Polymer (nano)composites : key-role of chemistry

	Dutline				
I.	Polymer microcomposites filled with microparticles				
	I.1. Mechanical melt blends				
	tance of « polymer/filler » interface (tension and adhesion)				
	I.3. "Polym	erization-filled composites" PFC's			
II.	Polymer nanocon	nposites filled with nanoparticles			
II.1. Layered silicate as nanofillers					
	-	Polymer-clay nanocomposites : melt blending <i>vs. in situ</i> polymerization			
	-	Polyolefinic matrices : role of matrices and compatibility			
	-	Polyester matrices : role of clays and organo-modification			
	II.2. Carbon nan	otubes as nanofillers			
	-	Polymer-CNTs composites : production and properties			
	-	« Melt blending » technique, e.g., in elastomeric matrices			
	-	<i>in situ</i> polymerization, e.g., in thermoplastic matrices			
III.	General conclusi	ons et outlook			

Materials	Stiffness	Brittleness (fast deformation)	Brittleness (slow deformation)
UN T	Young's modulus (GPa)	Impact strength (IZOD test) (1/m)	Elongation at break (tensile test)
HDPE [*]	0.7	80	900.0
HDPE + 40wt% kaolin	3.1	17	1.6
HDPE + 40wt% mica	6.5	20	0.3
HDPE + 40wt% CaSO ₄	2.8	15	1.3
HDPE + 40wt% CaCO ₃	2.7	21	3.0
BRITTLENESS -	non-h	omogeneous mine: nineral-polymer ir	ral dispersion Iteraction

Filler or coating composition	Filler content (wt%)	Elongation at break (%)	Impact strength (kg m/m)
Reference materials			
Unfilled HDPE	0	1045	2.77
+ Kaolin	20	218	1.24
Kaolin + surface agents			
0.6 n-hexylamine	20	291	1.38
5.0 triethoxysilane	20	162	1.92
5.0 octadecyl triethoxysilane	20	668	1.38
2.5 oxylaluminum-	20	300	• 1.91
2-ethylbutyrate			

Filler or coating composition	Filler content (wt%)	Elongation at break (%)	Impact strength (kg m/m)
Reference materials			
Unfilled HDPE	0	1045	2.77
+ Kaolin	20	218	1.24
Kaolin + coupling agents			
2.0 3-(trimethoxysilyl)propyl methacrylate	20	277	1.96
2.0 vinyltriethoxysilane + 3.0 amyl-triethoxysilane	20	71	1.58
1.5 oxyaluminum methacrylate	20	420	2.79
1.5 oxyaluminum-methacrylate + 2.5-bis-(t-butylperoxy) -2,5-dimethylhexane ^(a)	20	430	3.04

	Crysta	al Systems
	Crystal systems	Axes system
	cubic	$\mathbf{a}=\mathbf{b}=\mathbf{c}$, $\alpha=\beta=\gamma=90^{\circ}$
	Tetragonal	$\mathbf{a}=\mathbf{b}\neq \mathbf{c}$, $\boldsymbol{\alpha}=\boldsymbol{\beta}=\boldsymbol{\gamma}=90^{o}$
	Hexagonal	$\mathbf{a}=\mathbf{b}\neq \mathbf{c}$, $\alpha=\beta=90^{\circ},\gamma=120^{\circ}$
	Rhomboedric	$\mathbf{a}=\mathbf{b}=\mathbf{c}$, $\alpha=\beta=\gamma\neq90^{o}$
мт →	Orthorhombic	$a \neq b \neq c$, $\alpha = \beta = \gamma = 90^{\circ}$
	Monoclinic	$a\neq b\neq c$, $\alpha=\gamma=90^{\circ}$, $\beta\neq90^{\circ}$
	Triclinic	$a \neq b \neq c$, $\alpha \neq \gamma \neq \beta^{o}$

Montmor	rillonite : main charac	teristic features				
• Surface area	~ 750 m²/g					
• Density	~ 2.6					
• Aspect ratio	~ 100-500	~ 200-600	~ 40-60			
• CEC 1)	~ 70 - 120 meq./100g	70-90 meq./100g	50-90 meq./100g			
	Montmorillonite	(Fluoro) Mica	Synthetic			
н	lectorite	(Talc/Na₂SiF ₆)				
	Na _{0.66}	Mg _{2.68} (Si _{3.98} Al _{0.02})O _{10.02} F _{1.96}	Na _{0,46} (Mg _{5,42} Li _{0,46})Si ₈ O ₂₀ (OH) ₄			
 Cationic Exchange Capacity = maximum amount of cations, e.g. NH₄*, that can be taken up per unit mass, in H₂O at pH 7 (<i>Imeq/g is 96.5 Coulombs/g</i> in SI units) 						

 I/ Alkyl ammonium salts Alkyl phosphonium salts Alkyl sulfonium salts

2/ Polymers : PEO, PVA...

3/ Carboxylic Acids

Polymer Layered Silicate Nanocomposite Preparation

Three main techniques :

 <u>Exfoliation-adsorption in solution</u>: dispersion of the clay in a solutio of polymer, followed by solvent evaporation (or polymer precipitation)

-<u>Melt intercalation</u> : direct nanocomposite formation by clay intercalation by the preformed polymer chains in the molten state

-<u>In situ intercalative polymerization</u> : monomer intercalation within the clay galeries, followed by *in situ* (catalyzed) polymerization

	Chapter 2, Part 1 : Intermediate Conclusions					
	Illustrated by Effective Industrial Applications :					
	- PE/EVA/organo-clay/Al(OH) ₃ : electrical cables	CableWerk Eupen (B)				
	- PET/PA/organo-clay : beer and juice bottles	Eastman-Nanocor (US)				
	PA-6(-6,6)/organo-clay : fuel tank, engine cover	RTP, UBE (D)				
	- PA-6/organo-clay : « masterbatch » compounds US)	Aegis NC, Honeywell				
	- PA-6/organo-clay : engine cover food packaging films	Toyota (J) Bayer (D)				
	- PP/EPR/organo-clay : car part (step) US)	Montell-General Motor				
	Promising future foselection of to relevant examples					

and though the