Digital Electronics

Counters

Count: the number of events

Counter: connecting flip-flops by a proper manner

Types of counters

Synchronous Counters

Asynchronous counter

N bit binary counter

MOD-M counter

Up/Down *counters*

N-bit binary asynchronous counter

Up counter using Positive/Negative edge Triggered FFs

Asynchronous counters are sometimes called **ripple** counters ₃

MOD-M Asynchronous Counter

Design method:

 $Count \ 0 \rightarrow 1 \rightarrow 2 \rightarrow \dots \rightarrow M-1$

Use Mth stage to reset the counter.

N-bit binary synchronous Counter

In a synchronous counter all flip-flops are clocked together with a common clock pulse. Synchronous counters overcome the disadvantage of accumulated propagation delays, but generally they require more circuitry to control states changes.

This 3-bit binary synchronous counter has the same count sequence as the 3-bit asynchronous counter shown previously.

The next slide shows how to analyze this counter by writing the logic equations for each input. Notice the inputs to each flip-flop...

A 4-bit Synchronous Binary Counter

The 4-bit binary counter has one more AND gate than the 3-bit counter just described. The shaded areas show where the AND gate outputs are HIGH causing the next FF to toggle.

Both binary and Mod-M counters

3-bit Gray Code Counter

Step1: State diagram:

The first step in the design of a counter is to create a state diagram. A state diagram shows the progression of states through which the counter advances when it is clocked.

Step2: Next state table

The second step is to derive a nextstate table, which lists each state of the counter (present state) along with the corresponding next state. The next state is the state that the counter goes to from its present state upon application of a clock pulse.

Pres	Present State		Next State		
Q ₂	Q ₁	Q ₀	Q ₂	Q ₁	Q ₀
0	0	0	0	0	1
0	0	1	0	1	1
0	1	1	0	1	0
0	1	0	1	1	0
1	1	0	1	1	1
1	1	1	1	0	1
1	0	1	1	0	0
1	0	0	0	0	0

Step3: Flip-Flop Transition Table

All possible output transitions are listed by showing the Q output of the flip-flop going from present states to next states. Q_N is the present state of the flip-flop (before a clock pulse) and Q_{N+1} is the next state (after a clock pulse).

Step4: K-maps

Karnaugh maps can be used to determine the logic required for the 1 and K inputs of each flip-flop in the counter. There is a K-map for the J input and a K-map for the K input of each flip-flop. In this design procedure, each cell in a K-map represents one of the present states in the counter sequence.

Next-state table

Complete Karnaugh maps for all the flip-flops in the counter.

Step 5: logic Expressions for Flip-Flop Inputs

 $J_{0} = Q_{2}Q_{1} + \overline{Q}_{2}\overline{Q}_{1} = \overline{Q_{2}} \oplus \overline{Q}_{1}$ $K_{0} = Q_{2}\overline{Q}_{1} + \overline{Q}_{2}Q_{1} = Q_{2} \oplus Q_{1}$ $J_{1} = \overline{Q}_{2}Q_{0}$ $K_{1} = Q_{2}Q_{0}$ $J_{2} = Q_{1}\overline{Q}_{0}$ $K_{2} = \overline{Q}_{1}\overline{Q}_{0}$

Step 6: Counter Implementation

The final step is to implement the combinational logic from the expressions for the J and K inputs and connect the flip-flops to form the complete counter.

12

EXAMPLE 8–5

Design a counter with the irregular binary count sequence shown in the state diagram of Figure 8–32. Use J-K flip-flops.

FIGURE 8-32

- **Solution** Step 1: The state diagram is as shown. Although there are only four states, a 3-bit counter is required to implement this sequence because the maximum binary count is seven. Since the required sequence does not include all the possible binary states, the invalid states (0, 3, 4, and 6) can be treated as "don't cares" in the design. However, if the counter should erroneously get into an invalid state, you must make sure that it goes back to a valid state.
 - Step 2: The next-state table is developed from the state diagram and is given in Table 8–9.

PRESENT STATE		NEXT STATE			
Q ₂	Q ₁	Q ₀	Q ₂	Q ₁	Q_0
0	0	1	0	1	0
0	1	0	1	0	1
1	0	1	1	1	1
1	1	1	0	0	1

Step 3: The transition table for the J-K flip-flop is repeated in Table 8–10.

OUTPUT TRANSITIONS		FLIP-FLOP INPUT	
	<i>Q_N</i> + 1	J	K
\rightarrow	0	0	X
>	1	1	X
>	0	X	1
>	1	X	0
	\rightarrow \rightarrow \rightarrow	$Q_{N + 1}$ $\longrightarrow 0$ $\longrightarrow 1$ $\longrightarrow 0$ $\longrightarrow 1$	$ \begin{array}{c ccc} Q_{N+1} & J \\ \longrightarrow & 0 & 0 \\ \longrightarrow & 1 & 1 \\ \longrightarrow & 0 & X \\ \longrightarrow & 1 & X \end{array} $

Step 4: The *J* and *K* inputs are plotted on the present-state Karnaugh maps in Figure 8–33. Also "don't cares" can be placed in the cells corresponding to the invalid states of 000, 011, 100, and 110, as indicated by the red Xs.

Step 5: Group the 1s, taking advantage of as many of the "don't care" states as possible for maximum simplification, as shown in Figure 8–33. Notice that when *all* cells in a map are grouped, the expression is simply equal to 1. The expression for each *J* and *K* input taken from the maps is as follows:

$$J_0 = 1, K_0 = Q_2$$

 $J_1 = K_1 = 1$
 $J_2 = K_2 = Q_1$

Step 6: The implementation of the counter is shown in Figure 8–34.

Important Tables

D
0
1
0
1

Q Q⁺	Т
0 0	0
0 1	1
1 0	1
11	0
11	1

Q Q⁺	SR
0 0	0 X
0 1	10
10	01
11	X 0

Q Q⁺	JΚ
0 0	0 X
01	1 X
10	X 1
11	X 0