

Introduction to Artificial Intelligence

cuu duong than cong . com

Chapter 2: Solving Problems by Searching (6)

Adversarial Search

cuu duong than cong . com

Nguyễn Hải Minh, Ph.D

nhminh@fit.hcmus.edu.vn

Outline

1. Games
2. Optimal Decisions in Games
3. α - β Pruning
4. Imperfect, Real-time Decisions

cuu duong than cong . com

cuu duong than cong . com

Games vs. Search Problems

❑ Unpredictable opponent

→ specifying a move for every possible opponent reply

❑ Competitive environments:

→ the agents' goals are in conflict

❑ Time limits

→ unlikely to find goal, must approximate

❑ Example of complexity:

- Chess: $b=35$, $d = 100 \rightarrow$ Tree Size: $\sim 10^{154}$
- Go: $b=1000$ (!)

Types of Games

	Deterministic	Chance
Perfect information	Chess, Checkers, Go, Othello	Backgammon Monopoly
Imperfect information		Bridge, poker, scrabble nuclear war

Types of Games

Primary Assumptions

- Assume only two players
- There is no element of chance
 - No dice thrown, no cards drawn, etc
- Both players have complete knowledge of the state of the game
 - Examples are chess, checkers and Go
 - Counter examples: poker
- Zero-sum games
 - Each player wins (+1), loses (0), or draws (1/2)
- Rational Players
 - Each player always tries to maximize his/her utility

Game Setup (Formulation)

□ Two players: **MAX** and **MIN**

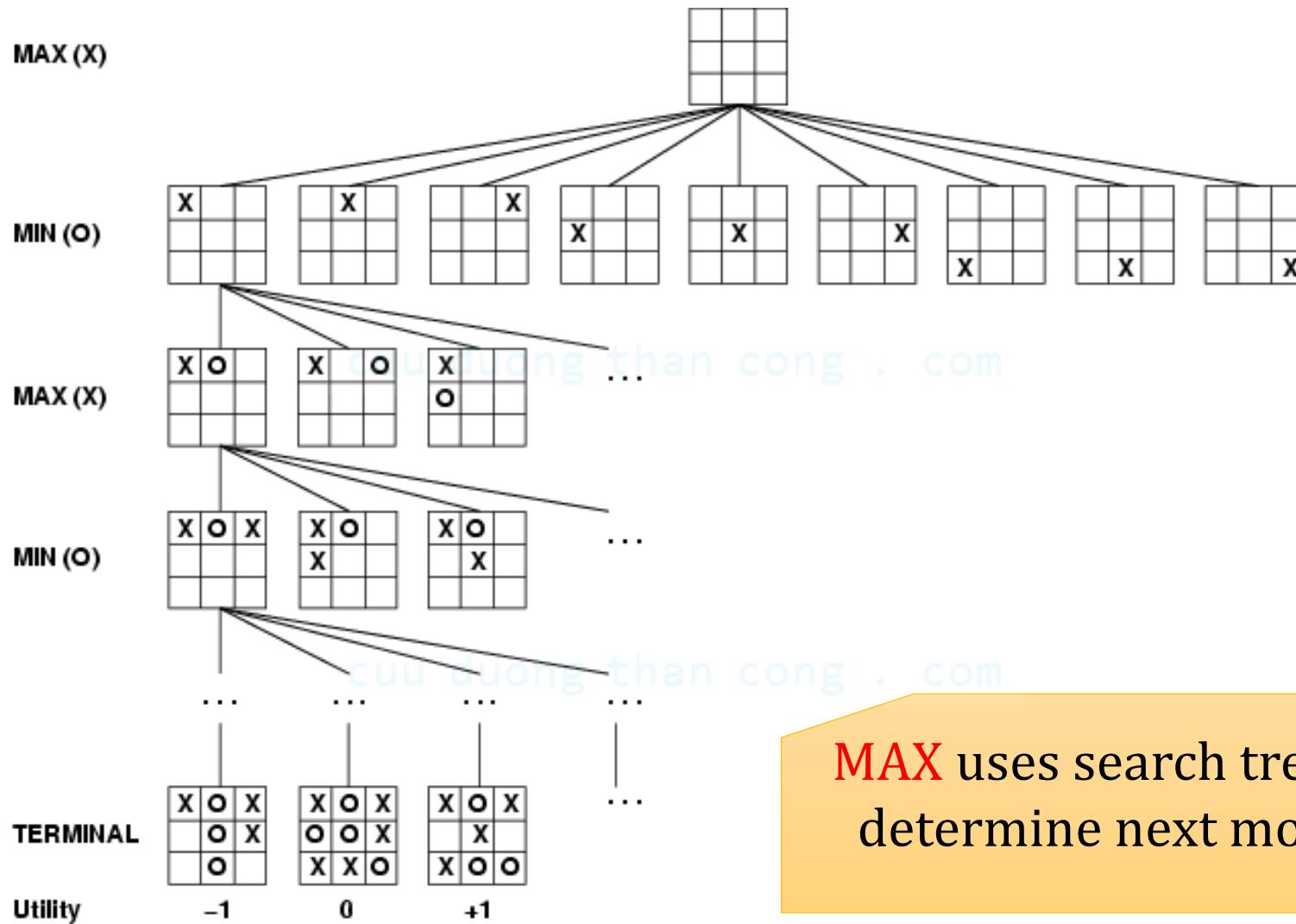
□ **MAX** moves first and then they take turns until the game is over

- Winner gets reward, loser gets penalty.

□ Games as search:

- **S_0 – Initial state:** how the game is set up at the start
 - e.g. board configuration of chess
- **PLAYER(s):** **MAX** or **MIN** is playing
- **ACTIONS(s) – Successor function:** list of (move, state) pairs specifying legal moves.
- **RESULT(s, a) – Transition model:** result of a move a on state s
- **TERMINAL-TEST(s):** Is the game finished?
- **UTILITY(s, p) – Utility function:** Gives numerical value of terminal states s for a player p
 - e.g. win (+1), lose (0) and draw (1/2) in tic-tac-toe or chess

Tic-Tac-Toe Game Tree



Chess

❑ Complexity:

- $b \sim 35$
- $d \sim 100$
- search tree is $\sim 10^{154}$ nodes (!!)

→completely impractical to search this

❑ Deep Blue: (May 11, 1997)

- Kasparov lost a 6-game match against IBM's Deep Blue (1 win Kasp - 2 wins DB) and 3 ties.

❑ In the future, focus will be to allow computers to **LEARN** to play chess rather than being **TOLD** how it should play

Deep Blue

- ❑ Ran on a parallel computer with **30** IBM RS/6000 processors doing alpha–beta search.
- ❑ Searched up to **30 billion positions**/move, average depth **14** (be able to reach to **40** plies).
- ❑ Evaluation function: **8000** features
 - highly specific patterns of pieces (~4000 positions)
 - 700,000 grandmaster games in database
- ❑ Working at **200 million positions**/sec, even Deep Blue would require **10^{100}** years to evaluate all possible games. (The universe is only 10^{10} years old.)
- ❑ Now: algorithmic improvements have allowed programs running on standard PCs to win World Computer Chess Championships.
 - Pruning heuristics reduce the effective branching factor to less than 3

Checkers

❑ Complexity:

- search tree is $\sim 10^{18}$ nodes
→ requires 100k years if solving 106 positions/sec

❑ Chinook (1989-2007)

- The first computer program to win the world champion title in a competition against humans.
- 1990: won 2 games in competition with world champion Tinsley (final score: 2-4, 33 draws)
- 1994: 6 draws

❑ Chinook's search:

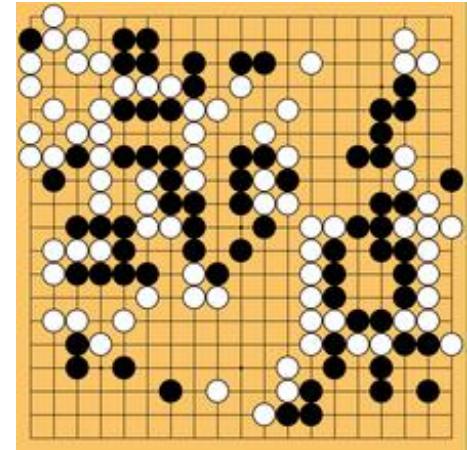
- Ran on regular PCs, used alpha-beta search.
- Played perfectly using alpha-beta search combining with a database of 39 trillion endgame positions.

GO

1 million trillion trillion
trillion trillion more
configurations than chess!

Complexity:

- Board: 19x19 → Branching factor: 361, average depth ~ 200
- $\sim 10^{174}$ possible board configuration.
- Control of territory is unpredictable until the endgame.



AlphaGo (2016) by Google

- Beat 9-dan professional Lee Sedol (4-1)
- Machine learning + Monte Carlo search guided by a “value network” and a “policy network” (implemented using *deep neural network* technology)
- Learn from human + Learn by itself (self-play games)

Optimal Decision in Games

❑ In normal search problem:

- Optimal solution is a sequence of action leading to a goal state

❑ In games:

- A search path that guarantee win for a player
- The optimal strategy can be determined from the minimax value of each node

$$\text{MINIMAX}(s) = \begin{cases} \text{UTILITY}(s) & \text{For MAX} \\ \max_{a \in \text{Actions}(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if TERMINAL-TEST}(s) \\ \min_{a \in \text{Actions}(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if } \text{PLAYER}(s) = \text{MIN} \end{cases}$$

A two-ply game tree

MAX

MAX best move

3

A

a_1

a_3

a_2

MIN best move

MIN

3

b_1

b_2

b_3

c_1

c_2

c_3

2

d_1

d_2

d_3

3

12

8

2

4

6

14

5

2

Utility values for MAX

Minimax Algorithm

- John von Neumann devised a search technique, called **Minimax**
- You play against an opponent
 - Your objectives are in direct opposition
 - MAX tries to maximize his play while trying to minimize his opponent's (MIN's) play
- To implement Minimax, you need to know how good (or bad) your position is.
 - That is called the *Utility function*

Minimax Algorithm

- Definition of optimal play for **MAX** assumes **MIN** plays **optimally**:
 - maximizes worst-case outcome for **MAX**
- But if **MIN** does not play optimally, **MAX** will do even better
- **Minimax** uses **depth first search** to traverse the game tree
 - Complete depth-first exploration of the game tree

Minimax algorithm

MAX best move

```
function MINIMAX-DECISION(state) returns an action
  return  $\arg \max_{a \in \text{ACTIONS}(s)} \text{MIN-VALUE}(\text{RESULT}(s, a))$ 
```

```
function MAX-VALUE(state) returns a utility value
  if TERMINAL-TEST(state) then return UTILITY(state)
   $v \leftarrow -\infty$ 
  for each a in ACTIONS(state) do
     $v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\text{RESULT}(s, a)))$ 
  return v
```

```
function MIN-VALUE(state) returns a utility value
  if TERMINAL-TEST(state) then return UTILITY(state)
   $v \leftarrow \infty$ 
  for each a in ACTIONS(state) do
     $v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{RESULT}(s, a)))$ 
  return v
```

Properties of minimax

❑ Complete?

- Yes (if tree is finite)

❑ Optimal?

- Yes (against an optimal opponent)

❑ Time complexity?

- $O(b^m)$

❑ Space complexity?

- $O(bm)$ (depth-first exploration)

For chess, $b \approx 35$, $m \approx 100$ for "reasonable" games
→ exact solution completely infeasible

QUIZ

Calculate the utility value for the remaining nodes.
Which node should MAX and MIN choose?



Problem with Minimax Search

- Number of game states is *exponential* in the number of moves.
 - Solution: Do not examine every node
→pruning: Remove branches that do not influence final decision
- Bounded lookahead
 - Limit depth for each search
 - This is what chess players do: look ahead for a few moves and see what looks best

α - β pruning

❑ Idea:

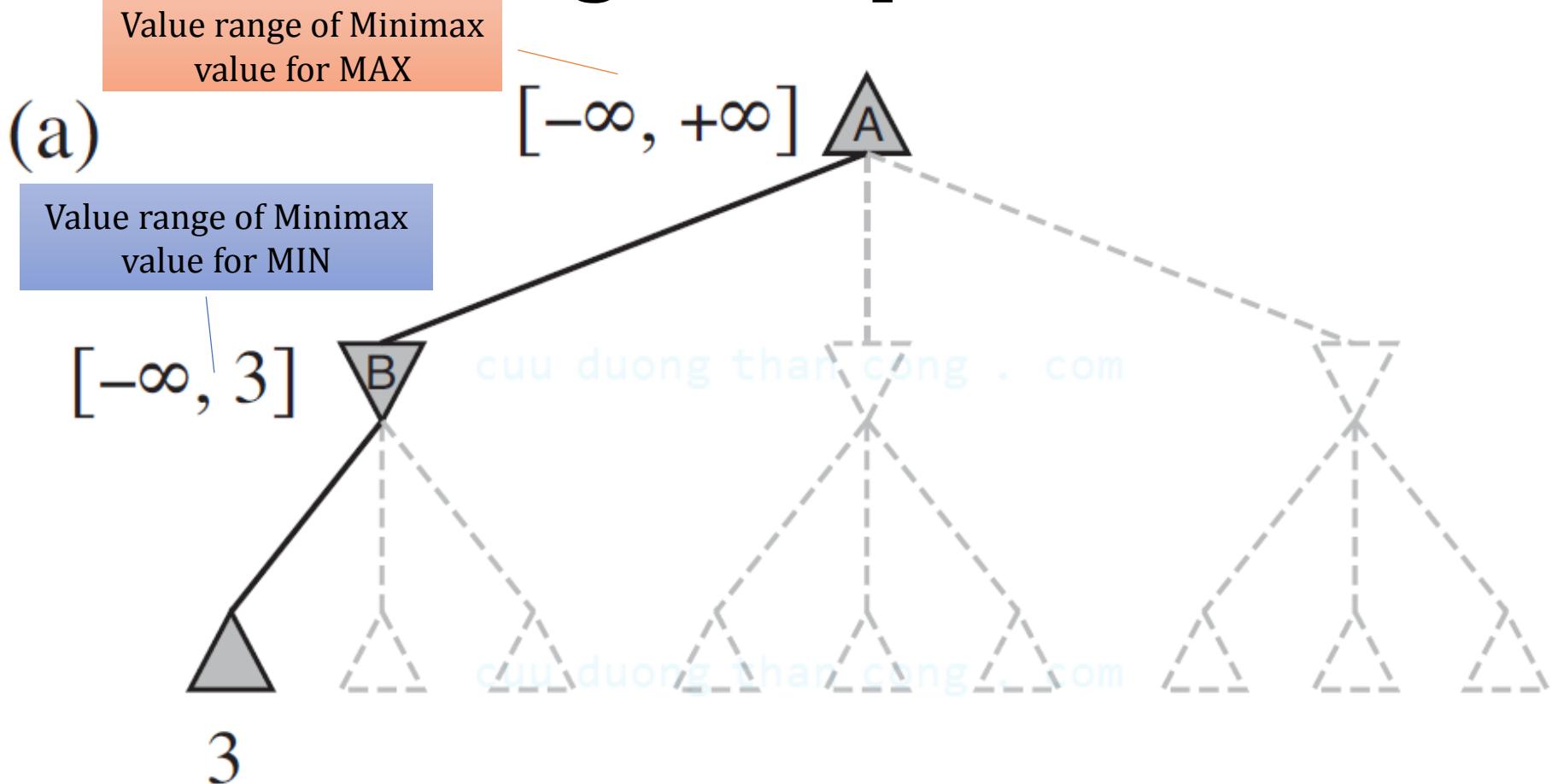
- If a move A is determined to be worse than move B that has already been examined and discarded, then examining move A once again is **pointless**.
 - α : best already explored option (utility value) along path to the root for MAX
 - β : best already explored option (utility value) along path to the root for MIN

function ALPHA-BETA-SEARCH(*state*) **returns** an action
 $v \leftarrow \text{MAX-VALUE}(state, -\infty, +\infty)$
 return the *action* in ACTIONS(*state*) with value v

function MAX-VALUE(*state*, α , β) **returns** a utility value
 if TERMINAL-TEST(*state*) **then return** UTILITY(*state*)
 $v \leftarrow -\infty$
 for each *a* **in** ACTIONS(*state*) **do**
 $v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\text{RESULT}(s, a), \alpha, \beta))$
 if $v \geq \beta$ **then return** *v*
 $\alpha \leftarrow \text{MAX}(\alpha, v)$
 return *v*

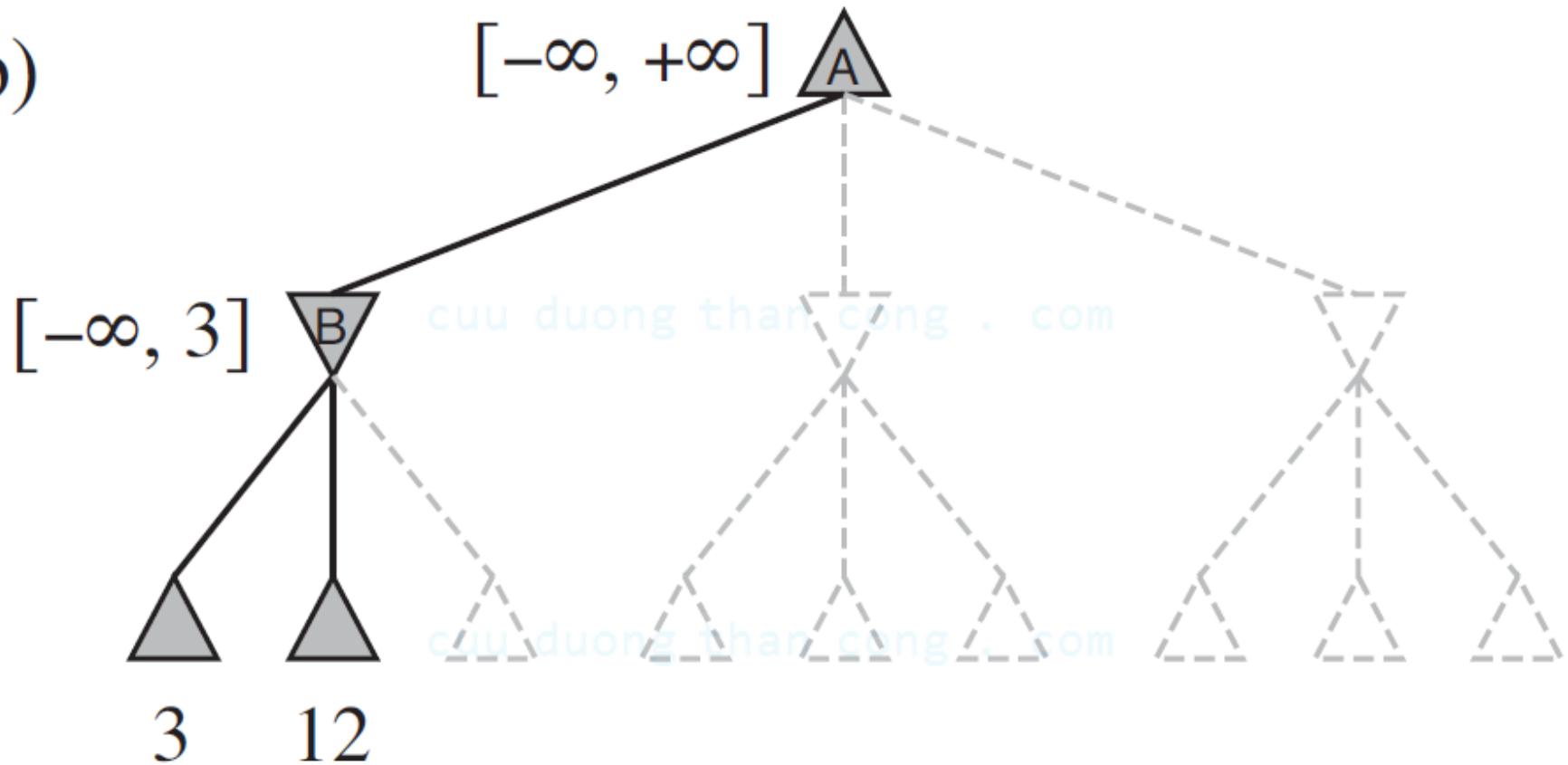
function MIN-VALUE(*state*, α , β) **returns** a utility value
 if TERMINAL-TEST(*state*) **then return** UTILITY(*state*)
 $v \leftarrow +\infty$
 for each *a* **in** ACTIONS(*state*) **do**
 $v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{RESULT}(s, a), \alpha, \beta))$
 if $v \leq \alpha$ **then return** *v*
 $\beta \leftarrow \text{MIN}(\beta, v)$
 return *v*

α - β pruning example



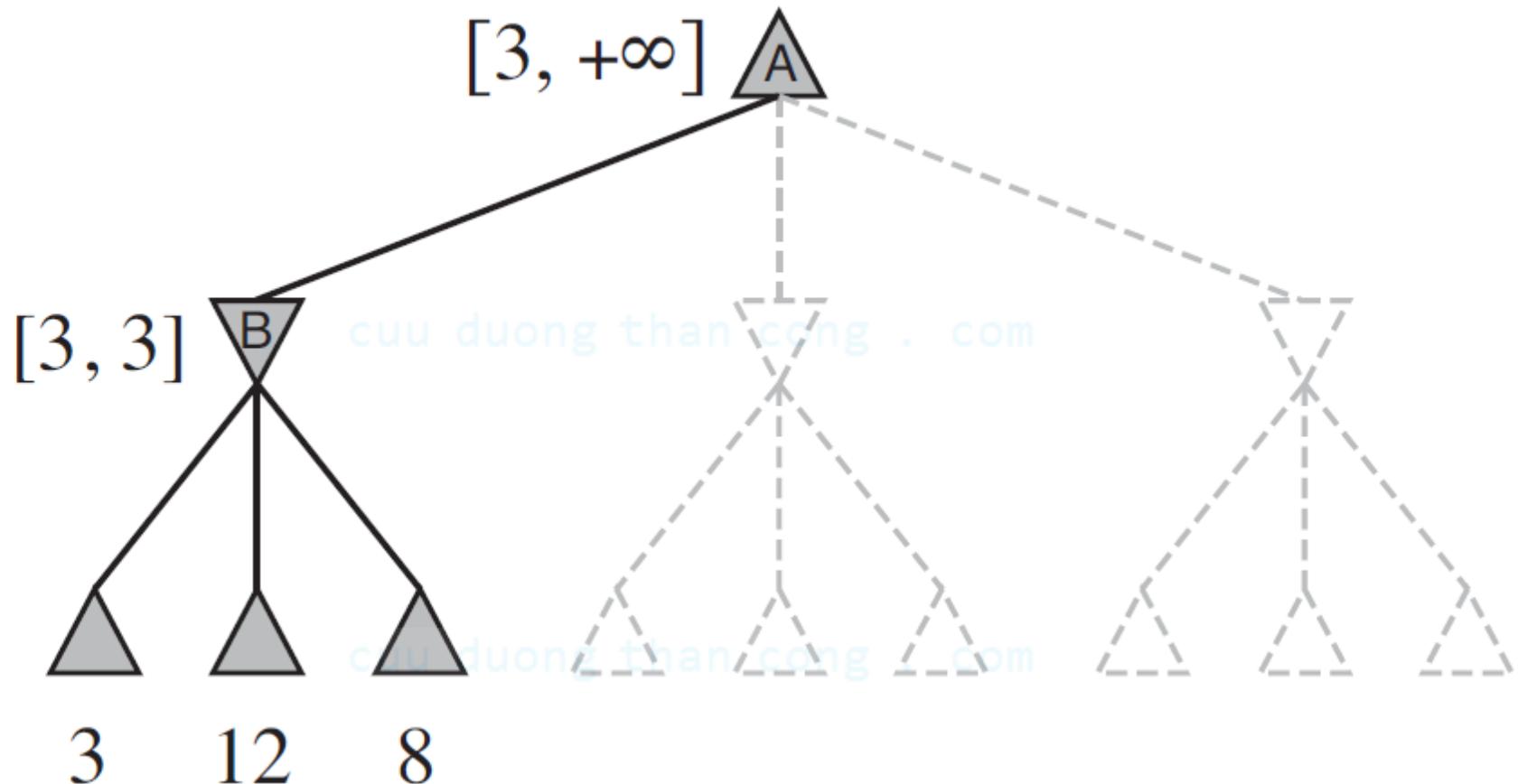
α - β pruning example

(b)



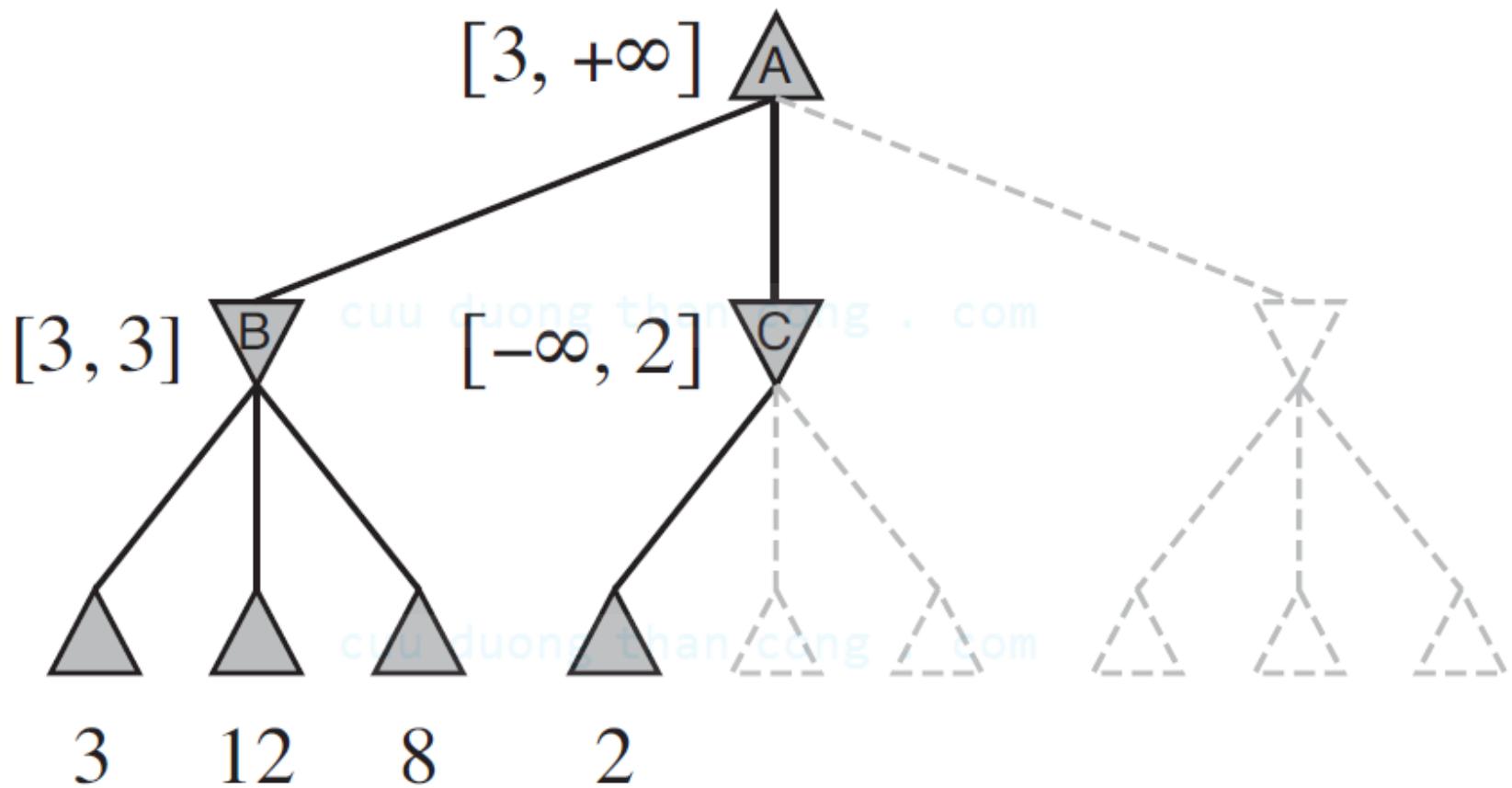
α - β pruning example

(c)



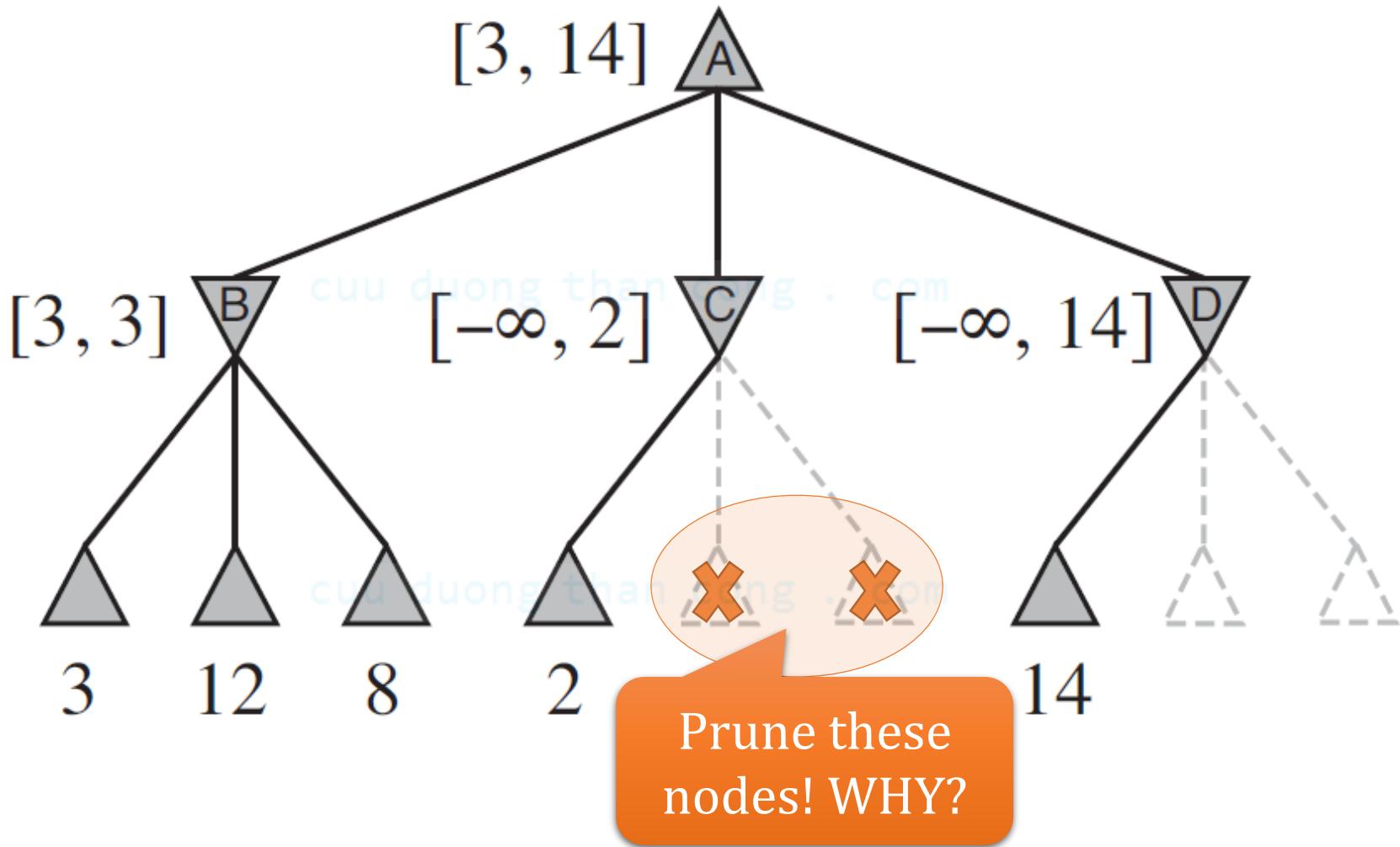
α - β pruning example

(d)



α - β pruning example

(e)

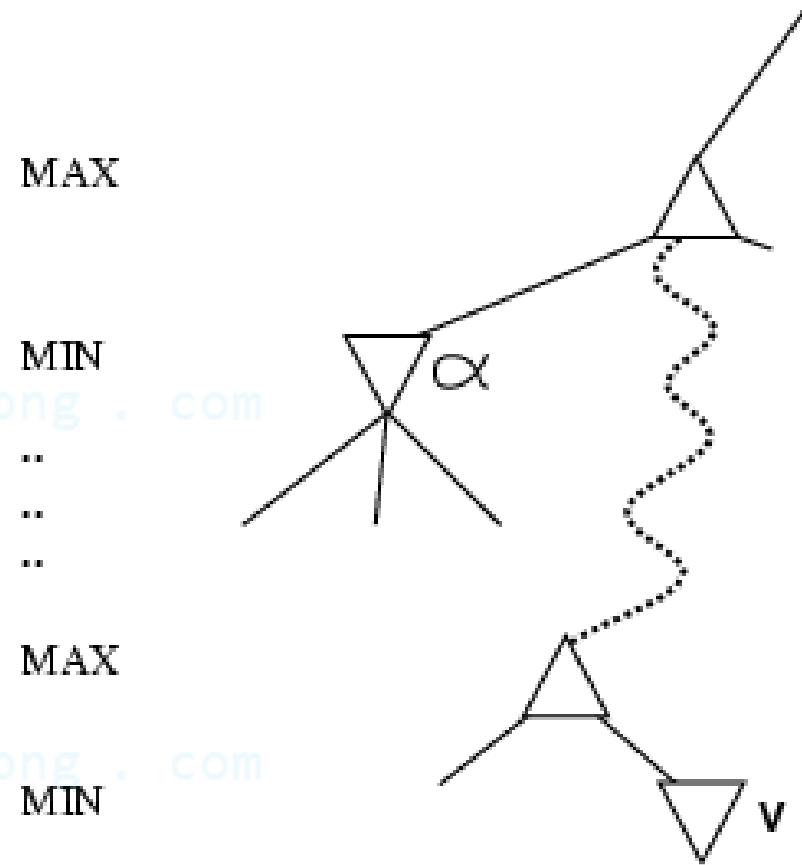


Properties of α - β pruning

- Pruning **does not** affect final result
 - Best case: Pruning can reduce tree size
 - Worst case: as good as Minimax algorithm
- Good move ordering improves effectiveness of pruning
- With "perfect ordering," time complexity = $O(b^{m/2})$
 - **doubles** depth of search
- In chess, Deep Blue achieved reduced the depth from 38 to 6

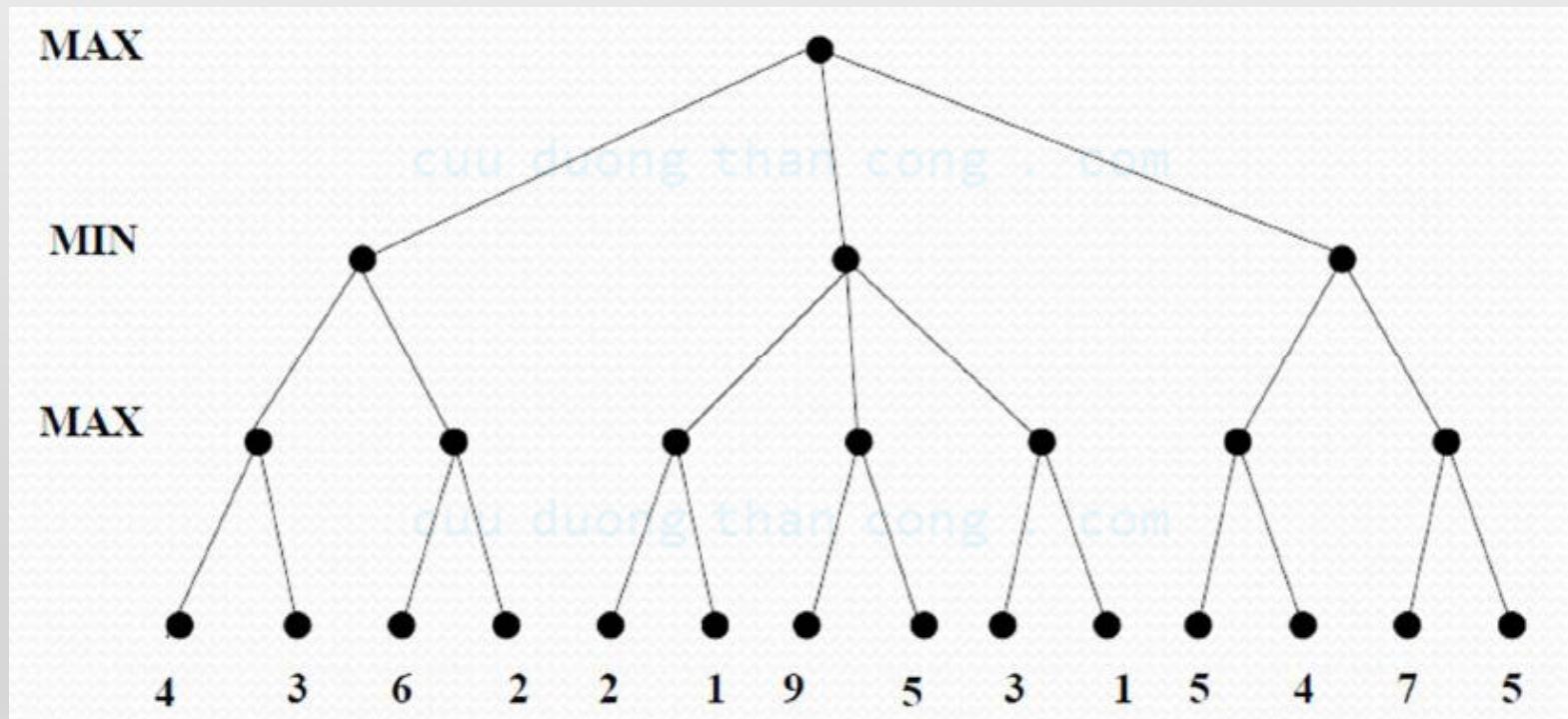
Why is it called α - β ?

- ❑ α is the value of the best (i.e., highest-value) choice found so far at any choice point along the path for *max*
- ❑ If v is worse than α , *max* will avoid it
 - prune that branch
- ❑ Define β similarly for *min*



QUIZ

Calculate the utility value for the remaining nodes.
Which node(s) should be pruned?



Imperfect, Real-time Decisions

- ❑ Both Minimax and α - β pruning search all the way to terminal states
 - This depth is usually not practical because moves must be made in a reasonable amount of time (~ minutes)
- ❑ Standard approach:
 - cutoff test:
e.g., depth limit
 - evaluation function
= estimated desirability of position (win, lose, tie?)

Evaluation functions

□ For chess, typically linear weighted sum of features

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$

Where w_i : the value of the i^{th} chess piece

- e.g., $w_1 = 9$ with $f_1(s) = (\#\text{white queen}) - (\#\text{black queen})$, etc.
- e.g. $q = \#\text{queens}$, $r = \#\text{rooks}$, $n = \#\text{knight}$, $b = \#\text{bishops}$, $p = \#\text{pawns}$

$$\rightarrow Eval(s) = 9q + 5r + 3b + 3n + p$$

Cutting off search

❑ *Minimax Cutoff* is identical to *MinimaxValue* except

1. *Terminal?* is replaced by *Cutoff?*
2. *Utility* is replaced by *Eval*

❑ Does it work in practice?

- $b^m = 10^6$, $b=35 \rightarrow m=4$
- 4-ply lookahead is a hopeless chess player!
- 4-ply \approx human novice
- 8-ply \approx typical PC, human master
- 12-ply \approx Deep Blue, Kasparov

Summary

- ❑ Games are fun to work on!
- ❑ They illustrate several important points about AI
 - perfection is unattainable → must approximate
 - good idea to think about what to think about

More reading (textbook, chapter 5.5—5.7)

- ❑ Search vs lookup
- ❑ Stochastic games
- ❑ Partially observable games
- ❑ State-of-the-art game programs

cuu duong than cong . com

Next week

❑ Wednesday (Jun 13):

- Midterm Examination
- Close-book
- 45 mins

❑ Lecture:

- Constraint Satisfaction Problems