

Introduction to Artificial Intelligence

Chapter 2: Solving Problems by Searching (5) Local Search Algorithms & Optimization Problems

Nguyễn Hải Minh, Ph.D

nhminh@fit.hcmus.edu.vn

Outline

1. Optimization Problems
2. Hill-climbing search
3. Simulated Annealing search
4. Local beam search
5. Genetic algorithm

Local Search Algorithms & Optimization Problems

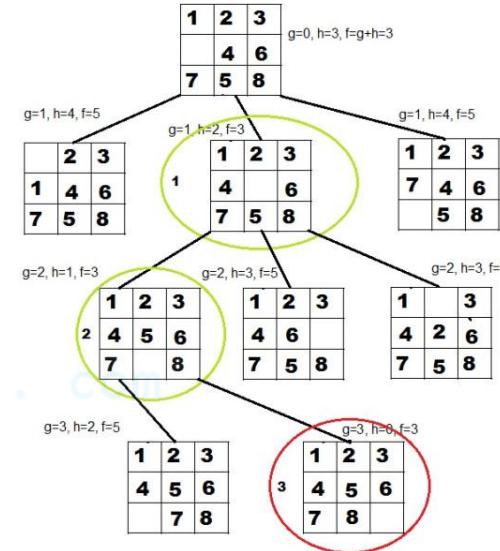
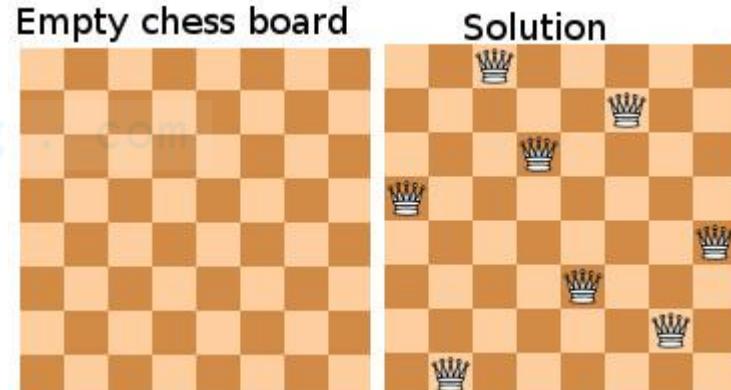
□ Previous lecture:

- Path to Goal is solution to problem
→ systematic exploration of search space: **Global Search**

cuu duong than cong . com

□ This lecture:

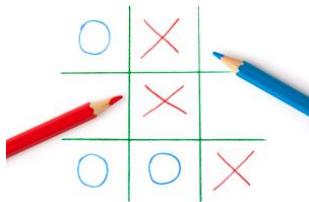
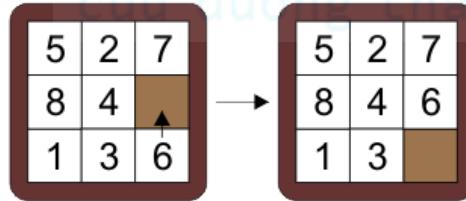
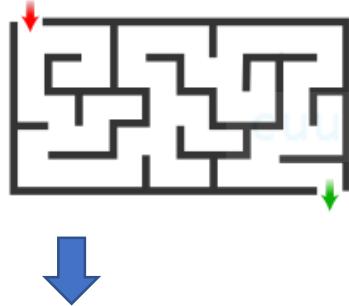
- A State is solution to problem (path is irrelevant)
- E.g., 8-queens
→ Different algorithms can be used:
Local Search



Two types of Problems

Goal Satisfaction

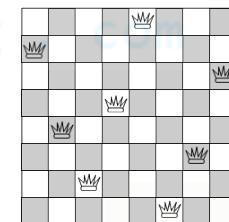
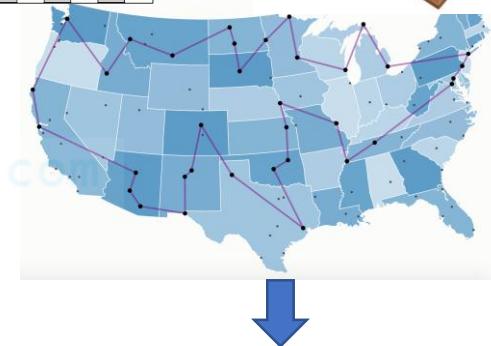
reach the goal node
Constraint **Satisfaction**



Global Search Algorithms

Optimization

Optimize objective $f(n)$
Constraint **Optimization**



Local Search Algorithms

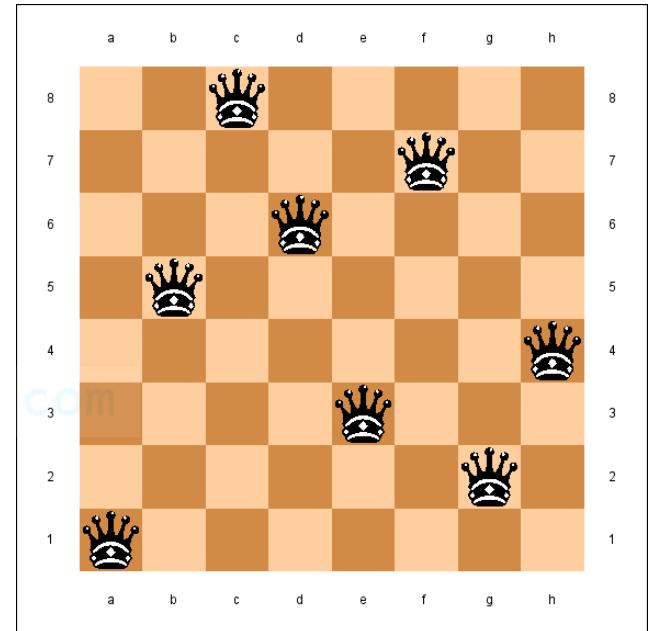
Local Search Algorithms & Optimization Problems

❑ Global search:

- Can solve n-queen for $n = 200$
- Algorithm: ?

❑ Local search:

- Can solve n-queen for $n = 1,000,000$
- Algorithm:
 - Hill-climbing



Local Search Algorithms & Optimization Problems

□ Local search

- Keep track of single current state
- Move only to neighboring states
- Ignore paths

cuu duong than cong . com

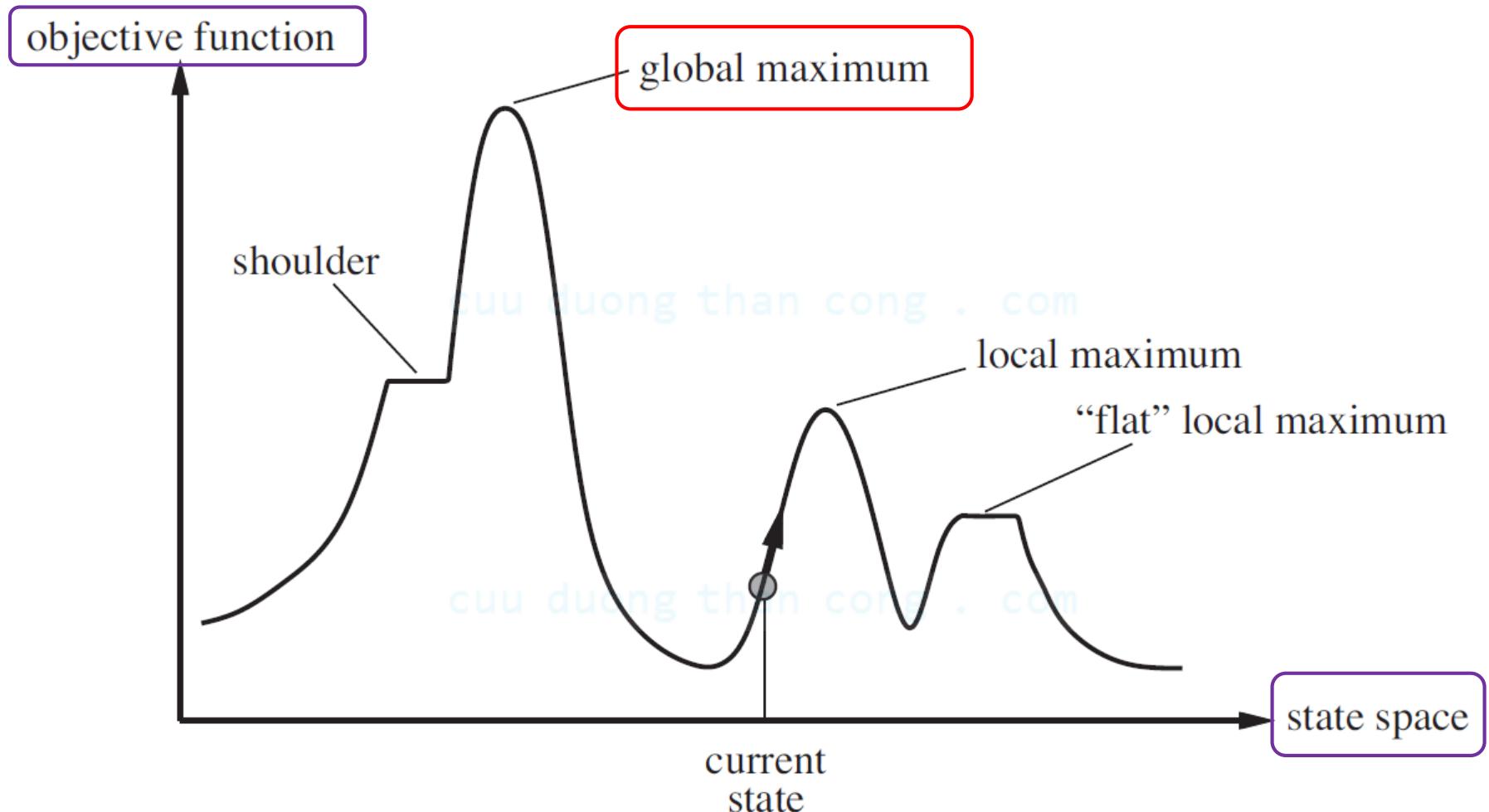
□ Advantages:

1. Use very little memory
2. Can often find reasonable solutions in large or infinite (continuous) state spaces. com

Local Search Algorithms & Optimization Problems

- “*Pure optimization*” problems
 - All states have an **objective function**
 - Goal is to find state with **max** (or min) **objective value**
 - Does not quite fit into path-cost/goal-state formulation
 - Local search can do quite well on these problems.
- Examples:
 - n-queens
 - Machine Allocation
 - Office Assignment
 - Travelling Sale-person Problem
 - Integrated-circuit design...

State-space Landscape of Searching for Max



Hill-climbing search

- ❑ A **loop** that continuously moves in the direction of increasing value → uphill
 - terminates when a peak is reached
→ *greedy local search*
- ❑ Value can be either:
 - Objective function value (maximized)
 - Heuristic function value (minimized)
- ❑ Characteristics:
 - Does not look ahead of the immediate neighbors of the current state.
 - Can randomly choose among the set of best successors, if multiple have the best value
→ *trying to find the top of Mount Everest while in a thick fog*

Hill-climbing search

function HILL-CLIMBING(*problem*) **returns** a state that is a local maximum

current \leftarrow MAKE-NODE(*problem*.INITIAL-STATE)

loop do

neighbor \leftarrow a highest-valued successor of *current*

if *neighbor*.VALUE \leq *current*.VALUE **then return** *current*.STATE

current \leftarrow *neighbor*

Locality: move to ***best*** node
that is next to current state

Termination: stop when local neighbors
are ***no better*** than current state

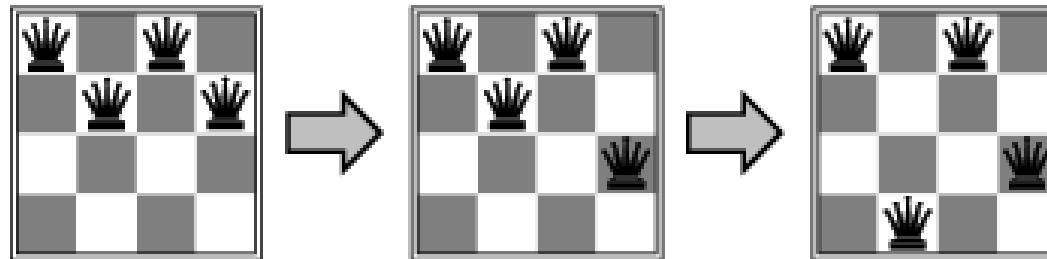
This version of HILL-CLIMBING found local maximum.

Hill-climbing example: n-queens

❑ n-queens problem:

- **complete-state** formulation:
 - All n queens on the board, 1 per column
- **Successor function**:
 - move a single queen to another square in the same column.

→ Each state has ? successors



❑ Example of a heuristic function $h(n)$:

- the number of pairs of queens that are attacking each other (directly or indirectly)
- We want to reach $h = 0$ (global minimum)

Hill-climbing example: 8-queens

$$\square (c_1 \ c_2 \ c_3 \ c_4 \ c_5 \ c_6 \ c_7 \ c_8) = (5 \ 6 \ 7 \ 4 \ 5 \ 6 \ 7 \ 6)$$

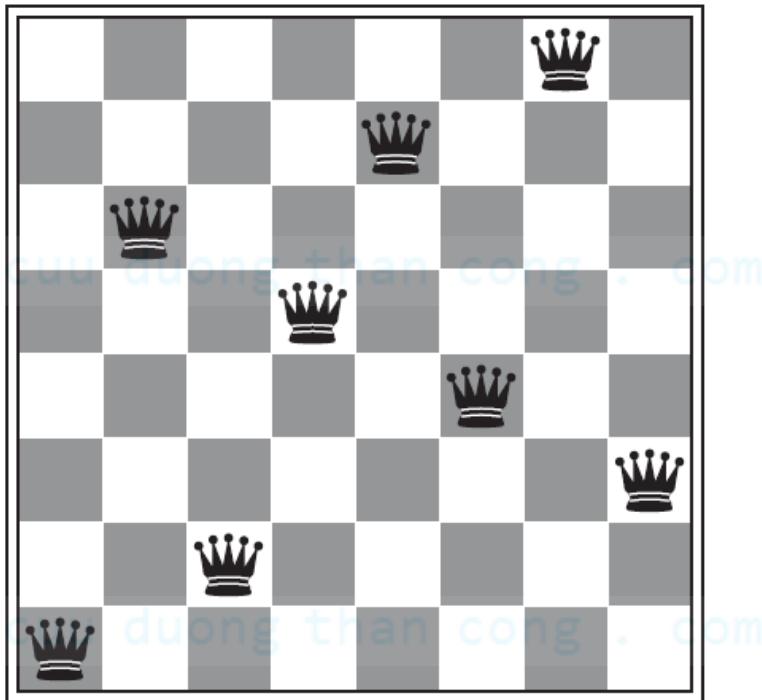
18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14	14	13	16	13	16
14	14	17	15	15	14	16	16
17	14	16	18	15	15	15	14
18	14	14	15	15	14	14	16
14	14	13	17	12	14	12	18

The best moves

\square An 8-queens state with heuristic cost estimate $h=17$, showing the value of h for each possible successor obtained by moving a queen within its column.

Hill-climbing example: 8-queens

□ $(c_1 \ c_2 \ c_3 \ c_4 \ c_5 \ c_6 \ c_7 \ c_8) = (8 \ 3 \ 7 \ 4 \ 2 \ 5 \ 1 \ 6)$



□ A local minimum in the 8-queens state space; the state has $h=1$ but every successor has a higher cost.

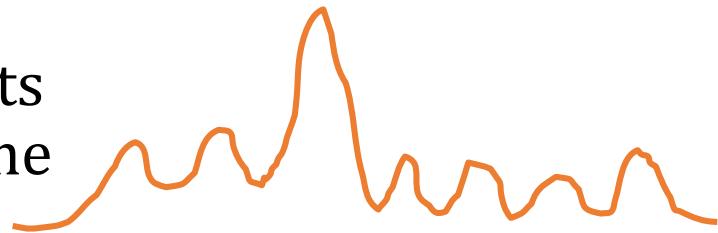
Performance of hill-climbing on 8-queens

- Randomly generated 8-queens starting states
 - 14% the time it solves the problem
 - 86% of the time it get stuck at a local minimum

- However...
 - Takes only 4 steps on average when it succeeds
 - And 3 on average when it gets stuck
(for a state space with ~17 million states)

Hill-climbing drawbacks

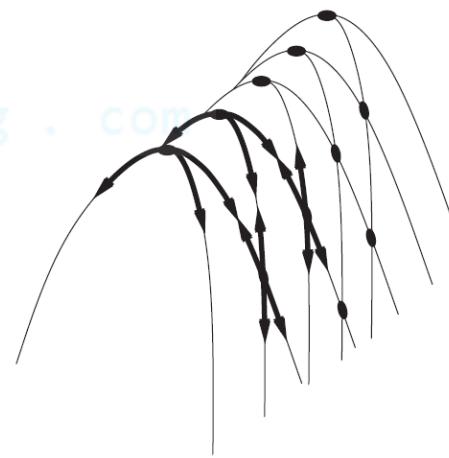
- ❑ **Local Maxima:** a peak higher than its neighboring states but lower than the global maximum



→ *Hill-climbing is suboptimal*

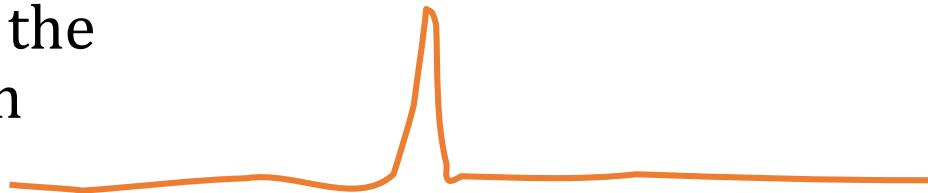
cuu duong than cong . com

- ❑ **Ridge:** sequence of local maxima difficult for greedy algorithms to navigate



cuu duong than cong . com

- ❑ **Plateau:** (Shoulders) an area of the state space where the evaluation function is flat.



Escaping Shoulders: Sideways Moves

□ If no downhill (uphill) moves, allow *sideways* moves in hope that algorithm can escape

- Need to place a **limit** on the possible number of sideways moves to avoid infinite loops

□ For 8-queens

- Now allow sideways moves with a limit of 100
- Raises percentage of problem instances solved from 14 to 94%
- However....
 - 21 steps for every successful solution
 - 64 for each failure

Hill-climbing variations

1. Stochastic hill-climbing

- Random selection among the uphill moves.
- The selection probability can vary with the steepness of the uphill move.

→ *converges more slowly than steepest ascent, but in some state landscapes, it finds better solutions*

2. First-choice hill-climbing

- Generating successors randomly until a better one is found.

→ *Useful when there are a very large number of successors.*

3. Random-restart hill-climbing

Random Restarts Hill-climbing

□ Tries to avoid getting stuck in **local maxima**.

□ **Different variations**

- For each restart: run until termination vs run for a fixed time
- Run a fixed number of restarts or run indefinitely

□ **Analysis**

- Say each search has probability p of success
 - E.g., for 8-queens, $p = 0.14$ with no sideways moves
- Expected number of restarts?
- Expected number of steps taken?

Search using Simulated Annealing

❑ Idea:

Escape local maxima by allowing some “*bad*” moves (downhill) but *gradually decrease* their size and frequency

- **Probability** of taking downhill move decreases with number of iterations, steepness of downhill move
- Controlled by **annealing schedule**

→ *Inspired by tempering of glass, metal*

Physical Interpretation of Simulated Annealing

❑ **Annealing** = physical process of cooling a liquid or metal until particles achieve a certain frozen crystal state.

- Simulated Annealing:
 - free variables are like particles
 - seek “low energy” (high quality) configuration
 - get this by slowly reducing temperature T , which particles move around randomly

Search using Simulated Annealing

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
  inputs: problem, a problem
            schedule, a mapping from time to “temperature”
```

```
current  $\leftarrow$  MAKE-NODE(problem.INITIAL-STATE)
```

```
for t = 1 to  $\infty$  do
```

```
  T  $\leftarrow$  schedule(t)
```

```
    if T = 0 then return current
```

```
    next  $\leftarrow$  a randomly selected successor of current
```

```
     $\Delta E \leftarrow$  next.VALUE – current.VALUE
```

```
    if  $\Delta E > 0$  then current  $\leftarrow$  next
```

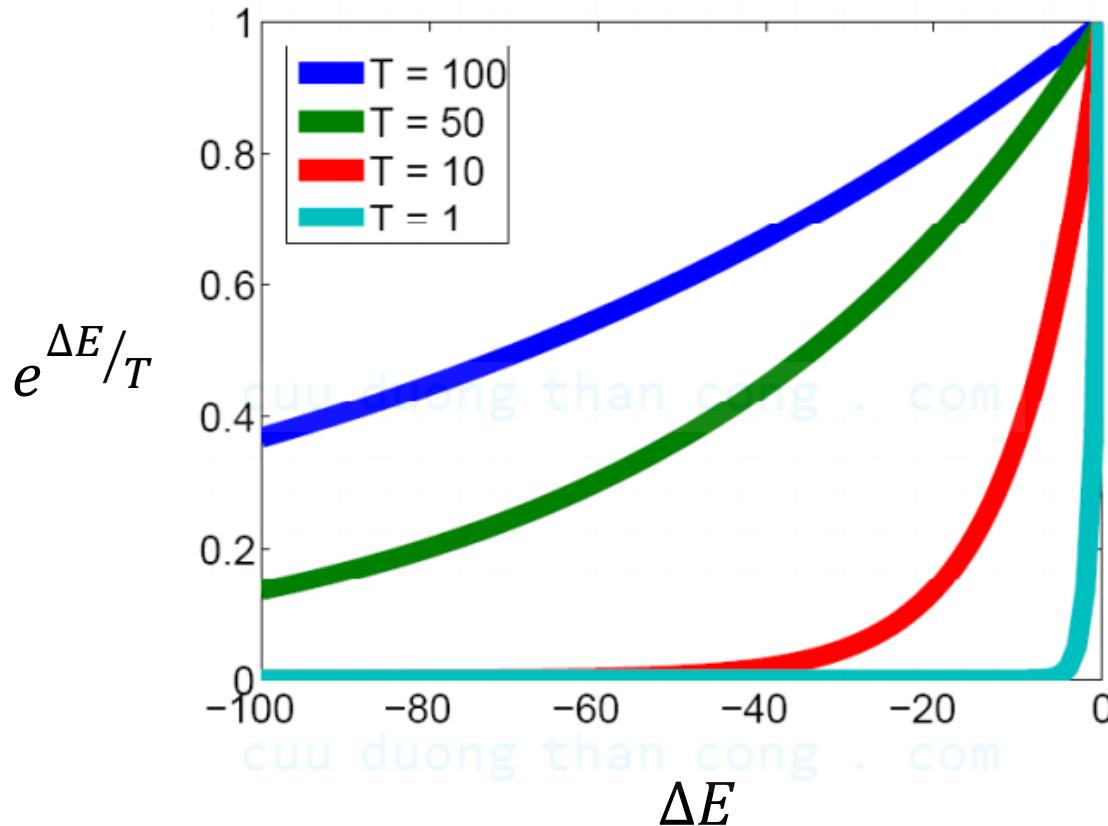
```
    else current  $\leftarrow$  next only with probability  $e^{\Delta E/T}$ 
```

Good neighbors:
always accept
better local moves

Temperature reduction:
slowly decrease *T* over time

Bad neighbors: accept
in proportion to
“badness”

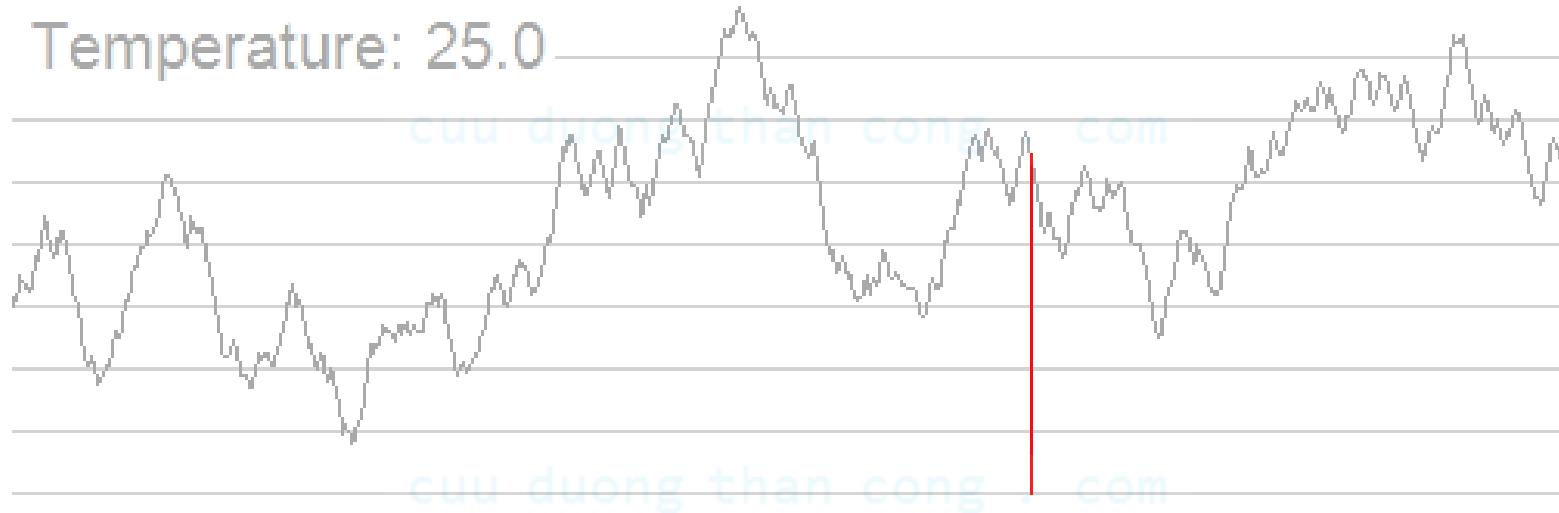
Effect of Temperature



If temperature decreases slowly enough, the algorithm will find a global optimum with probability approaching 1.

Search using Simulated Annealing

- Despite the many local maxima in this graph, the global maximum can still be found using **simulated annealing**



Example on Simulated Annealing

□ Lets say there are 3 moves available, with changes in the objective function of

- $\Delta E_1 = -0.1$
- $\Delta E_2 = 0.5$ (good move)
- $\Delta E_3 = -5$

□ Let $T=1$, pick a move randomly:

- if ΔE_2 is picked, move there.
- if $\Delta E_1, \Delta E_3$ are picked:

$$\bullet \text{ move 1: } \text{prob1} = e^{\Delta E/T} = e^{-0.1} = 0.9,$$

$$\bullet \text{ move 3: } \text{prob3} = e^{\Delta E/T} = e^{-5} = 0.05$$

90% of the time we will accept this move

5% of the time we will accept this move

□ T = “temperature” parameter

- high $T \Rightarrow$ probability of “locally bad” move is **higher**
- low $T \Rightarrow$ probability of “locally bad” move is **lower**
- Typically, T is **decreased** as the algorithm runs longer
 - i.e., there is a “**temperature schedule**”

Simulated Annealing in Practice

- Simulated annealing was first used extensively to solve VLSI layout problems in the early 1980s.
- Other applications:
 - Traveling Salesman Problem
 - Factory Scheduling
 - Timetable Problem
 - Image Processing
 - ...
- Useful for some problems, but can be very slow
→ *Because T must be decreased very gradually to retain optimality*
- How do we decide the rate at which to decrease T ?
→ *This is a practical problem with this method*

Local beam search

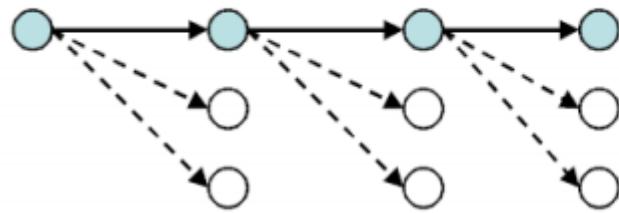
- Idea: Keeping only one node in memory is an extreme reaction to memory problems.
- Keep track of k states instead of one
 - Initially: k randomly selected states
 - Next: determine all successors of k states
 - If any of successors is goal → finished
 - Else select k best from successors and repeat

Local beam search

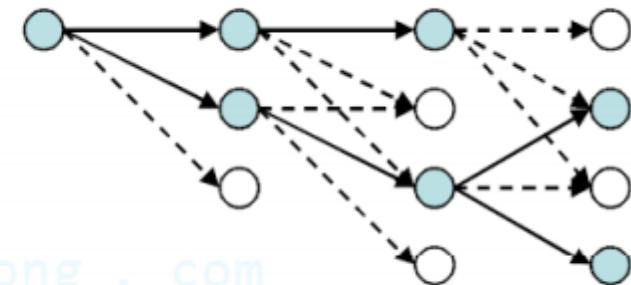
□ Major difference with random-restart search

- Information is shared among k search threads.

→ Searches that find good states recruit other searches to join them



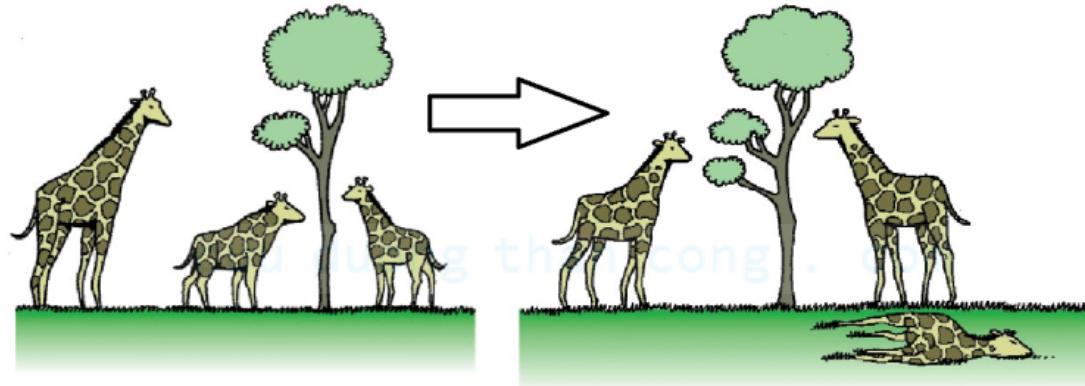
Greedy search



Beam search

Local beam search

- Problem: quite often, all k states end up on same local hill
 - *Stochastic beam search*: choose k successors randomly, biased towards good ones.
 - Resemblance to the process of natural selection
 - “successors” (offspring) of a “state” (organism) populate the next generation according to its “value” (fitness).



Natural Selection in action

Genetic algorithms

❑ Twist on Local Search:

- successor is generated by combining two parent states

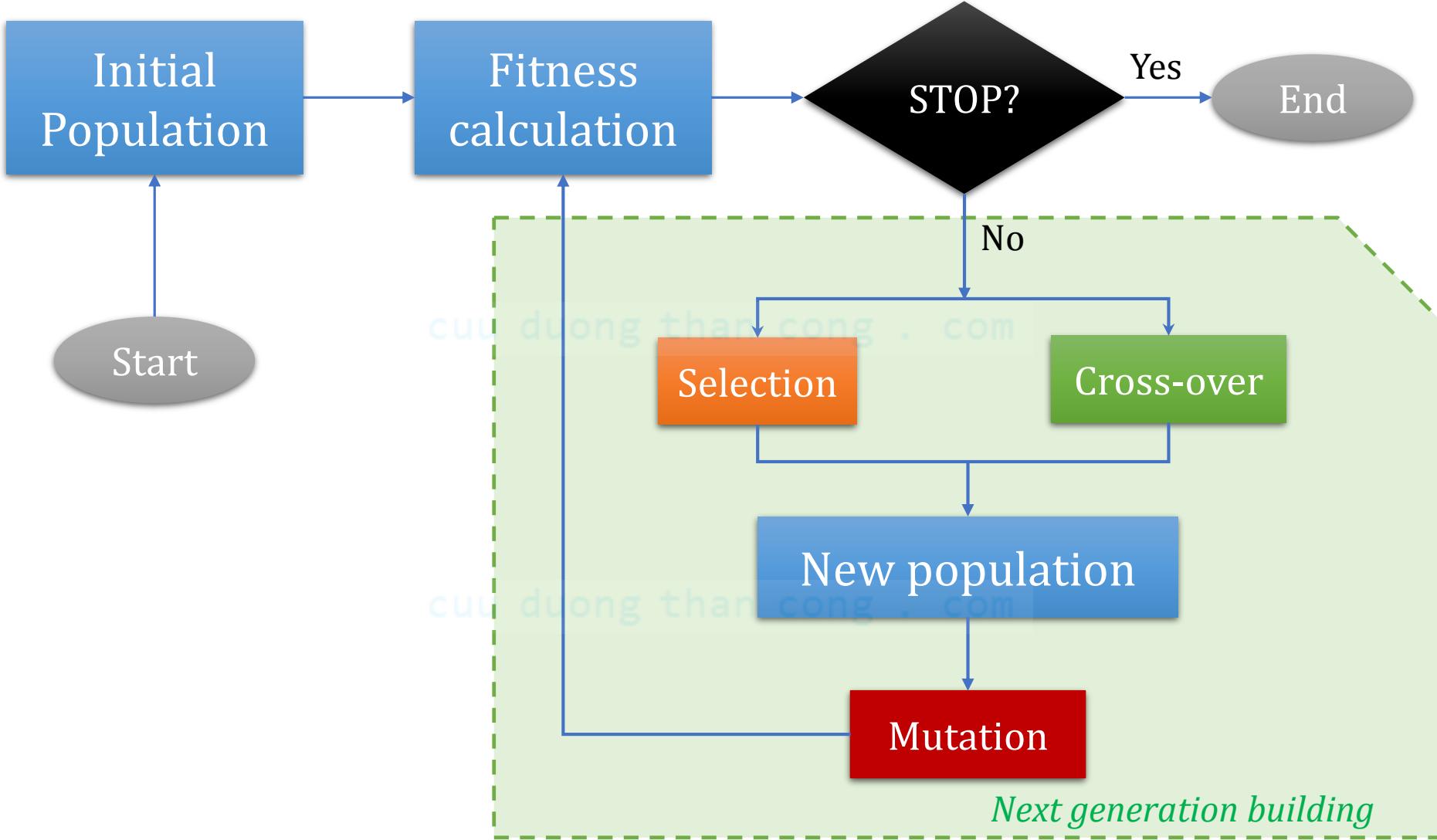
❑ A state is represented as a string over a finite alphabet (e.g. binary)

- 8-queens
 - State = position of 8 queens each in a column
 $\Rightarrow 8 \times \log(8)$ bits = 24 bits (for binary representation)

Genetic algorithms

- Start with k randomly generated states (**population**)
- Evaluation function (**fitness function**).
 - Higher values for better states.
 - Opposite to heuristic function, e.g., *#non-attacking pairs in 8-queens*
- Produce the next generation of states by “simulated evolution”
 - Random selection
 - Crossover
 - Random mutation

Genetic algorithms



Genetic algorithms

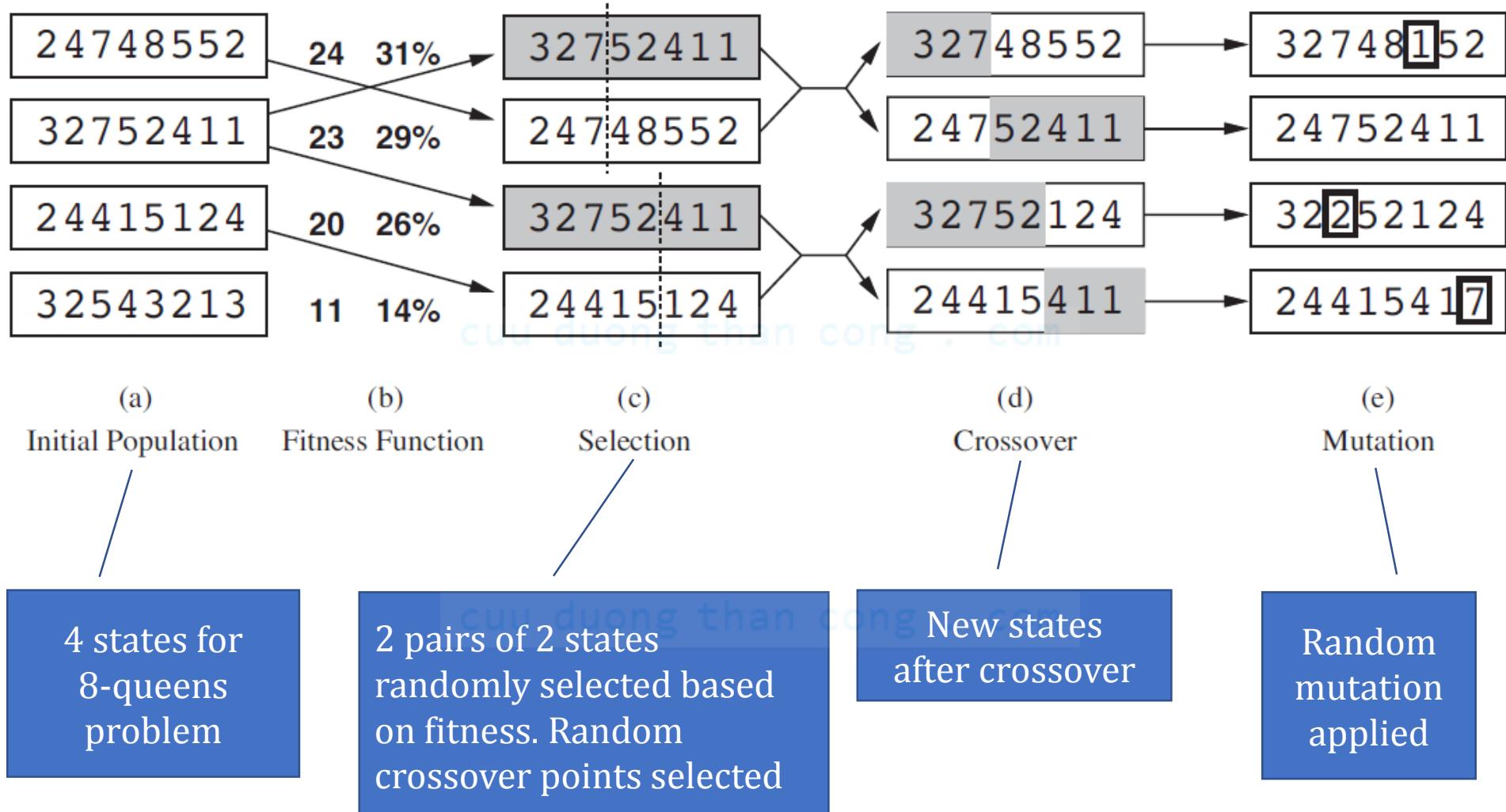
□ Genetic representation:

- Use integers
- Use bit string

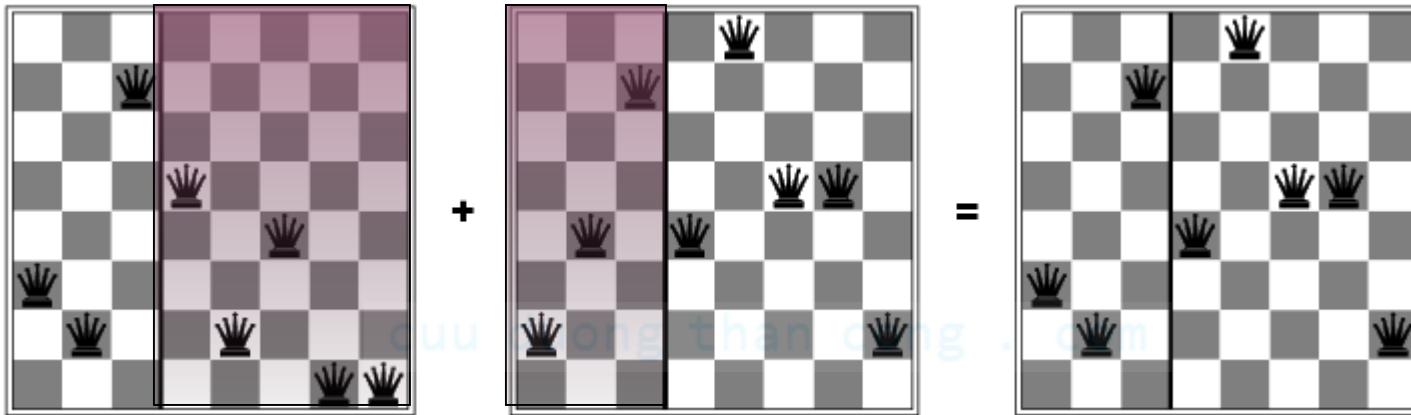
□ Fitness function: number of non-attacking pairs of queens (min = 0, max = $8 \times 7 / 2 = 28$)

- $24 / (24 + 23 + 20 + 11) = 31\%$
- $23 / (24 + 23 + 20 + 11) = 29\%$ etc

Genetic algorithms



Genetic algorithms



Has the effect of “jumping” to a completely different new part of the search space (quite non-local)

Genetic algorithm pseudocode

```
function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual
  inputs: population, a set of individuals
          FITNESS-FN, a function that measures the fitness of an individual

  repeat
    new_population  $\leftarrow$  empty set
    for i = 1 to SIZE(population) do
      x  $\leftarrow$  RANDOM-SELECTION(population, FITNESS-FN)
      y  $\leftarrow$  RANDOM-SELECTION(population, FITNESS-FN)
      child  $\leftarrow$  REPRODUCE(x, y)
      if (small random probability) then child  $\leftarrow$  MUTATE(child)
      add child to new_population
    population  $\leftarrow$  new_population
  until some individual is fit enough, or enough time has elapsed
  return the best individual in population, according to FITNESS-FN
```

Genetic algorithm pseudocode

```
function REPRODUCE( $x, y$ ) returns an individual
```

inputs: x, y , parent individuals

$n \leftarrow \text{LENGTH}(x); c \leftarrow \text{random number from 1 to } n$

return APPEND(SUBSTRING($x, 1, c$), SUBSTRING($y, c + 1, n$))

cuu duong than cong . com

cuu duong than cong . com

Comments on genetic algorithms

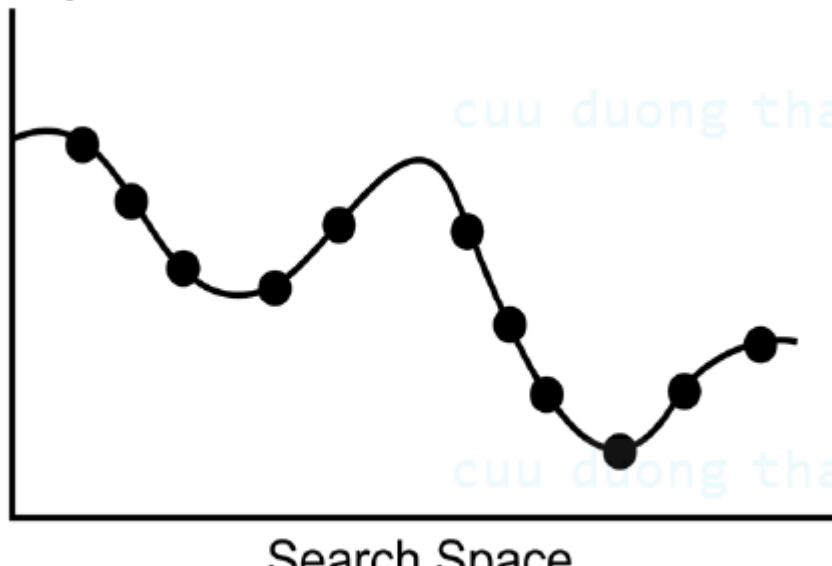
❑ Positive points

- Random exploration can find solutions that local search can't
 - (via **crossover** primarily)
 - Can solve "hard" problem
- Rely on very *little domain knowledge*
- Appealing connection to human evolution
 - E.g., see related area of genetic programming

Comments on genetic algorithms

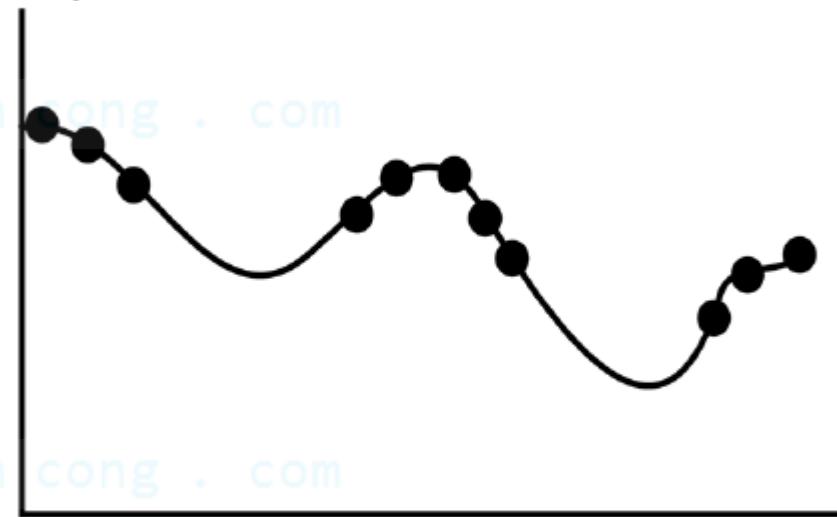
❑ Positive points

Solution
Quality



a. The beginning search space

Solution
Quality



b. The search space after
n generations

Comments on genetic algorithms

❑ Negative points

- Large number of “*tunable*” parameters
 - Difficult to replicate performance from one problem to another
- Lack of good empirical studies comparing to simpler methods
- Useful on some (small?) set of problems but no convincing evidence that GAs are better than hill-climbing w/random restarts in general

❑ Application: Genetic Programming!

Next class

- ❑ Chapter 2: Solving Problems by Searching (cont.)
 - Adversarial Search (Games)

cuu duong than cong . com

cuu duong than cong . com