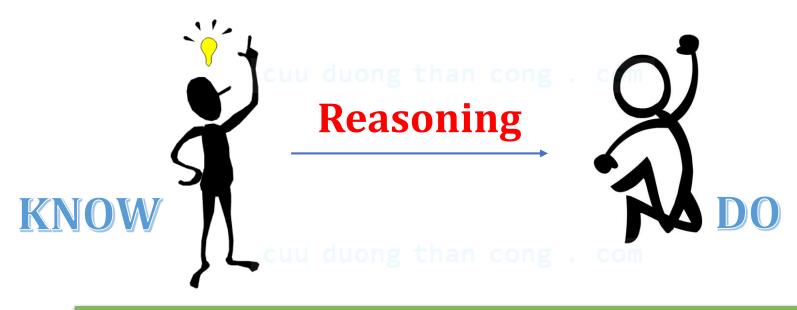
Introduction to Artificial Intelligence

Chapter 3: Kwoledge Representation and Reasoning (1) Logic Agents

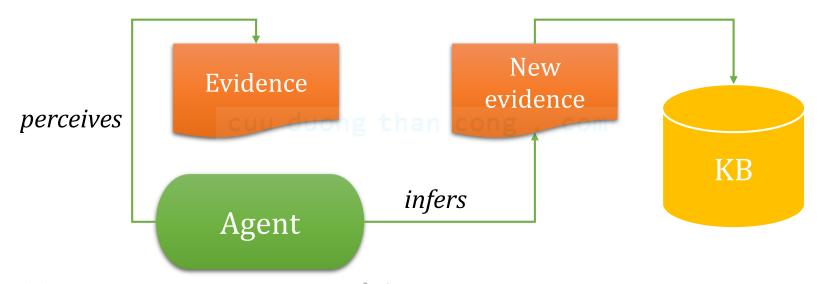

> Nguyễn Hải Minh, Ph.D nhminh@fit.hcmus.edu.vn

Outline

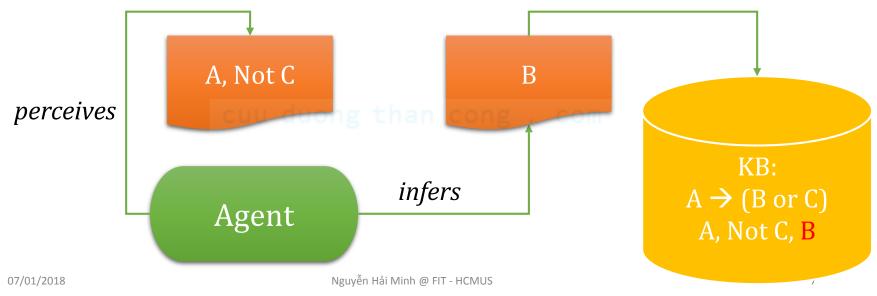
- 1. Knowledge-Based Agents
- 2. The Wumpus World

cuu duong than cong . com

☐ Human intelligence is achieved not purely by reflex mechanisms but by reasoning that operate on internal representation of knowledge


In AI, this approach to intelligence is embodied in **knowledge-based agents.**

- □ Problem-solving agents in chapter 2:
 - O State-space model:
 - Limited knowledge
 - Inflexible
 duong than cong
 - Cannot make deduction
 - Constraint satisfaction problem solver:
 - Enabling some parts of the agent to work in a domain-independent way
 - More efficient algorithms
 - Can be developed to logical agents


☐Knowledge-based agents:

- Can combine and recombine information
- Can learn new knowledge about the environment
- Can adapt the changes in the environment by updating the relevant knowledge

- □KB = Knowledge base
 - A set of sentences or facts (in a logic language)
- **□**Inference
 - Derive (infer) new sentences from old ones
- □A simple model for reasoning:

- ■A simple model for reasoning:
 - KB = $\{A \rightarrow (B \text{ or } C)\}$, then given A and Not C, we can infer that B is true
 - B is now added to the KB even though it is not explicitly asserted

CuuDuongThanCong.com https://fb.com/tailieudientucntt

A generic knowledge-based agent

```
function KB-AGENT(percept) returns an action
persistent: KB, a knowledge base
t, a counter, initially 0, indicating time

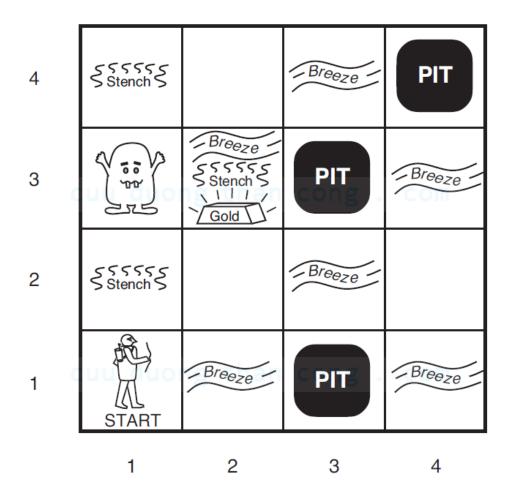
TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
action \leftarrow ASK(KB, MAKE-ACTION-QUERY(t))
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t \leftarrow t + 1
return action
```

A generic knowledge-based agent

☐ Declarative approach

 ○ Empty KB → TELL the agent the facts (sentences) one by one until it knows how to operate in its environment.

☐Procedural approach


Encode desired behaviors directly as program code.

□Combine approach

- → Partially autonomous
- □ Learning approach (chapter 4)
 - Provide a knowledge-based agent with mechanisms that allow it to learn for itself.
- → Fully autonomous

https://fb.com/tailieudientucntt

The Wumpus World

The Wumpus World - PEAS

☐ Performance measure

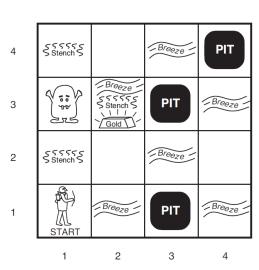
- +1000 for climbing out of the cave with gold
- \circ -1000 for death
- -1 per step, -10 for using the arrow
- o Ends when agent dies or climbs out of the cave

SSSSS Stench S START STENCE START START

□Environment

- A 4×4 grid of rooms
- Agent starts in the square [1,1], facing to the right
- Gold and Wumpus locations are random
- Each square can be a pit, with probability 0.2

07/01/2018


4

2

The Wumpus World - PEAS

☐ Actuators:

- Move forward, TurnLeft/Right 90°
- o Grab, Shoot, Climb
- Sensors: 5 sensors to perceive:
 - o Stench
 - o Breeze
 - Glitter
 - o Bump
 - Scream

Percept: [Stench, Breeze, None, None, None]

07/01/2018 Nguyễn Hải Minh @ FIT - HCMUS 12

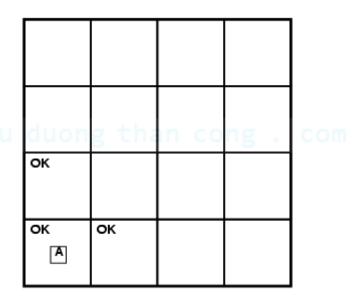
The Wumpus World - Characterization

- ☐ Fully Observable: No only local perception
- □ Deterministic: Yes outcomes exactly specified
- □ Episodic: No sequential at the level of actions
- Static: Yes Wumpus and Pits do not move
- □ Discrete: Yes
- □Single-agent: Yes Wumpus is essentially a natural feature

 $\mathbf{A} = Agent$

 $\mathbf{B} = Breeze$

G = Glitter, Gold


OK = Safe square

P = Pit

S = Stench

V = Visited

W = Wumpus

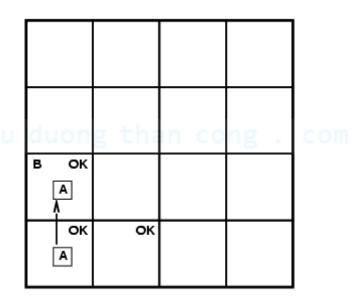
cuu duong than cong . com

https://fb.com/tailieudientucntt

 $\mathbf{A} = Agent$

 $\mathbf{B} = Breeze$

G = Glitter, Gold


OK = Safe square

P = Pit

S = Stench

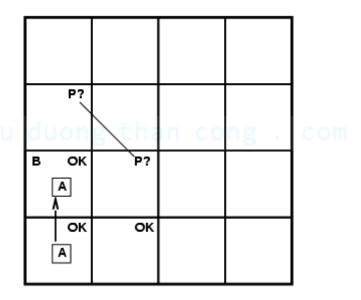
V = Visited

W = Wumpus

 $\mathbf{A} = Agent$

 $\mathbf{B} = Breeze$

G = Glitter, Gold


OK = Safe square

P = Pit

S = Stench

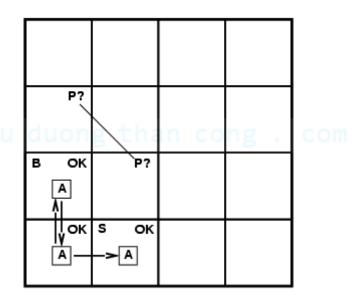
V = Visited

W = Wumpus

 $\mathbf{A} = Agent$

 $\mathbf{B} = Breeze$

G = Glitter, Gold


OK = Safe square

P = Pit

S = Stench

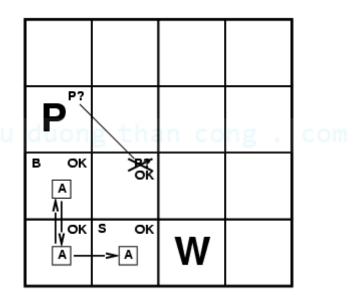
V = Visited

W = Wumpus

 \mathbf{A} = Agent

 $\mathbf{B} = Breeze$

G = Glitter, Gold


OK = Safe square

P = Pit

S = Stench

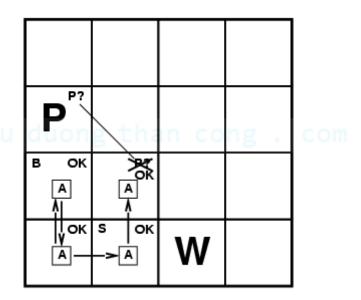
V = Visited

W = Wumpus

 $\mathbf{A} = Agent$

 $\mathbf{B} = Breeze$

G = Glitter, Gold


OK = Safe square

P = Pit

S = Stench

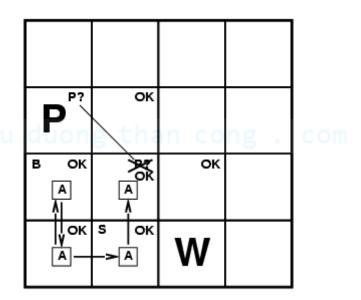
V = Visited

W = Wumpus

 $\mathbf{A} = Agent$

 $\mathbf{B} = Breeze$

G = Glitter, Gold


OK = Safe square

 $\mathbf{P} = Pit$

S = Stench

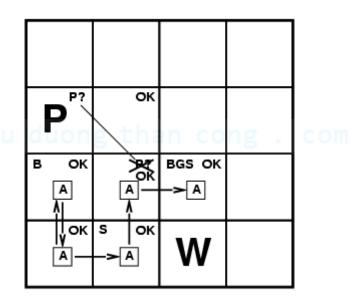
V = Visited

W = Wumpus

 \mathbf{A} = Agent

 $\mathbf{B} = Breeze$

G = Glitter, Gold


OK = Safe square

 $\mathbf{P} = Pit$

S = Stench

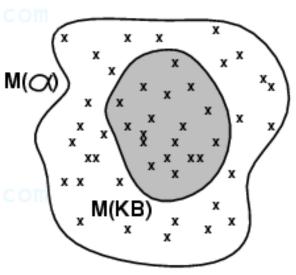
V = Visited

W = Wumpus

Logic in general

- □Logics are formal languages for representing information such that conclusions can be drawn
- □Syntax defines the sentences in the language
- □Semantics define the "meaning" of sentences
 - o i.e., define truth of a sentence in a world
- □E.g., the language of arithmetic
 - \circ x+2 ≥ y is a sentence; x2+y > {} is not a sentence
 - o $x+2 \ge y$ is true iff the number x+2 is no less than the number y duong than congious
 - \circ x+2 ≥ y is true in a world where x = 7, y = 1
 - \circ x+2 ≥ y is false in a world where x = 0, y = 6

Entailment

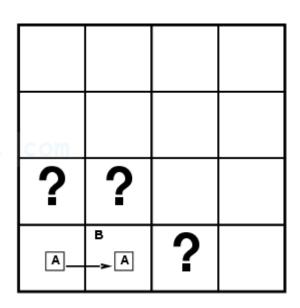

☐ Entailment means that one thing follows from another:

$$KB \models \alpha$$

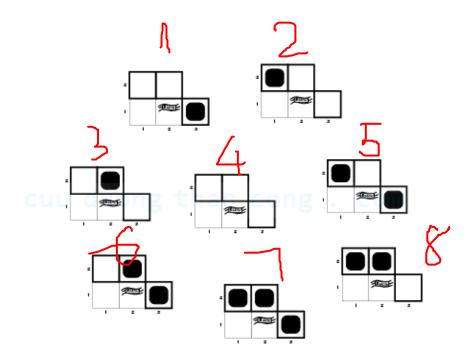
- \Box Knowledge base *KB* entails sentence α if and only if α is true in all worlds where *KB* is true
 - E.g., the KB containing "Apple is red" and "Tomato is red" entails "Either the apple or the tomato is red"
 - \circ E.g., x+y = 4 entails 4 = x+y
 - Entailment is a relationship between sentences (i.e., syntax) that is based on semantics

Models

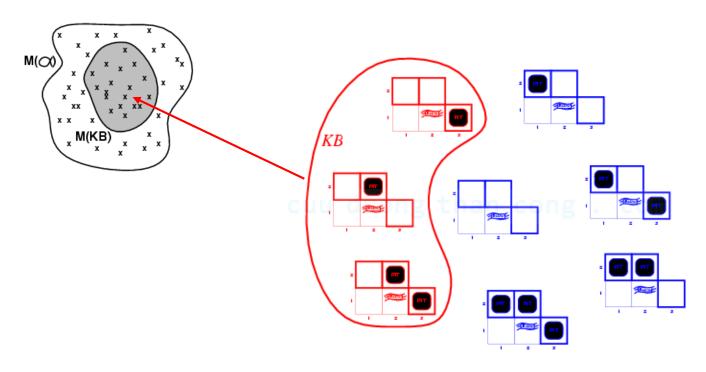
- □ Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated
- \square We say m is a model of a sentence α if α is true in m
- $\square M(\alpha)$ is the set of all models of α
- - \circ E.g. KB = Apple and tomato are red
 - \circ α = Apple is red



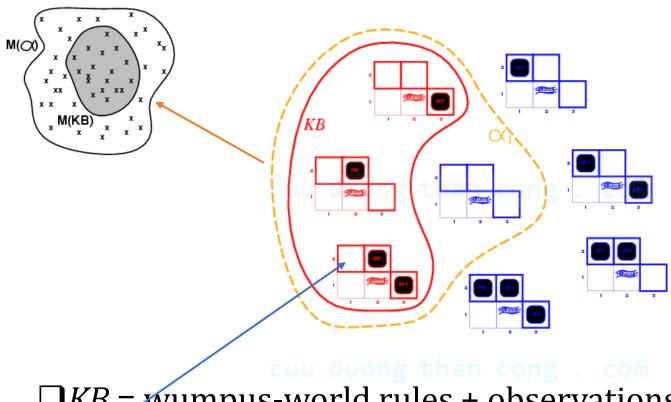
Entailment in the wumpus world


Situation after detecting nothing in [1,1], moving right, breeze in [2,1]

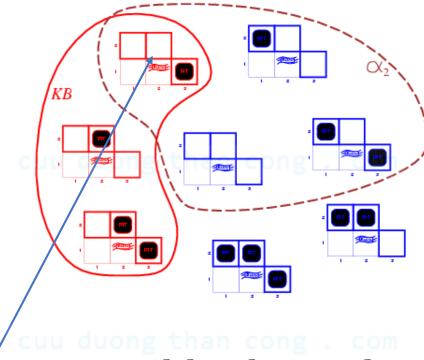
cuu duong than cong


Consider possible models for *KB* assuming only pits

3 Boolean choices \Rightarrow 8 than cong compossible models



cuu duong than cong . com



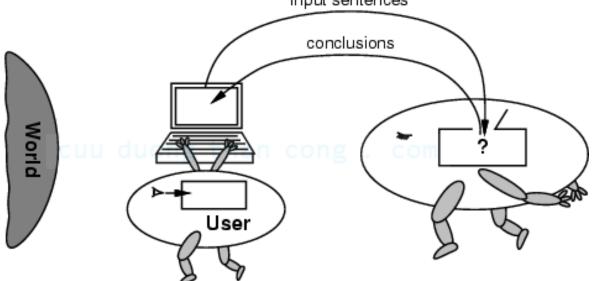
cuu duong than cong . com

 $\square KB$ = wumpus-world rules + observations

- $\square KB =$ wumpus-world rules + observations
- $\square \alpha_1 = "[1,2]$ is safe", $KB \models \alpha_1$, proved by model checking

 $\square KB$ = wumpus-world rules + observations

$$\square \alpha_2 = "[2,2]$$
 is safe", $KB \not\models \alpha_2$


Inference

- $\square KB \vdash_i \alpha = \text{sentence } \alpha \text{ can be derived from } KB \text{ by procedure } i$
- **□**Soundness: *i* is sound if whenever $KB \vdash_i \alpha$, it is also true that $KB \models \alpha$
- □Completeness: *i* is complete if whenever $KB \models \alpha$, it is also true that $KB \vdash_i \alpha$
- Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.
- ☐ That is, the procedure will answer any question whose answer follows from what is known by the *KB*.

No independent access to the world

 The reasoning agent often gets its knowledge about the facts of the world as a sequence of logical sentences and must draw conclusions only from them without independent access to the world.

• Thus it is very important that the agent's reasoning is sound!

Summary

- □ Intelligent agents need knowledge about the world for making good decisions.
- ☐ The knowledge of an agent is stored in a knowledge base in the form of **sentences** in a knowledge representation language.
- ☐ A knowledge-based agent needs a **knowledge base** and an **inference mechanism**. It operates by storing sentences in its knowledge base, inferring new sentences with the inference mechanism, and using them to deduce which actions to take.
- □A **representation language** is defined by its syntax and semantics, which specify the structure of sentences and how they relate to the facts of the world.
- ☐ The **interpretation** of a sentence is the fact to which it refers. If this fact is part of the actual world, then the sentence is true.