Introduction to Artificial Intelligence

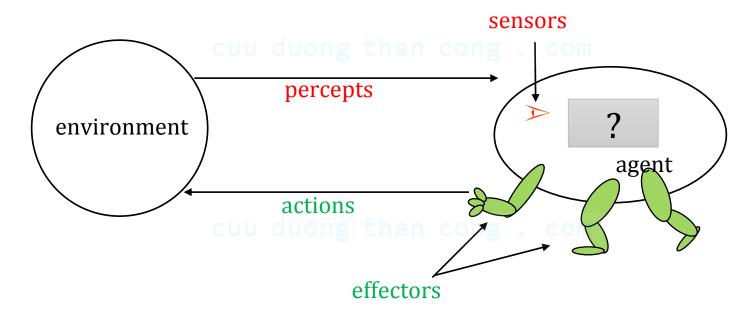
Chapter 1: Introduction (2) Intelligent Agents

Nguyễn Hải Minh, Ph.D nhminh@fit.hcmus.edu.vn

CuuDuongThanCong.com https://fb.com/tailieudientucntt

Outline

- 1. Agents and environments
- 2. Rationality
- 3. The Nature of Environment
- 4. The Structure of Agents


cuu duong than cong . com

1. Agents and Environments

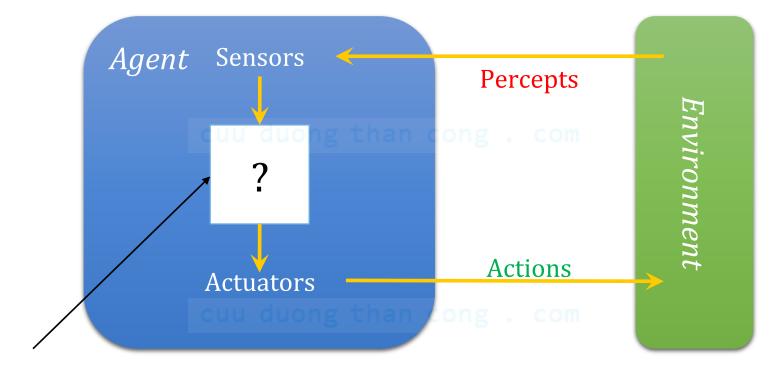
- > Agent
- ➤ Percept Sequence duong than cong.com
- > Agent Function
- > Agent Program
- ➤ The Vaccum-Cleaner World

- Artificial intelligence is the study of how to make computers do things that people are better at if:
 - they could extend what they do to huge data sets
 - o do it fast, in near real-time
 - o not make mistakes
- → We call such systems, Agents

□An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators.

☐ Human agent:

- Sensors: eyes, ears, and other organs
- Actuators: hands, legs, and some body parts


□Robotic agent:

- Sensors: camera, infrared range finders, etc.
- Actuators: levels, motors, etc.

□Software agent:

- Sensors: keystrokes, file contents, network packets
- Actuators: displaying on the screen, writing files, sending network packets

□Diagram of an agent:

What AI should fill

Percept Sequence

☐Percept:

 the agent's perceptual inputs at any given instant.

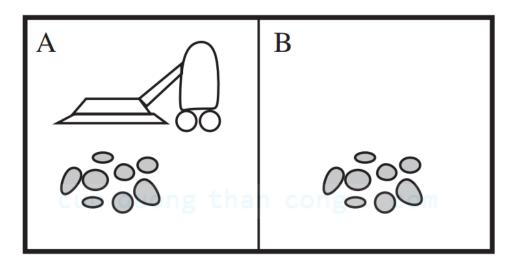
 The complete history of everything the agent has ever perceived

cuu duong than cong . com

Describe Agent's Behavior

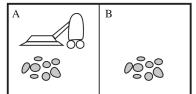
☐ Agent function:

maps from percept sequence to an action:

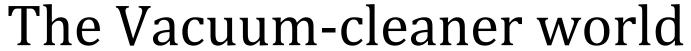

$$\operatorname{cur} \operatorname{du}[f: \mathcal{P} \to \mathcal{A}]$$

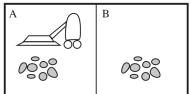
- ☐ Agent program:
 - o the implementation of an agent function.

2018/05/11 Nguyễn Hải Minh @ FIT


https://fb.com/tailieudientucntt

The Vacuum-cleaner world


- ☐Percepts:
 - o location and contents, e.g., [A,Dirty]
- **Actions:**
 - Left, Right, Suck, Do Nothing



Percept Sequence	Action		
[A, Clean]	Right		
[A, Dirty]	Suck		
[B, Clean]	Left		
[B, Dirty] cuu duong than cong	Suck		
[A, Clean], [A, Clean]	Right		
[A, Clean], [A, Dirty]	Suck		
[A, Clean], [A, Clean], A[Clean] ong	Right		
[A, Clean], [A, Clean], A[Dirty]	Suck		

Simple Agent Function Table

function Reflex-Vacuum-Agent([location,status]) returns an action

if status = Dirty then return Suck

else if location = A then return Right

else if location = B then return Left

An example of Agent Program in the two-state vaccum environment

cuu duong than cong . com

Why do we need Agents?

- □A tool for **analyze systems**.
- All areas of engineering can be seen as *designing artifacts* that *interact with* the world.
 - AI designs artifacts that have significant computational resources and the task environment requires nontrivial decision making.

2. Rationality

- Rational Agent
- > Performance Measure than cong.com
- > Rationality
- > Definition of Rational Agent
- Omniscience, learning, and autonomy

https://fb.com/tailieudientucntt

Rational Agents

- □Rational agent:
 - o one that does the right thing
 - → Fill out every entry in the table correctly (<u>rationally</u>)
- □What is "right" thing?
 - The actions that cause the agent to be most successful
 - → We need ways to **measure success**

Performance Measure

2018/05/11

Performance Measure

- □An agent, based on its percepts → generates actions sequence → environment goes to sequence of states
 - If this sequence of states is desirable → the agent performed well wong than cong com

Not agent states!!!

- ☐Performance measure
 - Evaluates any given sequence of environment states.
 - An objective function that determines how the agent does successfully
 - o 90%? 30%?

Performance Measure

- ☐ A general rule: Design performance measures according to
 - What one actually <u>wants</u> in the environment
 - Not how one *thinks* the agent should behave
- □E.g., in vacuum-cleaner world
 - We want the floor clean, no matter how the agent behaves
 - We don't restrict how the agent behaves
 - → Give some examples of performance measure of a vaccum-cleaner

Rationality

- □What is rational depends on:
 - 1. The *performance measure* that defines the criterion of success.
 - 2. The agent's *prior knowledge* of the environment.
 - 3. The *actions* that the agent can perform.
 - 4. The agent's *percept sequence* to date.

cuu duong than cong . com

Definition of a Rational Agent

- ☐ For each possible percept sequence, a rational agent should select:
 - an action expected to maximize its performance measure, given the evidence provided by the percept sequence and whatever built-in knowledge the agent has
- □E.g., an exam
 - Maximize marks, based on
 - o the questions on the paper & your knowledge

Vaccum-cleaner agent

1. Performance measure:

- Awards one point for each clean square
- o at each time step, over 10000 time steps

2. Prior knowledge about the environment

- The geography of the environment (2 squares)
- The effect of the actions

3. Actions that can perform

Left, Right, Suck and Do Nothing

4. Percept sequences g than cong. com

- o Where is the agent?
- Whether the location contains dirt?
- → Under this circumstance, the agent is rational.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

Omniscience, learning, and autonomy

Omniscience

Omiscient agent

- Knows the actual outcome of its actions in advance
- No other possible outcomes
- However, impossible in real world
- Example?

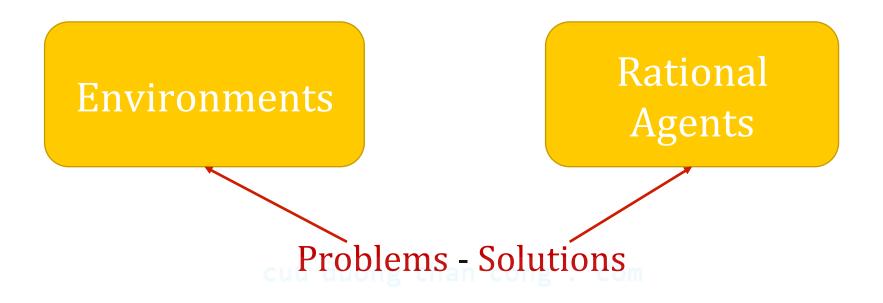
Rational agent

 Maximize performance measure given the percepts sequence to date and prior knowledge

Rationality is not perfection

Learning

- □ Does a rational agent depend on only current percept?
 - No, the past percept sequence should also be used
 - This is called learning
 - After experiencing an episode, the agent
 - should adjust its behaviors to perform better for the same job next time.


Autonomy

☐ If an agent just relies on the prior knowledge of its designer rather than its own percepts then the agent lacks *autonomy*

A rational agent should be autonomous- it should learn what it can to compensate for partial or incorrect prior knowledge.

- □E.g., a clock
 - No input (percepts)
 - Run only but its own algorithm (prior knowledge)
 - No learning, no experience, etc.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

3. The Nature of Environments

- The task environment
- > Automated Taxi Driver than cong. com
- > Software Agents
- Properties of task environments

The task environment

□Include:

- Performance measure
- Environment
- Agent's Actuators
- Agent's Sensors.

https://fb.com/tailieudientucntt

- ☐First step in designing an agent
 - o Describe **PEAS** as fully as possible

Performance measure:

- O How can we judge the automated driver?
- O Which factors are considered?
 - getting to the correct destination
 - minimizing fuel consumption
 - minimizing the trip time and/or cost
 - minimizing the violations of traffic laws
 - maximizing the safety and comfort, etc.

https://fb.com/tailieudientucntt

Environment:

- A taxi must deal with a variety of roads
- Traffic lights, other vehicles, pedestrians, stray animals, road works, police cars, etc.
- o Interact with the customer

cuu duong than cong . com

- Actuators (for outputs)
 - Control over the accelerator, steering, gear shifting and braking
 - A display to communicate with the customers
- ■Sensors (for inputs)
 - Detect other vehicles, road situations
 - GPS (Global Positioning System) to know where the taxi is
 - Many more devices are necessary

Agent Type	Performance Measure	Environment	Actuators	Sensors
Taxi driver	Safe, fast, legal, comfortable trip, maximize profits	Roads, other traffic, pedestrians, customers	Steering, accelerator, brake, signal, horn, display	Cameras, sonar, speedometer, GPS, odometer, accelerometer, engine sensors, keyboard

PEAS description of the task environment for an automated taxi

Software Agents

- □Sometimes, the environment may not be the real world
 - E.g., flight simulator, video games, Internet
 - They are all artificial but very complex environments
 - Those agents working in these environments are called
 - Software agent (softbots)
 - Because all parts of the agent are software

CuuDuongThanCong.com https://fb.com/tailieudientucnt

Fully observable	Partially observable
Single agent	Multiagent
Deterministic	Stochastic
Episodic	Sequential
Static	Dynamic
Discrete	Continuous
Known	Unknown

cuu duong than cong . com

□**Observable**: The agent's sensory gives it access to the complete state of the environment

□Single agent: An agent operating by itself in an environment.

■ Deterministic: The next state of the environment is completely determined by the current state and the actions selected by the agent

2018/05/11 Nguyễn Hải Minh @ FIT 33

- □ Episodic: The agent's experience is divided into independent "episodes," each episode consisting of agent perceiving and then acting.
 - Quality of action depends just on the episode itself, because subsequent episodes do not depend on what actions occur in previous episodes.
 - → Do not need to think ahead

cuu duong than cong . com

■Static: The environment is unchanged while an agent is deliberating

https://fb.com/tailieudientucntt

□**Discrete**: A limited number of distinct, clearly defined percepts and actions.

□Known:

- In a known environment, the outcomes (or outcome probabilities if the environment is stochastic) for all actions are given.
- Obviously, if the environment is unknown, the agent will have to learn how it works in order to make good decisions.

Environment	Accessible	Deterministic	Episodic	Static	Discrete
Chess with a clock	Yes	Yes	No	Semi	Yes
Chess without a clock	Yes	Yes	No	Yes	Yes
Poker	No	No	No	Yes	Yes
Backgammon	Yes	No cong	No	Yes	Yes
Taxi driving	No	No	No	No	No
Medical diagnosis system	No	No	No	No	No
Image-analysis system	Yes	Yes	Yes	Semi	No
Part-picking robot	No	No	Yes	No	No
Refinery controller	No	No	No	No	No
Interactive English tutor	No Nguyễr	No Hái Minh @ FIT	No	No	Yes 36

CuuDuongThanCong.com

https://fb.com/tailieudientucntt

Properties of Task Environment

- ☐ The simplest environment is
 - Fully observable, deterministic, episodic, static, discrete and single-agent.
- Most real situations are:
 - Partially observable, stochastic, sequential, dynamic, continuous and multi-agent.

cuu duong than cong . com

4. The Structure of Agents

Agent programs

Learning agents

- > Types of Agent Programs
 - Simple reflex agents
 - Model-based reflex agents
 - Goal-based agents
 - Utility-based agents

Agent Programs

- □Input for Agent Program
 - Only the current percept
- □ Input for Agent Function
 - The entire percept sequence
 - The agent must remember all of them
- ☐ Implement the agent program as
 - A look up table (agent function)

cuu duong than cong . com

Agent Programs

```
function TABLE-DRIVEN-AGENT(percept) returns an action persistent: percepts, a sequence, initially empty table, a table of actions, indexed by percept sequences, initially fully specified append percept to the end of percepts action \leftarrow Lookup(percepts, table)
```

Skeleton design of an agent program

cuu duong than cong . com

Agent Programs

- \Box P = the set of possible percepts
- \Box T = lifetime of the agent
 - The total number of percepts it receives
- □Size of the look up table
 - \circ Consider playing chess $\sum_{t=1}^{T} |P|^{t}$
 - P =10, T=150
 - Will require a table of at least 10¹⁵⁰ entries

Agent programs

- □Despite of huge size, look up table does what we want.
- □The key challenge of AI
 - Find out how to write programs that, to the extent possible, produce rational behavior
 - From a small amount of code
 - Rather than a large amount of table entries
 - E.g., a five-line program of Newton's Method
 - V.s. huge tables of square roots, sine, cosine, ...

Types of agent programs

□Five types

- Simple reflex agents
- Model-based reflex agents
- 3. Goal-based agents com
- 4. Utility-based agents
- 5. Learning agents

cuu duong than cong . com

1. Simple reflex agents

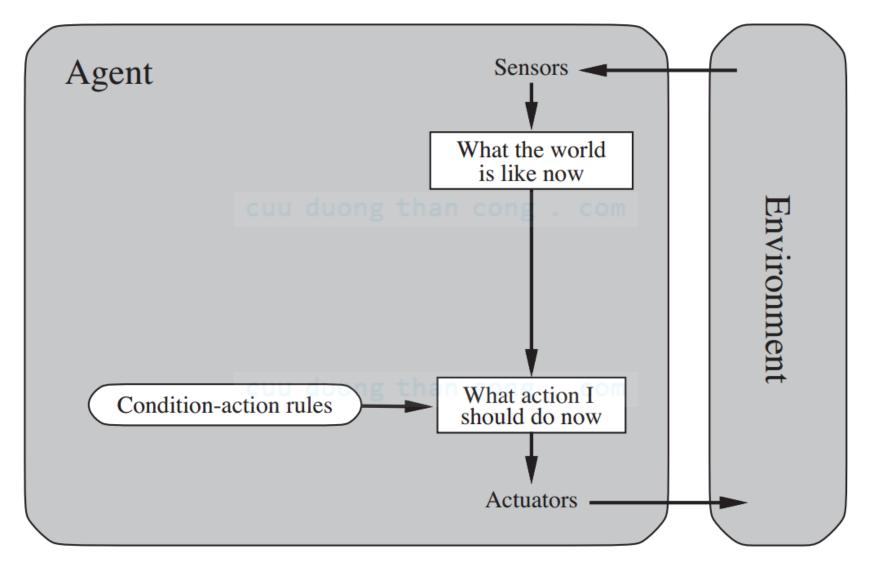
- □It uses just *condition-action rules*
 - The rules are like the form "if ... then ..."
 - efficient but have narrow range of applicability
 - Because knowledge sometimes cannot be stated explicitly
 - Work only
 - if the environment is fully observable

1. Simple reflex agents

```
persistent: rules, a set of condition—action rules

state \leftarrow \text{Interpret-Input}(percept)

rule \leftarrow \text{Rule-Match}(state, rules)


action \leftarrow rule. \text{Action}

return action
```

function SIMPLE-REFLEX-AGENT(percept) **returns** an action

cuu duong than cong . com

1. Simple reflex agents

A Simple Reflex Agent in Nature

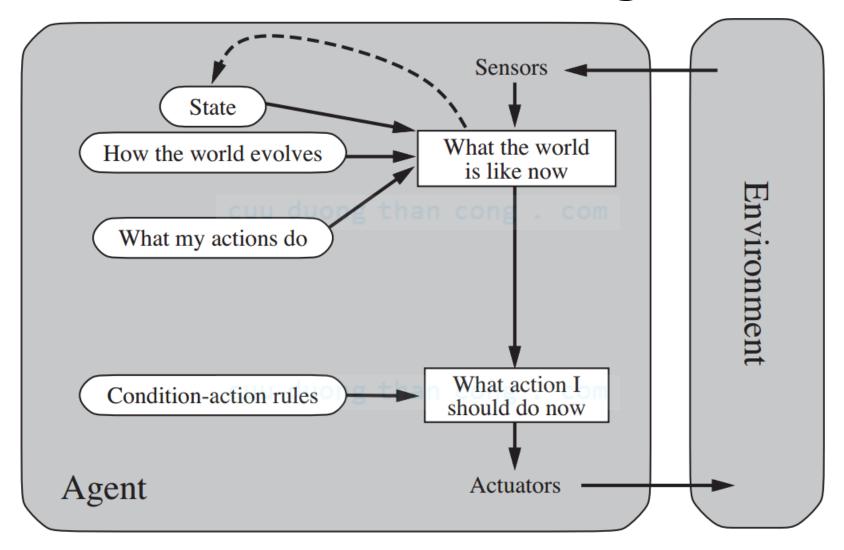
percepts
(size, motion)

RULES:

- (1) If small moving object, then activate SNAP
- (2) If large moving object, then activate AVOID and inhibit SNAP ELSE (not moving) then NOOP

needed for completeness

Action: SNAP or AVOID or NOOP


2. Model-based Reflex Agents

- □For the world that is partially observable
 - the agent has to keep track of an internal state
 - That depends on the percept history
 - Reflecting some of the unobserved aspects
 - E.g., driving a car and changing lane
- □Requiring two types of knowledge
 - How the world evolves independently of the agent
 - How the agent's actions affect the world

2. Model-based Reflex Agents

```
function MODEL-BASED-REFLEX-AGENT(percept) returns an action persistent: state, the agent's current conception of the world state model, a description of how the next state depends on current state and action rules, a set of condition—action rules action, the most recent action, initially none state \leftarrow \text{UPDATE-STATE}(state, action, percept, model)
rule \leftarrow \text{RULE-MATCH}(state, rules)
action \leftarrow rule. \text{ACTION}
return\ action
```

2. Model-based Reflex Agents

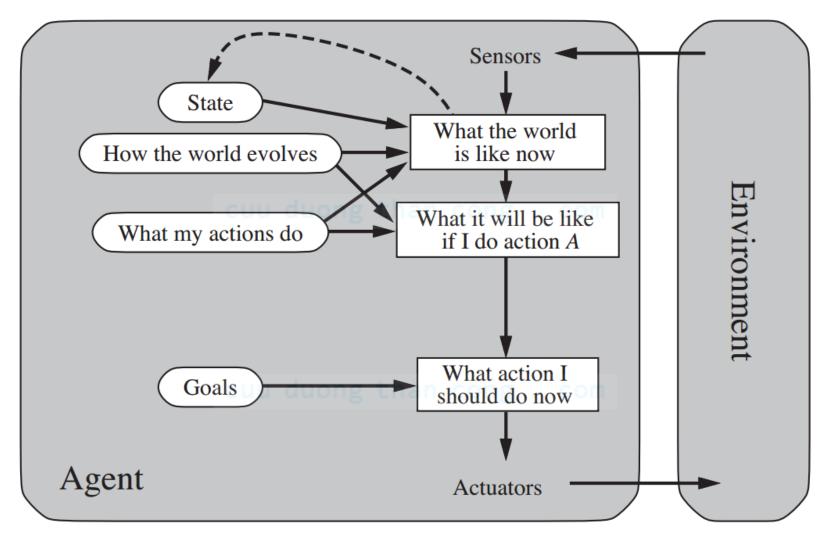
Example Table Agent With Internal State

IF THEN

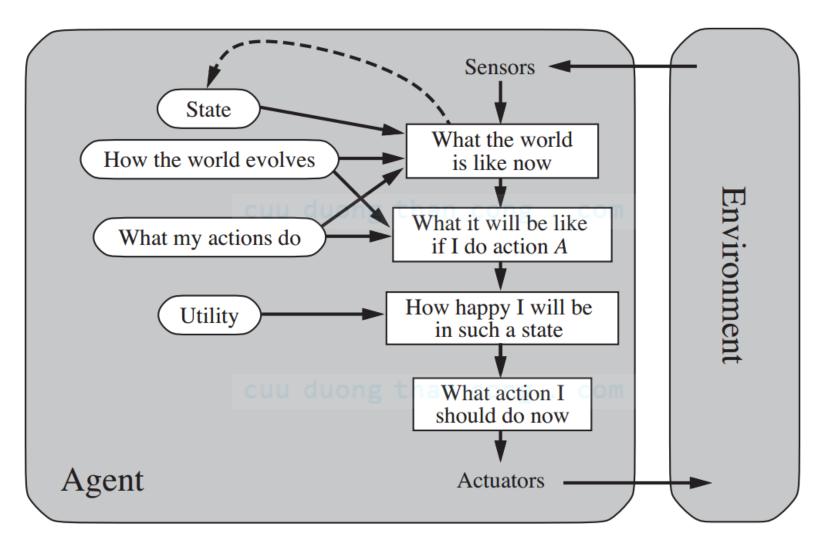
Saw an object ahead, and turned right, and it's now clear ahead	Go straight
Saw an object Ahead, turned right, and object ahead again	Halt
See no objects ahead	Go straight
See an object ahead	Turn randomly

3. Goal-based agents

- □Current state of the environment is always not enough
- □The goal is another issue to achieve
 - Judgment of rationality / correctness
- \square Actions chosen \rightarrow goals, based on
 - the current state
 - the current percept cong


3. Goal-based agents

□ Conclusion


- Goal-based agents are less efficient
- but more flexible
 - Agent ← Different goals ← different tasks
- Search and planning
 - two other sub-fields in AI
 - to find out the action sequences to achieve its goal

cuu duong than cong . com

3. Goal-based agents

- □Goals alone are not enough
 - to generate high-quality behavior
 - E.g. meals in Canteen, good or not?
- \square Many action sequences \rightarrow the goals
 - some are better and some worse
 - If goal means success,
 - then utility means the degree of success (how successful it is)

- ☐ It is said state A has higher utility
 - If state A is more preferred than others
- □Utility is therefore a function
 - that maps a state onto a real number
 - the degree of success

cuu duong than cong . com

□Utility has several advantages:

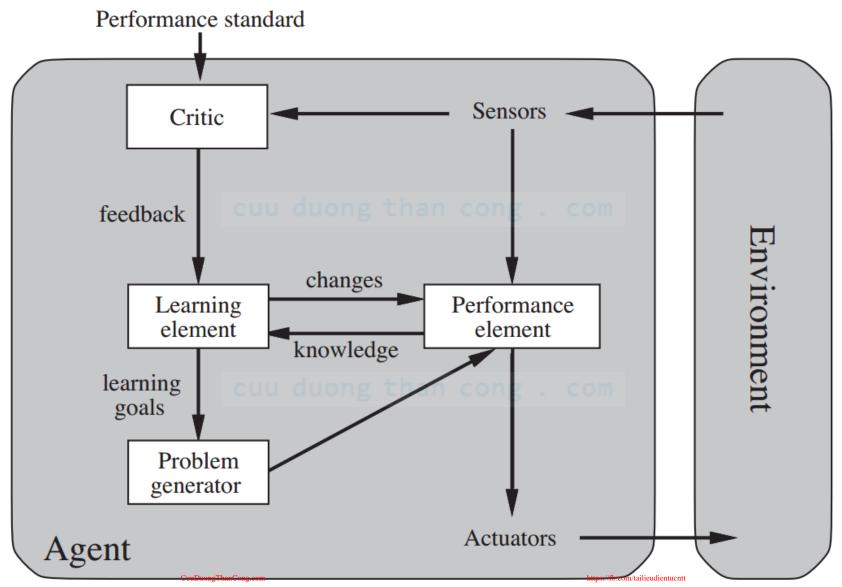
- When there are conflicting goals,
 - Only some of the goals but not all can be achieved
 - utility describes the appropriate trade-off
- When there are several goals
 - None of them are achieved <u>certainly</u>
 - utility provides a way for the decision-making

cuu duong than cong . com

Learning Agents

- □After an agent is programmed, can it work immediately?
 - No, it still need teaching
- □In AI, cull duong than cong. con
 - Once an agent is done, we teach it by giving it a set of examples
 - Test it by using another set of examples

cuu duong than cong . com


- □We then say the agent learns
 - A learning agent

Learning Agents

□Four conceptual components

- Learning element → Making improvement
- 2. Performance element \rightarrow Selecting external actions
- 3. Critic → Tells the Learning element how well the agent is doing with respect to fixed performance standard. (Feedback from user or examples, good or not?)
- 4. Problem generator → Suggest actions that will lead to new and informative experiences.

Learning Agents

Individual Assignment 1 (10 mins)

For each of the following activities, give a **PEAS** description of the task environment in your opinion: (Choose as much activities as you like, minimum is 2)

- a) Playing soccer
- b) Shopping for used AI books on the Internet.
- c) Playing a tennis match.
- d) Practicing tennis against a wall.
- e) Performing a high jump.
- f) Knitting a sweater.
- g) Bidding on an item at an auction.

Homework #1

- □Read chapter **1** (page 1-29) and **2** (page 34-59) in the textbook (3rd edition)
- ☐Answer the questions

cuu duong than cong . com

Next class

- ☐ Individual Assignment 1
- ☐ Chapter 2: Solving Problems by Searching

cuu duong than cong . com

cuu duong than cong . com