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I. INTRODUCTION 
 
 We have been concerned with general linear model in the analysis of data. In this 
class of models, we have learned about t-test, analysis of variance and analysis of 
covariance. Generally speaking, when these variables are all numerical, the linear model 
is called a regression model. When the variables are all categorical, we refer to the 
analysis of variance (ANOVA). While both regression and analysis of variance can be 
formally subsumed under the GLM, the two techniques have traditionally been treated as 
distinct. This historical separation occurred for two reasons. First, before high-speed 
computers were in general use, computational aspect of statistical techniques were of 
much interest. The most efficient computational procedures for regression and ANOVA 
were quite different. Second, the two methods tended to be applied to different sorts of 
problems. 
 
 The analysis of variance is usually thought of as a technique for comparing the 
means of two or more populations on the basis of samples from each. In practice, these 
populations often correspond to different treatment groups, so that differences in 
population means may be evidence for corresponding differences in treatment effects. 
 
 The ANOVA calculations involves q division of the total sample variance into 
within-group and between-group components. The within-group component provides an 
estimate of error variance, while the between-group component estimates error variance 
plus a function of the differences among treatment means. The ratio of between- to 
within-group variances provides a test of the null hypothesis that all means are equal. 
Moreover, the differences among group means provides unbiased estimates of the 
corresponding population mean differences, and standard errors based on the within-
group variance provide confidence intervals for these differences and tests of their 
significance. 
 
 Regression analysis, on the other hand, is primarily used to model relationships 
between variables. With it, we can estimate the form of a relationship between a response 



variable and a number of independent variables. We can try to find that combination of 
variables which is most strongly related to the variation in the response. 
 
 The analysis of covariance represents marriage of these two techniques. Its first 
use in the literature was by R A Fisher (1932), who viewed the technique as one that 
"combines the advantages and reconciles the requirements of the two very widely 
applicable procedures known as regression and analysis of variance".  
 
 Combining regression and ANOVA provides the powerful advantage of making 
possible comparisons among treatment groups differing prior to treatment. Suppose that 
we can identify a variable X that is related to the outcome Y, and on which treatment 
groups have different means. We shall assume for simplicity that X is the only variable 
on which the group differ. Then, if we knew the relationship between Y and X, we could 
appropriately adjust the observed differences on Y to take account of the differences on 
X. 
 
 
II. EXAMPLE 
 
 Consider the following data obtained from a nutrition study designed to compare 
growth of children in an urban environment with that of rural children(Greenberg 1983). 
Data were height of children in the two samples: one from urban private school and one 
from rural public school. Differences in growth between these groups might be the result 
of the different environmental influences operating on the children. In particular, the rural 
children might be experiencing some nutritional deprivation relative to their urban 
counterparts. In the terminology of this note, height would be the response or outcome 
factor and nutrition the risk factor of interest. 
 
 The data are shown in the following table.  



 
 Table 1: Age and height among urban and rural students. 
   

 Urban School Rural School 
 Student Age Height Student Age Height 
  (months) (cm)  (months) (cm) 
   

 1 109 137.6 1 121 139.0 
 2 113 147.8 2 121 140.9 
 3 115 136.8 3 128 134.9 
 4 116 140.7 4 129 149.5 
 5 119 132.7 5 131 148.7 
 6 120 145.4 6 132 131.0 
 7 121 135.0 7 133 142.3 
 8 124 133.0 8 134 139.9 
 9 126 148.5 9 138 142.9 
 10 129 148.3 10 138 147.7 
 11 130 147.5 11 138 147.7 
 12 133 148.8 12 140 134.6 
 13 134 133.2 13 140 135.8 
 14 135 148.7 14 140 148.5 
 15 137 152.0 
 16 139 150.6 
 17 141 165.3 
 18 142 149.9 
   

 
 
 Statistical summary of the data are as follows: 
 
   

 Mean + SD 
 Urban Rural 
   

 Height (cm) 144.5 + 8.6 141.7 + 6.1 
 Age (months) 126.8 + 10.2 133.1 + 6.5 



   

 
 As a first start, we calculate the simple difference between the two groups:  
 
 Difference in height = 144.5 - 141.7 = 2.87 
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 = 0.38 with p = 0.28. 

 
 Thus, the simple t-test analysis reveals that the observed difference between the 
groups is not statistically significant. It might be concluded that there is no evidence for a 
difference in nourishment between the urban and rural school children. 
 
 Before reaching this conclusion, however, we should consider whether there are 
likely to be confounding factors. One variable that comes immediately to mind is age. 
The data on age are also presented in Table 1. The mean age for the rural children is 6.3 
months greater than that of the urban children. In a sense, then, the rural children have an 
"unfair advantage" conferred by their greater average age. Thus, we might expect that if 
the age distributions were the same, the difference in average height between the groups 
would be even larger than the observed 2.8 cm. The analysis of covariance allows us to 
adjust the 2.8 cm difference to obtain a better (less biased) estimate of the difference 
between groups that would have been observed had the mean ages in the two groups been 
equal.  
 
 In addition to the bias reduction described as above, another benefit results from 
the combination of regression analysis and ANOVA. Suppose that within treatment 
groups, a substantial proportion of the variance in Y can be explained by variation in X. 
In carrying out an ANOVA, we would like the within-group variance to reflect only 
random error. Regression analysis can be used to remove that part of the error 
attributable to X and thereby to increase the precision of group comparisons. 



 
 It is clear from the data that a substantial proportion of the variation in height is 
attributed to variation in age. Put differently, if all children in a group were of the same 
age, the variation in heights within that group would be substantially reduced. Since the 
relationship between height and age over this range is quite linear, we can estimate the 
pure error variation by taking the residuals around the regression line relating the two 
variables. In effect, this is what ANCOVA does, and when a high proportion of within-
group variance is explained by the covariate, a large increase in precision results. 
 
 
 
III. THE ANCOVA MODEL 
 
 
 To understand the rationale underlying the use of ANCOVA in nonrandomised 
studies, it is helpful to begin with a somewhat idealised situation. Suppose that on the 
basis of extensive prior research, the relationship between an outcome and confounding 
factor can be specified. For example, it might be known that for rural children, the 
relationship between height and age over the age range being studied can be expressed 
as: 
 

Average height = 75 + 0.5 (Age) 
 
 
 Suppose that a particular group of rural children have been exposed to some 
treatment, such as dietary supplement. At the time they are measured this group has a 
mean age of 132 months and a mean height of 147 cm. Suppose further that another 
group has been exposed to a different treatment and is measured when the children are 
120 months old and on the average the height of this group was 133 cm. 
 
 Since the groups differ on mean age, it is not obvious which treatment has been 
more effective. To make a fair comparison, we must remove the effect of the 
confounding variable age. However, using the relationship specified above we know that 
the expected height for the two groups without any special treatment is given by: 
 
 Group 1: Average height = 75 + 0.5(132) = 141 cm 



 Group 2: Average height = 75 + 0.5(120) = 135 cm 
 
Therefore, the effects of the treatments are:  
 
 Group 1: Effect = observed - expected = 147 - 141 = 6 cm. 
 Group 2: Effect = observed - expected = 133 - 135 = -2 cm. 
 
And the difference between them is (6 - (-2)) = 8 cm. 
 
 Alternatively, we can say that because the groups differ by 12 months in age, the 
relationship predicts that they will differ by 6 cm. So, we could effectively "adjust" the 
comparison between the two groups by subtracting 6 cm from the difference between 
them. Since the observed difference is 14 cm, this would leave 8 cm attributable to the 
difference in treatments received. 
 
 Because we are assuming in this example that a known baseline relationship 
against which to measure performance under the treatments, we can obtain an absolute 
measure of effect for each treatment (6 cm and -2 cm). In most practical situations, we do 
not have available such an absolute standard, and we must use only data obtained during 
the study. Thus, an absolute measure of effect for each group is impossible. On the other 
hand, it may still be possible to obtain from the data an estimate of the coefficient (0.5 
cm/month in our example) relating outcome level to confounding variable. So it may be 
possible to adjust the observed difference to remove the effect of age from the 
comparison. In effect, this is how ANOVA is used to estimate treatment effects in non-
randomised studies. 
 
 The basic model underlying the use of the standard ANOVA assert that there is a 
linear relationship between the outcome Y and the covariate X with identical slopes in 
the two groups, but possibly different intercepts. With two treatment groups, we can 
write the basic model as: 
 
 Y X e= + +α β1  in group 1 
 Y X e= + +α β2  in group 2.  [1] 
 
where  
 



 α1 : expected value of Y when X = 0 in group 1; 
 α2 : expected value of Y when X = 0 in group 2; 
 β :  the common slope of relationship between Y and X; 
 e:   random variable representing error (with mean 0 for any given X). 
  
 Let X  represent the sample mean of all the X observations in both groups, X1, the 
mean for group 1 and X 2, the mean for group 2, the following figure illustrates this 
situation. Note that the direct comparison of Y1  and Y2  will be biased since X1 ≠  X 2. In 
fact, taking means in [1] yields: 
 
 Y X e1 1 2 1= + +α β  
 Y X e2 2 2 2= + +α β  
 
so that the difference between them is: 
 
 ( )212121 XXYY −+−=− βαα  
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 Note that in [1] we can interpret α α1 2−  as the expected difference between the 
outcomes of the individuals with the same value of X but in two different groups. This 
difference will represent the differential effect of the two treatments unless there is other 
variable related to Y  which distinguishes the two subjects. To estimate α α1 2− , we can 



not simply subtract Y1  from Y2 , but must adjust each of these to move them, in effect, to a 
common X value, say X*. Let us define the "adjusted" mean of Y for group 1 as: 

 

 ( )*
111 XXYY a −−= β  

Y a1  may be interpreted as an estimate of the mean outcome for members of group 1 whose 
X value is X* . Similarly, 

 

 ( )*
222 XXYY a −−= β  

 

estimate the mean outcome for members of group 2 whose X value is X*. To estimate the 
difference between the means of the two groups at the same value of X (in this case X*) 
we can simply take the difference of these two adjusted means: 

 

 ( )212121 XXYYYY aa −−−=− β  

 For simplicity, we have not discussed how the value of β necessary for perform 
the adjustments is actually obtained. In practice, we rarely have any a priori  theoretical 
basis for determining the value β and must therefore use the data to obtain an estimate $β . 
The ANCOVA calculations provide us with an unbiased estimator based on the 
relationship between Y and X within the two groups. Thus the adjusted difference is of 
the form: 

 

 ( )212121
ˆ XXYYYY aa −−−=− β  

 

 It can be shown that the substitution of an unbiased estimate $β  for the unknown 
true β still yields an unbiased estimate of α α1 2−  under the model specified by [1]. 



 We should mention in passing that this pooled coefficient is not found by 
calculating a regression coefficient from the data on both groups taken together as a 
single group, as is sometimes proposed. This latter approach may be viewed as 
comparing the mean residuals for the two groups around the overall regression line fitted 
to the entire sample. It is incorrect, however, in the sense that it does not yield an 
unbiased estimate of β or of the effect α α1 2−  under the model given by [1]. 

 
IV. ESTIMATION 

 To estimate the parameters of model 1, we use the multiple regression technique. 
In this technique, let Y be height, X be age and a dummy variable Z for grouping. 
Variable Z will be coded as 0 for urban and 1 for rural group, then the regression model 
is: 

 Y X Z e= + + +α β γ    [2] 

where α, β and γ are intercept, gradient associated with age, gradient associated with 
group and e is the random error term. 

 Note that if Z = 0 (urban group) then the equation is: 

  Y X e= + +α β  

 if Z = 1 (rural group) then the equation is 

  Y X Z e= + + +α β  

 Using SAS, the parameters of equation 2 are estimated as follows: 
 
 
   

 Parameter Coefficient + SE  
   

 Intercept 91.82 + 17.92 
 Age (months) i.e. $β  0.42 + 0.14 
 Group (0, 1) -5.47 + 2.57 
   
 



 Thus, the adjusted difference is: 

  ( )212121
ˆ XXYYYY aa −−−=− β  

 = (144.5 - 141.7) - 0.42(126.8 - 133.1) 

 = 5.5 cm 

 

 You may notice that the initial difference was 2.8 cm in favour of the urban 
children has, after adjustment, been nearly doubled. 

 We may ask at this point whether this adjusted difference is statistically 
significant. To answer this question, we can look at the standard error provided as part of 
the ANCOVA calculations. This standard error can be used to perform a t test of  

 Ho:α α1 2=  

More generally, when there are more than two treatment groups (say k groups), 
ANCOVA provides a test of Ho k: ....α α α1 2= = = . 

 In the above example, the test statistic reveals that the difference was statistically 
significant at the p = 0.04 level. 

 
 

V. ASSUMPTIONS 

 Like any mathematical model attempting to represent reality, the ANCOVA 
model is never perfectly true. It is more or less accurate abstraction. So, although we may 
for simplicity discuss whether or not a particular condition holds in a particular situation, 
it should be remembered that such a statements are only approximate. The real question 
is whether the ANCOVA model is good enough not to result in misleading results. With 
this caveat in mind, we now proceed to list the ANCOVA assumptions: 

1. Equality of regression slopes. ANCOVA assumes that the relationship between Y 
and X in each group differs only in terms of the intercept, not the slope. This assumption 



is essential if we are to have the possibility of interpreting the difference between the 
lines ( )01 αα −  as a measure of treatment effect. The problem of non-parallel regressions 

in different treatment groups is illustrated in the following figure. 
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 The expected difference between two individuals in different groups with 
identical X value depends on X. Thus, there is no unique summary value which can be 
interpreted as the treatment effect.  

 In such a situation, we say that there is an interaction between treatment groups 
and the covariate. If an interaction is suspected, it is worthwhile to examine carefully the 
graph of Y versus X in the two groups. Visual inspection will usually be adequate to 
detect serious departure from parallelism. 

 A formal statistical test for equality of slopes can also be conducted. If such a test 
is carried out, and the null hypothesis of slopes rejected, we can not apply ANCOVA. If, 
on the other hand, the null hypothesis is not rejected, we still can not be sure that the 
slopes are identical. This is a general property if statistical test. Our ability to assert that 
the null hypothesis in fact holds if it is not rejected is related to the "power" of the test, 
which is difficult to compute. Generally speaking, however, the power increases with the 
sample size. So, a statistical test can provide evidence on whether the slopes are equal, 
but no certainty unless the sample sizes are very large. 

 



2. Linearity.  The ANCOVA model assumes a linear relationship between Y and X. 
The simplest and usually adequate, test of linearity is to plot  graph of Y versus X in each 
group. Formal statistical tests of linearity are available if there is any doubt. The simplest 
involves calculating the regression line in each group and examining the residuals (Topic 
8).  

 

3. Covariate measured without error. In some situations, the variable thought to be 
linearly related to Y can not be measured directly, and an imperfect substitute containing 
some measurement error must be used. When the observed X, consisting of in part error, 
is used in the ANCOVA model, both the estimates and tests may be affected. In both 
randomised and non-randomised studies, the power of statistical tests will generally 
decrease as the reliability decreases. As a general rule, it is desirable to use variables with 
high reliability. 

 

4. No unmeasured confounding variables. The existence of unmeasured variables 
which are related to the outcome and have unequal distributions in the treatment groups 
is a general problem in the analysis of cross-sectional studies. To see the problem, let us 
consider what happens when an ANCOVA model is performed, which does not consider 
such a variable. Suppose that there exists a variable Z with mean Z1  and Z0 for the 
groups. Then, instead of [1], the true model might be described by: 

 Y X Z ei= + + +α β β  (i = 0, 1) 

In this case, the appropriate adjustment becomes: 

 ( ) ( )ZZXXYY iiiia −−−−= γβ  

Thus, if we adjust using X only as a covariate, and if Z Z1 0≠ , we have adjusted for only 
part of the differences between groups which is related to Y.  

5. Equality of error variance. Ordinarily, as in most applications of linear models, it 
is assumed that all error terms have the same variance. In ANCOVA situation, it is 
possible that the treatment groups have different error variances. The estimates of 
treatment effects will still be unbiased in this case, but the validity of tests may be 



affected. If there is some reason to suspect this inequality of error variances, the residuals 
from the fitted lines in the two groups can be compared. If the variances of these 
residuals differ greatly, caution in the interpretation of test results is advised.  

 

6. Normality of errors. For the ANCOVA tests to be strictly valid, it must be 
assumed that the errors follow a normal distribution. Departures from normality may 
affect statistical tests and the properties of estimators in a variety of ways, depending on 
the actual form of the error distribution of residuals. The normality assumption can be 
tested by examining the distribution of residuals. While severe departures from normality 
may affect the properties of tests, ANCOVA appears to be generally rather robust. Thus, 
most researchers assume that the normality assumption is not critical. 
 
 
V. MATHEMATICAL DETAILS 

 

 We consider the general situation where K treatment groups are being compared. 
These will be indexed by k = 1, 2, 3, . . . , K. Let Xik  and Yik  represent the covariate and 
outcome values for individual i in group k. Let X k  and Yk  be the means for the nk  
individuals in group k. The, we can define the between-group sums of squares and cross-
products by: 
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 where X  and Y  are overall (grand) means of X and Y across all groups. 
Similarly, we define within-group (error) sums of squares and cross-products by: 
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 where 
i

∑ denotes the sum over individuals within each group. We also define 

the quantity:  

 f = total number of subjects minus number of groups  

   = N - K 

and, using the definitions above, we have: 

 S T Exx xx xx= +  

 S T Exy xy xy= +  

 S T Eyy yy yy= +  

Then, we can calculate the residual mean squares for treatments and error: 
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 These can be used to calculate an F statistic to test the null hypothesis that all 
treatment effects are equal: 
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 Under the null hypothesis, this ratio has an F distribution with K-1 and f - 1 
degrees of freedom. The estimated regression coefficient of Y on X is then: 
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E
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 From the definitions of Exx  and Exy   given above, it is clear why this is called 

pooled within-group estimator. The estimated standard error for the adjusted difference 
between group means (say group 0 and group 1) is given by: 
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where n0  and n1 are the sample size of the two groups. A test of the null hypothesis that 
the adjusted difference is zero is provided by the statistic: 
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 Under the null hypothesis, it has a t distribution with f-1 df. 

 

VI. EXERCISES



 


