Introduction to Artificial Intelligence

Chapter 2: Solving Problems by Searching (4) Heuristic Functions

> Nguyễn Hải Minh, Ph.D nhminh@fit.hcmus.edu.vn

Outline

- 1. The 8-puzzle problem
- 2. Relaxed problems
- 3. Pattern databases
- 4. Learning heuristics from experience

cuu duong than cong . com

The (n^2-1) -Puzzle problem

□Slide the tiles horizontally or vertically into the empty space until the configuration matches the goal state

Start State

Goal State

States in (n²-1)-Puzzle problem: (n²)!/2

 181,440 possible states for 8-Puzzle
 1.05 x 10¹³ possible states for 15-Puzzle

The 8-puzzle

One of the earliest heuristic problems

□Average solution cost:

- \circ 22 steps
- $\circ b \approx 3$
- A graph search: exhaustive search about 170k states (see HW 3.4)

□How about 15-puzzle?

- \circ About 10¹³ states
- →Need a good heuristic to find the shortest solutions
- →Never overestimates the number of steps to the goal

The 8-puzzle heuristics \Box Admissible heuristic: $h(n) \leq h^*(n)$

Which of the following heuristics is admissible?

- $h_1(n) = \text{total number of misplaced tiles}$
- $h_2(n) =$ total Manhattan distance
- $h_3(n) = 0$
- $h_4(n) = 1$
- $h_5(n) = h^*(n)$
- $h_6(n) = \min(2, h^*(n))$ consists on
- $h_7(n) = \max(2, h^*(n))$

The 8-puzzle: Admissible heuristics

Effective branching factor b*

□The branching factor that an uniform tree of depth *d* would have in order to contain *N*+1 nodes

$$N + 1 = 1 + b^* + b^{*2} + \dots + b^{*d}$$

Measure is fairly constant for sufficiently hard problems.

- Can thus provide a good guide to the heuristic's overall usefulness.
- $\,\circ\,$ A well-designed heuristic would have a value of b* close to 1

Search costs vs branching factors

	Search Cost (nodes generated)			Effective Branching Factor		
d	IDS	$\mathbf{A}^{*}(h_{1})$	$\mathbf{A}^{*}(h_{2})$	IDS	$A^*(h_1)$	$A^*(h_2)$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	duong 25har	2.80	om 1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	3644035	227	73	2.78	1.42	1.24
14	_	539	113	—	1.44	1.23
16	—	1301	211	—	1.45	1.25
18	_	3056	363	—	1.46	1.26
20	_	7276	676	—	1.47	1.27
22	—	18094	duon 1219 an	cong. c	om 1.48	1.28
24	_	39135	1641	_	1.48	1.26

Dominance

□If $h_2(n) \ge h_1(n)$ for all *n* (both admissible) then h_2 dominates h_1

 \circ *h*² is better for search

Typical search costs (average number of nodes expanded):

 → d=12 IDS = 3,644,035 nodes $A^*(h_1) = 227$ nodes $A^*(h_2) = 73$ nodes

 → d=24 IDS = too many nodes $A^*(h_1) = 39,135$ nodes $A^*(h_2) = 1,641$ nodes

Relaxed problems

□A problem with fewer restrictions on the actions is called a relaxed problem

The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem

Relaxed problems

Original problem:

 A tile canmove from square A to square B if A is horizontally or vertically adjacent to B and B is blank

Relaxed problem:

Misplaced

tiles

- a) A tile can move from square A to square B if A is adjacent to B.b) A tile can move from square A to square B if B is blank.
- c) A tile can move from square A to square B.

cuu duong than d

Manhattan distance

it is **crucial** that the relaxed problems generated by this technique can be solved essentially *without search*

Relaxed problems

□A collection of admissible heuristics: h_1 , h_2 , ..., h_m → Composite heuristic function:

$$h(n) = \max\{h_1(n), h_2(n), ..., h_m(n)\}$$

 \rightarrow It is easy to prove that *h* is consistent. Furthermore, *h* dominates all of its component heuristics

cuu duong than cong . com

Pattern database

□A subproblem of the 8-puzzle instance

Start State

Goal State

□Solution cost of this subproblem ≤ real cost of the original problem

Some cases, it is more accurate than Manhattan distance

05/23/2018

Nguyễn Hải Minh @ FIT

Pattern database

- Admissible heuristics can also be derived from the solution cost of a subproblem of a given problem.
- This cost is a lower bound on the cost of the real problem.

□Idea of pattern databases:

- Store the exact solution costs for every possible subproblem instance.
- The complete heuristic is constructed using the patterns in the databases

Heuristic from PDB

31 moves is a lower bound on the total number of moves needed to solve this particular state

https://courses.cs.washington.edu/courses/cse473/12sp/slides/04-heuristics.pdf

05/23/2018

Nguyễn Hải Minh @ FIT

Heuristic from PDB

31 moves needed to solve red tiles 22 moves needed to solve blue tiles → Overall heuristic is maximum of 31 moves

https://courses.cs.washington.edu/courses/cse473/12sp/slides/04-heuristics.pdf

05/23/2018

Nguyễn Hải Minh @ FIT

Additive Pattern Databases

Count only moves of the pattern tiles, ignoring nonpattern moves.

- $\,\circ\,$ If no tile belongs to more than one pattern, then we can add their heuristic values.
- Manhattan distance is a special case of this, where each pattern contains a single tile.

→Disjoint Pattern Databases

The 7-tile database contains 58 million entries.
The 8-tile database contains 519 million entries.

Additive Pattern Databases

20 moves needed to solve red tiles 25 moves needed to solve blue tiles → Overall heuristic is 20+25=45 moves

15 Puzzle: 2000x speedup vs Manhattan distance

Performance

 IDA* with the two DBs solves 15 Puzzles optimally in 30 milliseconds

cuu duong than cong . cor

Nguyễn Hải Minh @ FIT

24 Puzzle:

- 12 million x speedup vs Manhattan
- $\,\circ\,$ IDA* can solve random instances in 2 days.
- Requires 4 DBs as shown
- Each DB has 128 million entries
- Without PDBs: 65,000 years

Learning heuristics from experience

Experience means:

- \circ e.g, solving lots of 8-puzzles
- Each optimal solution to an 8-puzzle problem
 provides examples from which h(n) can be learned

Learning algorithms: chan cong . com

- Neural nets
- Decision trees
- Inductive learning

• ... cuu duong than cong . com