
Integrated Circuit Technologies

Two Kinds of Transistors

- Two major classes of transistors:
 - •Bipolar Junction Transistors (BJTs)

•Metal-Oxide Semiconductor Field Effect Transistor (MOSFETs) Drain (D) Gate (G) Source (S)

Logic Families

- •Two major logic families:
 - •TTL (Transistor-Transistor Logic) based on bipolar junction transistors
 - •CMOS (Complementary Metal Oxide Semiconductor) based on MOSFETs
- •Within each family are several subfamilies .
- •Originally, TTL chips were fast but used lots of power, and CMOS chips used little power but were slow.
- •CMOS chips are sensitive to static discharge, and must be handled carefully.

7400 Series and 4000 Series

•A popular series of TTL chips is the 7400 series that you've used in previous courses: Wikipedia's list

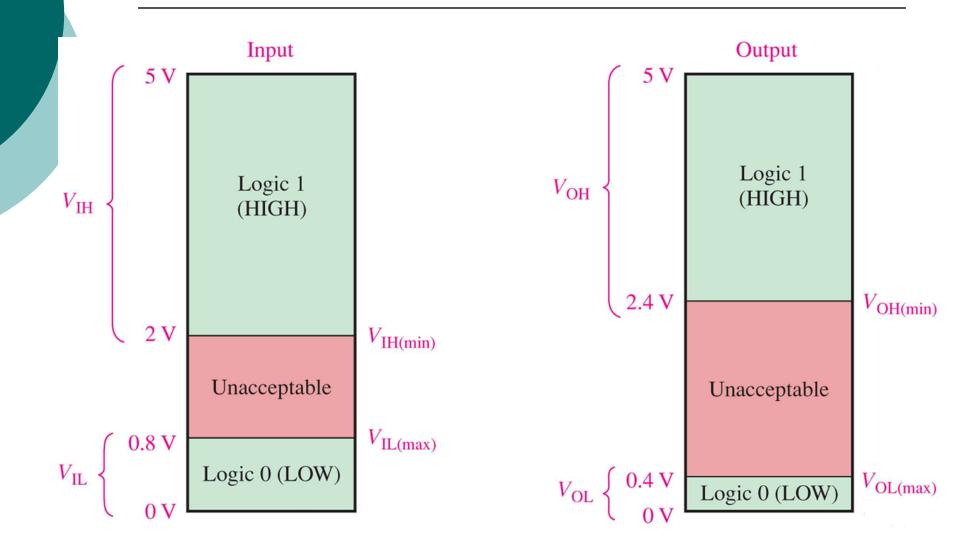
•A popular series of CMOS chips is the 4000 series: Wikipedia's list

•To provide part number and pin number compatibility with the 7400 series, a later series of CMOS chips was developed as the 74HC00 series.

Basic Operational Characteristics and Parameters

Consult datasheets for

- DC supply voltage
- Logic levels & noise margin
- Power dissipation
- Propagation delay
- Speed-power product
- Loading and fan-out
- Example datasheets:
 - 7404 TTL inverter
 - <u>74HC04 CMOS inverter</u>


DC Supply Voltages

- TTL chips are optimized for 5 V supply, and cannot tolerate voltages far above or below 5 V.
- CMOS chips may be optimized for 5 V, 3.3 V, 2.5 V, or 1.8 V supplies. Most CMOS chips can tolerate a much wider range of supply voltages than TTL chips.
 - (Floyd, .

Logic Levels

- Four key voltage parameters when you're interfacing logic:
- V_{IH(min)} = the minimum voltage that an **input** pin will recognize as a **HIGH**.
- V_{IL(max)} = the maximum voltage an **input** pin will recognize as a **LOW**.
- V_{OH(min)} = the minimum voltage that can appear on a HIGH output pin.
- $V_{OL(max)}$ = the maximum voltage that can appear on a **LOW output** pin.

Logic levels for TTL

Noise Margin

 The noise margin is the room for error between the voltage that an output pin produces and the voltage that an input pin expects.

$$O V_{\rm NH} = V_{\rm OH(min)} - V_{\rm IH(min)}$$
$$O V_{\rm NL} = V_{\rm IL(max)} - V_{\rm OL(max)}$$

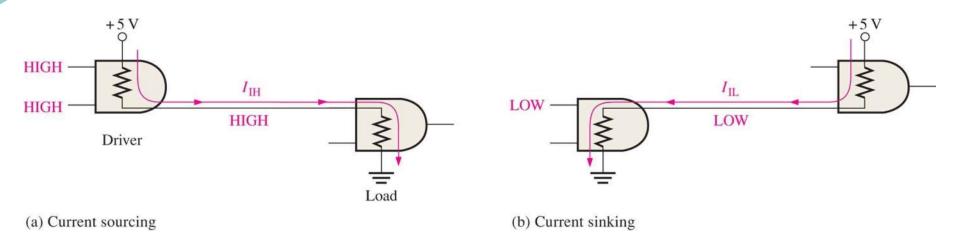
Power Dissipation

- Recall that power equals current times voltage (P=IV).
- So a gate's power dissipation is given by its supply voltage (Vcc) times its supply current (Icc).
- A lower-power device wastes less energy, generates less heat, and costs less to run than a higher-power device.

Propagation Delay

- Recall that data sheets specify propagation delays for low-to-high transitions (*t*PLH) and high-to-low transitions (*t*PHL).
- A device with a smaller propagation delay can run faster (at a higher frequency) than a device with a higher propagation delay.

Speed-Power Product


 A useful overall measure of a device's performance is its **speed-power product**, found by multiplying its average power dissipation times its average propagation delay.

 The lower the speed-power product, the better.

Current-Sourcing and Current-Sinking

• For TTL:

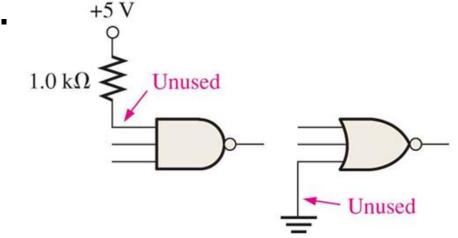
- A HIGH output sources current
- A LOW output sinks current.

Fan-out

- Fan-out means the number of load inputs that a given output can drive.
- With TTL, current is the limiting factor in determining fan-out.
- With CMOS, capacitance is the limiting factor.

Calculating TTL Fan-out

• For a standard TTL gate:

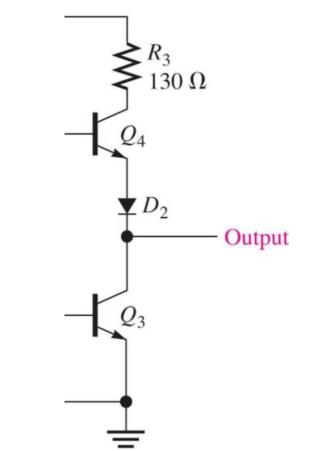

- A LOW input sources up to 1.6 mA.
- A LOW output can sink up to 16 mA.

o Also:

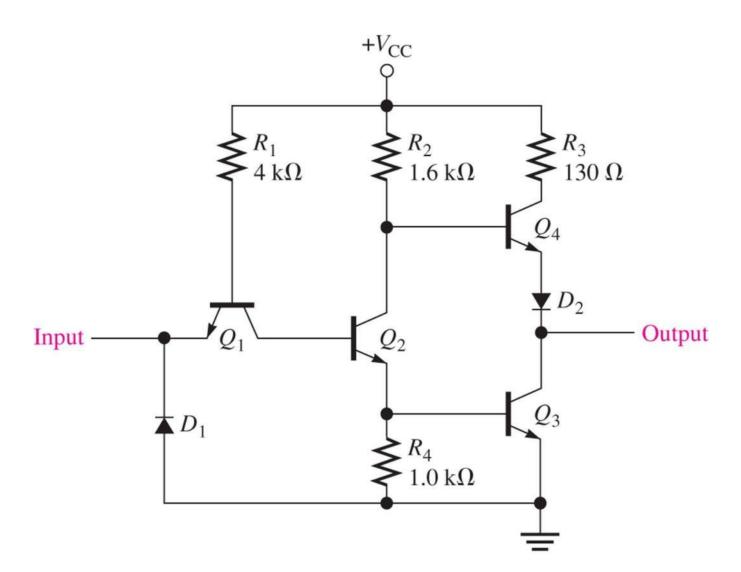
- A HIGH input sinks up to 40 μ A.
- A HIGH output can source up to 400 μ A.
- Thus, standard TTL has a fan-out of 10.
- See <u>Wisconsin Online's Fan-out Lesson</u>

Unused Inputs

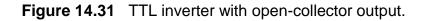
• Recall that unused inputs should not be left floating. Either tie them to Vcc through a $1-k\Omega$ resistor or tie them to ground. +5V

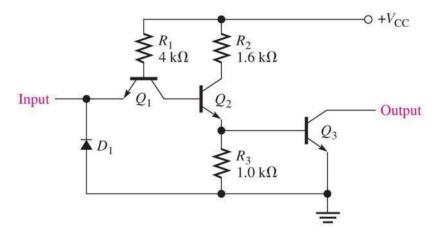

Three Kinds of Outputs

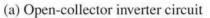
- TTL chips can have three kinds of outputs:
 - Totem-pole (the most common)
 - Open-collector
 - Three-state

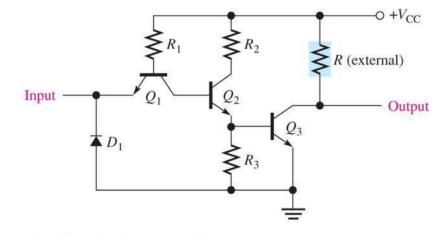

Totem-Pole Output

Most chips you've used up to now have had totem-pole outputs.

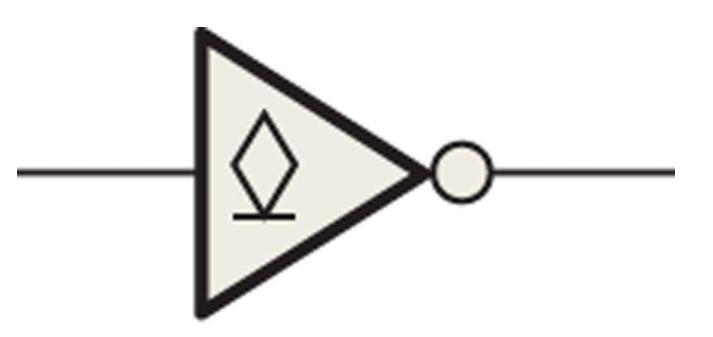





Digital Fundamentals, Tenth Edition Thomas L. Floyd Copyright ©2009 by Pearson Higher Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.


Open-Collector Output

- Missing a transistor internally, so you must provide an external pullup resistor.
- Allows for the use of higher-thanusual voltages and currents.
- Allows a trick called "wired-AND," which means you can AND the outputs of two chips by tying them directly together. (<u>Never</u> tie totempole outputs together.)



(b) With external pull-up resistor

Digital Fundamentals, Tenth Edition Thomas L. Floyd

Copyright ©2009 by Pearson Higher Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved. Figure 14.32 Open-collector symbol in an inverter.

Digital Fundamentals, Tenth Edition Thomas L. Floyd Copyright ©2009 by Pearson Higher Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.

Some Open-Collector Chips

- <u>7405</u> (Hex Inverters with Open-Collector Outputs)
- <u>7409</u> (Quad 2-Input AND with Open-Collector Outputs)
- <u>7412</u> (Triple 3-Input NAND with Open-Collector Outputs)

Three-State Output

- In addition to the two usual output states (HIGH and LOW), has a third output state called high-impedance ("high-Z").
- In the high-Z state, the output is disconnected from the external circuit.
- Useful when the outputs of many chips are tied to the same bus: at any time, only one of them should be connected to the bus.

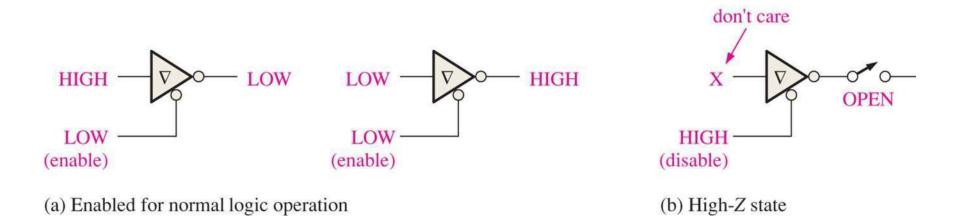
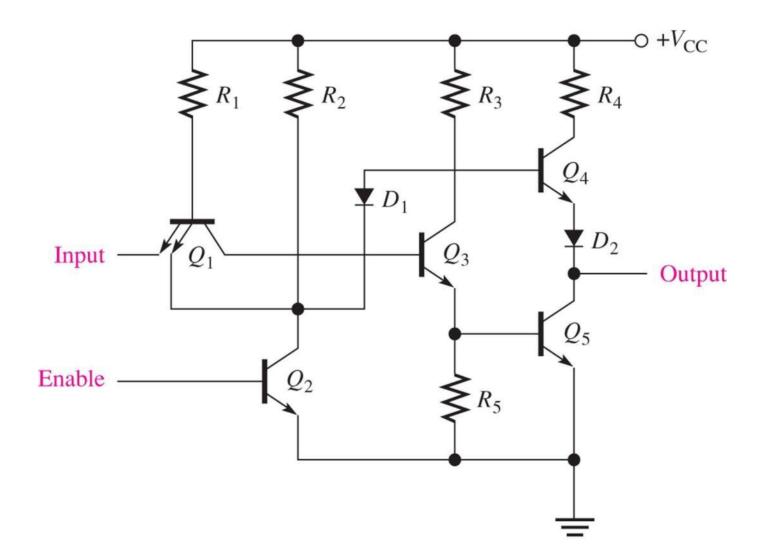
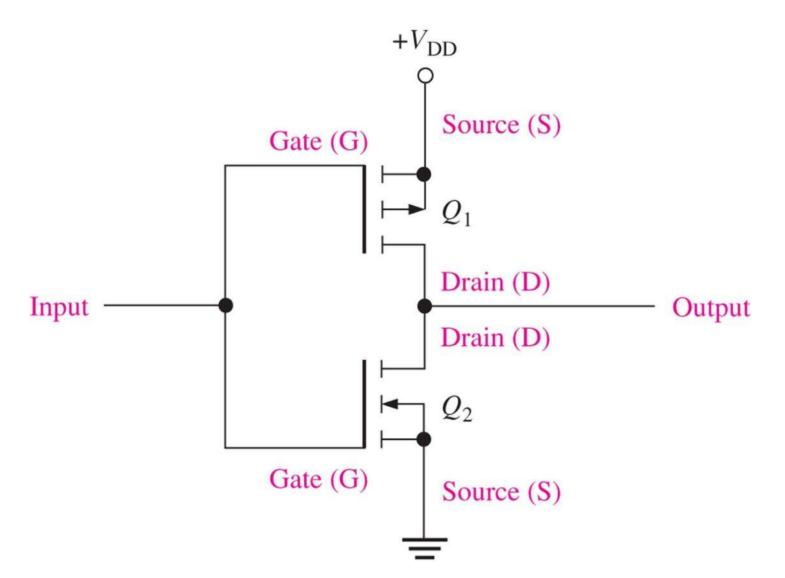



Figure 14.33 Basic tristate inverter circuit.


Digital Fundamentals, Tenth Edition Thomas L. Floyd Copyright ©2009 by Pearson Higher Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.

Some Three-State Chips

 <u>74251</u> (Data Selectors/Multiplexers with 3-State Outputs)

 <u>74LS295</u> (4-Bit Right-Shift Left-Shift Registers With 3-State Outputs)

 <u>74LS348</u> (8-Line To 3-Line Priority Encoders With 3-State Outputs)

Copyright ©2009 by Pearson Higher Education, Inc. Upper Saddle River, New Jersey 07458 All rights reserved.

Three Kinds of CMOS Outputs

- Like TTL chips, CMOS chips can have two kinds of special-purpose outputs instead of the usual outputs:
 - Open-drain
 - Similar to open-collector in TTL
 - Requires an external pull-up resistor
 - Three-state

Other Logic Families

- •ECL (Emitter-Coupled Logic): The fastest logic family
- •PMOS (p-Channel MOS)
- •NMOS (n-Channel MOS)
- •E²CMOS (Electrically Erasable CMOS)