be denoted by SSE p  (full model) and SSE r  (reduced model), respectively. Since 
the adjustment of the plane becomes worse by the elimination, one always has SSE p  < 

SSE r . We now form the ratio: 
 
 

   
( ) ( )

( )1/
/
−−

−−
=

pnSSE
rpSSESSE

F
p

pr  

 
 
 Under the hypothesis β β3 0= = =.... p , this statistic is distributed according to the F 

distribution with (p - r) degrees of freedom in the numerator [df] and (n - p - 1) df in the 
denominator. If the computed F ratio is smaller than the (1 - α) quantile of the F 
distribution with (p - r) and (n - p - 1) df, then the null hypothesis is accepted. Otherwise, 
we retain the full model. 
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 The residual sum of squares and the F test are usually summarised in an analysis of 
variance table as follows: 
 

  

 Model Minimum SS DF 
  

 Reduced model SSE q  n - q - 1 
 β β β0 1 1+ + +x xq q...  

 
 Full model SSE p  n - p - 1 
 β β β0 1 1+ + +x xp p...  

  
 Reduction SSE q  - SSE p  p - q 
 β βq p+ = = =1 0...  

  

 
 It should be noticed that the correctness of the F-test depends on the assumptions of 
the model. In many cases it is appropriate to view the F-value merely as a descriptive 
measure of the difference between the two models. This is particularly true if a series of 
model comparisons is carried out on one and the same set of data. We will return to this 
issue in a next section. 
 
 
TEST OF PARTIAL HYPOTHESES 
 
 In the second special case q = p - 1, mentioned in the above section, the reduced 
model is: 
 

µ β β βY p px x= + + + − −0 1 1 1 1...  

 
 

which is obtained from the full model by imposing the restriction β p = 0. For simplicity we 

again assume that it is the redundancy of the pth variable that needs to be tested. As in the 
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overall hypothesis, we compute the two minimum SS S p
min  (full model) and S p

min
−1 (reduced 

model). By means of the ratio: 
 

( ) ( )1/
0 1

−−

−
=== −

pnSSE
SSESSE

FF
p

pp
pβ  

 
 
called the partial F-statistic. We test the redundancy of xp in the regression model. Under 
the validity of the null hypothesis β p = 0, the test statistic is distributed as F with 1df in the 

numerator and (n - p - 1) in the denominator. 
 
 By comparing the realised F value with the (1- α) quantile of the F < ( )1,1,1 −−− pnF α , 

we accept the simpler reduced model. It is, however, not possible to conclude from this that  
xp has no influence on Y, since the influence xp can may be represented by some other 

regressors. The only thing we can say is that the full set of regressors does not describe the 
linear relationship better than the reduced set. 
 
 If several partial F-values are computed, we recommended their use merely for 
descriptive purpose. In particular, it is not correct to conclude from the non-significance of 
several partial regression coefficients that these may simultaneously be removed from the 
model. Indeed, the elimination of one single regressor can strongly influence by the other 
coefficients. 
 
 Many computer programs give partial F-statistics on n - p - 1 df. rather than partial 
F-statistics for testing the redundancy of a single variable. The relationship between the two 
statistics is simple F = t 2 , reflecting the fact that F with 1 df in the numerator and m df in 
the denominator is the same as the square of t with m df. 
 
 
 
STANDARD ERROR OF REGRESSION COEFFICIENTS 
 
 
 From the partial F-value, the standard error of bj  can be estimated as follows: 
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( ) ( )0
||
=

=
j

j
j F

b
bSE

β
 

 
 In our example, one can thus supplement the estimated regression equation with a 
list of partial F values and standard errors of the partial regression coefficients as shown in 
the following table.  
 
 
  Table 4: Estimated regression coefficients, standard error  
   and partial F test. 
   
 j bj  SE(bj)  F(β j = 0) 

   
 0 62.418 71.59 0.760 
 1 1.551 0.745 4.331 
 2 0.510 0.724 0.496 
 3 0.102 0.755 0.018 
 4 -0.144 0.710 0.041 
   
 
The rather large SE (compared to the absolute values of the coefficients) and the small F 
values lead one to suspect that the set of variables can be reduced in some way. An 
approach to eliminating redundant variables will be discussed in the next section. 
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VI. SELECTION OF A SUBSET OF REGRESSORS 
 
 The selection of a suitable subset of regressors is often difficult. Different 
algorithms may yield different results. It can also happen that different subsets of equal size 
yield results of practically the same quality. In our example, we could eliminate one of the 
four independent variables and would obtain for the four reduced models the following 
coefficients of determination: 
 
 
  Table 5: Comparison of various models by using R2  
   

 Model without R2  
   
  x1 0.973 
  x2  0.981 
  x3 0.982 
  x4  0.982 
   
 
 Since none of the models with three regressors results from one of the others 
through a linear restriction, they can not be compared to each other by an analysis of 
variance. According to the coefficient of determination, three of the four models containing 
three regressors would be about equally good. 
 
 Situations such as this are especially likely to occur when the regressors are 
strongly related to each other. The relations among the x j  are usually described by a 
correlation matrix, although the values taken by x j  are considered as fixed for the purpose 

of least square estimation. 
 
 Because of the noncompatibility of models with an equal number of regressors one 
often uses hierarchical algorithms for selecting a subset of independent variables. We 
describe here the method of backward elimination. Starting with the full model with p 
variables, we first eliminate the variable with the smallest partial F value. In the remaining 
variables, i.e. we compare the model with p-1 variables with all models which result from 
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elimination of one additional variable. Again, the variable with the smallest partial F value 
is eliminated, etc. Again, the variable with the smallest partial F value is eliminated, etc. 
until in the end all regressors have been eliminated from the model. Applied to our 
example, the backward elimination yields the following results (MPF = minimum partial F 
value). 
 
 
 Step 1: Full model 
   
 Variable bj  SE(bj)  F(β j = 0) 

   
 x1 1.551 0.745 4.33 
 x2  0.510 0.724 0.50 
 x3 0.102 0.755 0.02  MPF 
 x4  -0.144 0.710 0.04 
 Intercept 62.418 
   
  R2  = 0.982,  Std error of residual = 2.448 
 
 
 Step 2: Elimination x3 
   
 Variable bj  SE(bj)  F(β j = 0) 

   
 x1 1.452 0.117 154.01 
 x2  0.416 0.186 5.03 
 x4  -0.237 0.173 1.86  - MPF 
 Intercept 71.648 
   
  R2  = 0.982,  Std error of residual = 2.309 
 
 
 Step 3: Elimination x4  
   
 Variable bj  SE(bj)  F(β j = 0) 
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 x1 1.468 0.121 146.52  - MPF 
 x2  0.662 0.046 208.58 
 Intercept 52.577 
   
  R2  = 0.979,  Std error of residual = 2.406 
 
 
   Step 4: Elimination x1 
   
 Variable bj  SE(bj)  F(β j = 0) 

   
 x2  0.789 0.168 21.96 
 Intercept 57.424 
   
  R2  = 0.666,  Std error of residual = 9.077 
 
 Eliminating x2  in step 5 finally yields the estimate b0 = y  = 95.423 and Std error of 
residual = Std deviation of Y = 15.044. 
 
 
 It is now up to the us to make the important decision of how many regressors and 
which ones, we want to include in the model. Most programs offer the possibility of 
indicating a critical value Fmin . The algorithm is stopped as soon as there is no longer a 
partial F value smaller than Fmin . In the hierarchical sequence of tests it is, however, not 
possible to consider the partial F values as independent. Therefore, the use of the partial F 
value only in the descriptive sense for the purpose of determining an ordering among the 
independent variables. A possible stopping criterion is an abrupt change in R2 . In our 
example, the coefficient of determination decreases abruptly after three steps, this sharp 
bend is an indication that the two regressors eliminated first are redundant. The remaining 
model is based on x1 and x2  only; the regression equation (in brackets standard errors of the 
bj) is estimated as: 

 
$ . . .µY x x= + +52 577 1 468 0 6621 2  

 (0.121) (0.046) 
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 This model can now be compared with the full model. The ANOVA table as shown 
below give the value of the test statistic as: 
 

F = 9 96 2
47 945 8

. /

. /
 = 0.83 

 
lies below the 0.95 quantile of the F distribution with 2 and 8 df [F0 95 2 8 4 46. , , .= ]. The 

simplification of model to 2 regressors appears to be justified. 
 
   

 Model SSE DF   
   
 β β β0 1 1 2 2+ +x x  57.904 10 
 β β β β β0 1 1 2 2 3 3 4 4+ + + +x x x x  47.945 8 
   
 Reduction 9.960 2 
   
 
 It must be emphasized that the solution thus found need by no means be the only 
correct one. A model with (x x1 4, ) instead of (x x1 2, ) for example, yields practically the 
same coefficient of determination. It remains up to the user to decide, based his/her 
knowledge of the subject, which regressors he/she wants to use to describe the dependent 
variable. 
 
 Moreover, strictly speaking, the test given above is not entirely correct, since it 
violates the principle that hypotheses should not be generated and tested on the same 
data.  
 
 The following table gives a list of the observed and predicted value of the 
dependent variable ( yi  and $yi) , and the residuals e y yi i i= − $  for the model with (x x1 2, ). 
The multiple correlation for this model is plotted by the pairs yi  and $yi . This figure, at the 
same time, allows an examination of the residuals: the horizontal (or vertical) distance of 
( yi  and $yi) to the straight-line  $yi  = yi   (slope = 1, angle = 45o) corresponds precisely to the 
residual e y yi i i= − $ . No violation of the assumptions can be detected.  
 
Table 6: Predicted values and residuals for the  
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 model µ β β βY x x= + +0 1 1 2 2  
  
 i yi  $yi  $ei  
  

 1 78.5 80.074 -1.574 
 2 74.3 73.251 1.049 
 3 104.3 105.815 -1.515 
 4 87.6 89.258 -1.658 
 5 95.9 97.292 -1.393 
 6 109.2 105.152 4.048 
 7 102.7 104.002 -1.302 
 8 72.5 74.575 -2.075 
 9 93.1 91.275 1.825 
 10 115.9 114.538 1.362 
 11 83.8 80.536 3.264 
 12 113.3 112.437 0.863 
 13 109.4 112.293 -2.893 
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Figure 2: Multiple Correlation in the Model µ β β βY x x= + +0 1 1 2 2  
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VII. COMMON QUESTIONS AND ANSWERS 
 
Question: What should I do if the assumptions of the model (normal distribution of the 
deviations) are not met? 
Answer: In practice, one often encounters problems in which the assumptions for statistical 
testing are not satisfied. Purely numerically, one can, of course still compute a "best fit" 
hyperplane. But the statistical tests are no longer correct. Since in this topic we consider 
multiple regression merely as a tool, we refer here to the relevant literature. 
 
Question: Apart from backward elimination, are there any other procedures for selecting 
subsets of variables? 
Answer: In statistical program libraries, the following additional algorithms are often used: 
 (a) Forward selection: In this method, one seeks in step 1 a first variable which, 
taken alone, yields the highest F value. In step 2, among all pairs of regressors which 
contain the already selected variable, one finds the one which maximises the overall F 
value. Analogously, in step 3 a third variable is added to the two already selected, and so 
on. 
 
 (b) Stepwise selection: This method is a mixture of the two already described. Step 
1 and 2 are as in forward selection: subsequently however, prior to the selection of an 
additional variable, one always examines the partial F value of all variables already 
selected. If such a value falls below a certain limit (which is imposed by the user), the 
variable in question is again eliminated, whereupon another variable is newly included, and 
so on. The following table gives a list of all 15 possible subsets of regressors. On the basis 
of this table, we can trace all three algorithms.  
 
  

 Step No. Backward Forward Stepwise 
  

 1 x1 x2 x3 x4  x4  x4 
 2 x1 x2 x4  x1 x4  x1 x4 
 3 x1 x2   x1 x2 x4  x1 x2 x4 
 4 x2  x1 x2 x3 x4  x1 x2 
 5     x1 x2 x4 
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 A comparison between backward elimination and forward selection shows the 
phenomenon, which is rather rare in practice, that the reversal of forward selection does not 
produce at all stages the same subset of regressors as backward elimination. The procedure 
stops at step 5, since in the next step x4 would again be eliminated. 
 
 In the following, we will always use backward elimination, since at the beginning 
one performs the overall test. If this test turns out to be non-significant, then the decision is 
that the coefficients β1 , β2 , . . . , βp are all zero. In this case, any selection of subsets is 
unnecessary, whereas in the other procedures, from a number of purely redundant 
regressors a few can be selected, even though in reality there exists no influence. 
 
 Thanks to fast computers it is nowadays also possible to use so-called "all subsets 
regression" algorithms. If p regressors are available, an exhausive search implies that 
( )12 −p  subsets have to be analysed - an almost astronomic task even if p is as small as 10. 

Of course, it is possible to restrict the number of subsets by heuristic considerations, but 
nevertheless, the amount of computation is very large.  
 
Question: In backward elimination, can one come up with an automatic stopping criterion 
that would avoid following the algorithm to the very end? 
Answer: In most computer programs, this is, indeed, possible. Backward elimination 
carried through to the end, however, may provide additional information about the 
importance of the individual regressors. 
 
Question: Are not the assumptions in our example is grossly violated? The variables x1 to 
x4  as one can see from the data matrix, care certainly not normally distributed? 
Answer: This is one of the most misunderstood issue among regression analysts or users. 
The assumption of normality is applied to the residual ei , not to the xi ,. The latter is 
assumed to be fixed (not random) variable. 
 
Question: What about the numerical accuracy of the results? As is known from experience, 
the results of various regression programs do not always agree to all decimal digits? 
Answer: The numerical computation of the coefficients consists of mainly of the inversion 
of a matrix. In this connection, certain numerical problems may arise, especially when the 
regressors are strongly correlated among each other. It is therefore recommended to analyse 
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one and the same regression problem with different programs. If the results do not agree, a 
possible way out of this is to consider instead of the actual regressors, their principal 
components as independent variables. This option is provided in some advanced regression 
analysis programs. 
 
Question: Why should not we use the full model with all p variables included? Why should 
we make the fit worse by eliminating variables? Since R2  always increases if we include 
more variables, it certainly can't hurt if we use all the predictors that are available? 
Answer: From a non-statistical viewpoint, this observation is right - inclusion of an 
additional variable will always improve the fit as measured by the coefficient of 
determination (R2). The statistical question is whether or not the improvement is purely 
random. There are also other reasons for selecting a subset of regressors. For instance, we 
can argue that a simple model is preferable to a complicated model, provided that both 
models work equally well - a rule that is valid not only for statistical models. A very 
important reason is the instability of the parameter estimates if too many variables are 
included - instability in the sense of both poor numerical accuracy and large standard errors 
of the parameter estimates. This is clearly visible in the data set in our example: if we 
follow the backward elimination process, in step 1, all coefficients are highly unstable (in 
the sane of high standard errors), while after elimination of x3 and x4 , the remaining 
coefficients are rather stable. This phenomenon occurs typically when the regressors are 
highly correlated among each other. Subset selection is, admittedly, only one possible way 
to handle this problem. Another interesting technique is "ridge regression", which trades 
the high variability of the parameter estimates for some (hopefully negligible) bias. This is 
not covered in our course, but interested readers can be referred to suitable text on the 
subject. 
 
Question: We have discussed the role played by different variables in a regression 
equation, and we have seen that some variables may be more important for predicting Y 
than others? Could not we do a similar thing for the observations? I mean, is it possible to 
measure to what extent the regression equation is determined by each observation? 
Answer: Methods for assessing the influence of individual observations on the regression 
have indeed been given much attention in recent years. In fact, we have reviewed these 
techniques briefly in Topic 8 (influential observation, Cook's statistic etc.). However, as 
mentioned in the section of residual analysis, a simple approach is, for instance, to omit 
observation number i and recalculate the regression equation based on the remaining n-1 
data points. The influence of the ith observation can then be judged by the changes 
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occurring in the regression coefficients. For a nice introduction to these techniques, you are 
referred to a paper by Efron and Gong (1983).  
 Knowing the background of the data is often helpful to determine which 
observations need yo be looked at more closely for their influence. This is also true for the 
data in our example, in which the detailed knowledge of the experiment can be used to 
build an appropriate model and to select observations. 
 
Question: Should one rely on the coefficient of determination ( )2R  to assess the goodness-

of-fit of the model? 
Answer: For interpreting R2 , it may be helpful to take notice the following theoretical 
result: under no conditions on the x-variables (i.e. their values may be random according to 
any law, or they may be fixed), and if the random variable Y does not depend on the x-
variables, then under rather weak assumptions on the distribution of Y (especially 
symmetry and incorrelatedness of the realisations of yi) the expected value of R2  is 

( )
1

2

−
=

n
pRE . That is, for a sample size of n = 21 and p = 10 x-variables, we can expect to 

have R2  = 0.5 by pure chance!!! So, as a simple rule of thumb, only the proportion of R2  
exceeding the expected value should be interpreted.  
 In connection with this result, it is also worth noting that the overall F test of 
significance (which is a functionally closely related to R2) is valid under similar weak 
conditions. This means particularly that the overall F test does not require exact normality 
of the residuals, but broadly speaking, a symmetric distribution. For the partial F tests, it is 
not known to what extent their correctedness depends on strict normality. In general, 
however, these tests are more reliable the larger the sample size n. 
 
Question: If we have only one regression x, but the regression function was a quadratic 
function of x. Can this problem be approached by linear regression technique ? 
Answer: To answer this question, we must firstly clarify our terminology. In the linear 
regression model, µ β β βY p px x= + + +0 1 1 .... , the word "linear" refers actually to the fact that 
µY  is a linear function of the parameters β j . The model that the question is about has the 

form: µ β β βY x x= + +0 1 1 1
2 , which can be handled within the framework of linear regression 

with two regressors, namely, x1 and x x2 1
2= . On the other hand, the model 

µ β β βY x x= + +0 1 1
2

2m is not linear in the parameter β , and the linear regression technique 
can be applied. 
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VIII. SOME COMMENTS 
 
 Multiple regression analysis is one of the most often use (and abuse) statistical 
techniques, particularly in the medical literature. Some people seem to have disregard for 
scientific principle and manipulate the data to suit the hypothesis they generated. The 
following comments are extracted from D. Altman's book: 
 
 "It is not possible to discuss in detail many of the important issues that affect 
multiple regression analysis and its interpretation, but the following comments indicate 
areas of interest of difficulties: 
 When there is a large number of potential explanatory variables we expect some of 
them to be significant just by chance. There is no completely satisfactory way of searching 
for the most suitable model without incurring the penalty of an over-optimistic answer. 
With many candidates for inclusion in the model, some researchers use the results of 
univariate analyses to decide which variables should be explored in the multivariate 
analyses. This strategy saves nothing with forward stepwise regression, but may 
dramatically cut computing time (and costs) for backward stepwise or all subsets 
regression. I do not recommend pre-selection, but if it is used, selection should be based on 
a lax criterion, say p < 0.2 or even higher, because variables that may contribute to a 
multiple regression in unforeseen ways due to complex interrelationships among the 
variables. As an example, the cyclic fibrosis data set gave p = 0.27 for BMP on its own, but 
p = 0.019 for the same variable in the multiple regression model. 
 
 Because of the multiple testing at each step, a model derived by stepwise regression 
is likely to be over-optimistic with respect to the importance of each variable and the 
goodness-of-fit, particularly in small samples. When the number of explanatory variables is 
large and the number of observation is small, it is possible to find a model that appears to 
fit remarkably well. However, a model containing, say 7 variables, fitted to 18 observations 
will be extremely unreliable. One solution is to suggest that multiple regression should not 
be applied to small data sets. In addition, it should be decided in advance the maximum size 
of the model that is acceptable. I have found that the square root of the sample size a useful 
rule of thumb here, but even that may be over-generous. Alternatively, it is sometimes 
suggested that the number of variables examined should be restricted. Again, there is no 
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rule, but a guideline might be to look at no more than n/10 variables, where n is the sample 
size.  
 
 When the sample size is very large, statistical significance can be achieved for a 
tiny effects. For example, Rantakallio and Makinen (1984) fitted a model to data from 9795 
infants on the number of teeth at one year of age. Six of the 15 variables were statistically 
significant (p < 0.05), one being the sex of the child (p<0.001). The regression coefficient 
was -0.051, indicating a mean difference of one-twentieth of a tooth in favour of boys. The 
value of R2  for this model was only 3.1%. 
 
 Automatic procedure for selecting a model are useful, but a degree of common 
sense is required. For example, sometimes there is an accumulative evidence that a 
particular variable is prognostically important for the outcome being analysed. It is not 
possible to omit, say, age or smoking in such circumstances because p was "only" 0.07. 
 
 The question of how well the model fits the data was discussed. The R2  and 
adjusted R2  are one way of assessing goodness-of-fit, but they are measures of the 
correlation between observed and predicted values of Y (the dependent variable). We can 
not get any idea of the accuracy of prediction for an individual from the significant 
variables nor from R2 , however large it is. As with ordinary linear regression, the residual 
standard deviation gives a measure of the discrepancies between the observed and predicted 
Y values, from which a 95% prediction or confidence limit can be obtained. 
 
 Lastly, because of the risk that the model may be over-optimistic, it is desirable to 
assess the predictive capability of a model on a new independent set of data, but this is not 
usually possible." 
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IX. EXERCISES 
 
1. The following data are the measurements of the height and weight of 10 men: 
 
 Height: 63 71 72 68 75 66 68 76 71 70 
 Weight: 145 158 156 148 163 155 153 158 150 154 
 
 (a) Find the linear regression of height on weight 
 (b) Find the linear regression of weight on height. 
 (c) Explain why the two equations (in (a) and (b)) are different? 
 
2. Results of fitting a regression model $y b b x b x= + +0 1 1 2 2 , based on n = 32 

observations, are as follows: 
 
 b0 1 707= − .   
 b1 0 01681= .  ( ) 0003937.01 =bSE  
 b2 3 507= − .  ( ) 4132.02 =bSE  

 SSR = 6444.8 
 SSE = 55.14. 
 
 (a) Interpret the coefficient b1. 
 (b) Set up the ANOVA table. Calculate R2  and interpret it. 
 (c) Obtain an estimate for σ2. 
 
3. In a regression study involving 3 independent variables, after fitting various models, 

the investigator summarised the data as follows: 
 
   
 Model Regression  
   Sum of Squares 
   
 x1  2970.6 
 x2   3654.8 
 x3  3584.5 
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 x1, x2   5123.8 
 x1, x3 5409.6 
 x2 , x3 3741.3 
 x1, x2 , x3 5409.9 
   
 Total SS of  
 observed Y 5426.2 
 
 Based on these results, which model would you adopt as the "final" or optimum 

model? 
 
4. The following data are about the number of defective pipes in shipment (Y) and total 

number of pipes in a shipment (X) for 12 shipments.  
 
 X: 5 10 4 10 7 8 8 5 10 5 12 6 
 Y: 30 51 26 52 40 43 45 31 52 30 59 36 
 
 Fit a quadratic equation and interpret the data. 
 
 
5. The following tabulation gives the region, number of beds (X1) and number of 

admissions (Y) last year for each of 24 small acute-care hospitals: 
 
   
 Region X1 Y Region X1 Y Region X1 Y 
 A   B   C 
   

  1 19 120 1 96 2958 1 76 2648 
  2 120 3374 2 48 1487 2 75 2757 
  3 49 2244 3 148 4700 3 84 2881 
  4 100 3606 4 101 3308 4 13 402 
  5 33 950 5 66 2696 5 40 1600 
  6 22 703 6 138 4845 6 69 1646 
     7 25 1159 7 125 4825 
     8 193 5692 8 13 370 
     9 44 1576 9 32 987 
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 (a) Use X 2 and X 3 to define the region as follows: 
 
   Region  X 2 X 3 
     
   A  1 0 
   B  0 1 
   C  0 0 
     
 
 Obtain the estimated regression function. Interpret the meaning of b1, b2 and b3. Give 

an estimate of the mean number of admissions for 100 bed hospital in regions B and 
C. Does the mean admissions differ among the three regions for hospitals with a 
given number of beds? Comment. 

 
 (b) Set up an ANOVA table. Calculate MSE . What does this number measure in 

this study. 
 
6. For lung transplantation it is desirable for the donor's lungs to be of a similar size as 

those of the recipient. Total lung capacity (TLC) is difficult to measure, so it is useful 
to be able to predict TLC from other information. The following table shows the pre-
transplant TLC of 32 recipients of heart-lung transplants, obtained by whole-body 
plethysmography,. and their age, sex and height (Otulana et al 1989). 

 
  

ID Age Sex Height CTL (l) ID Age Sex Height CTL (l)  
  

 1 35 F 149 3.40 17 30 F 172 6.30 
 2 11 F 138 3.41 18 21 F 163 6.55 
 3 12 M 148 3.80 19 21 F 164 6.60 
 4 16 F 156 3.90 20 20 M 189 6.62 
 5 32 F 152 4.00 21 34 M 182 6.89 
 6 16 F 157 4.10 22 43 M 184 6.90 
 7 14 F 165 4.46 23 35 M 174 7.00 
 8 16 M 152 4.55 24 39 M 177 7.20 
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 9 35 F 177 4.83 25 43 M 183 7.30 
 10 33 F 158 5.10 26 37 M 175 7.65 
 11 40 F 166 5.44 27 32 M 173 7.80 
 12 28 F 165 5.50 28 24 M 173 7.90 
 13 23 F 160 5.73 29 20 F 162 8.05 
 14 52 M 178 5.77 30 25 M 180 8.10 
 15 46 F 169 5.80 31 22 M 173 8.70 
 16 29 M 173 6.00 32 25 M 171 9.45 
  

(a) How well can an individual's lung capacity be predicted from a multiple regression 
model including age, sex and height? 
(b) Compare the result just obtained with that derived from linear regression on height 
alone. 
(c) Calculate 95% prediction interval from the linear regression on height for someone with 
average height. 
(d) How could we investigate whether the relation between lung capacity and height is the 
same for males and females. 
(e) Suppose that you are writing an article based on these analyses, what would you write 
in your "statistical method" section. 

  
 


