Triro'ng Dai hoc Khoa Hoc Tw Nhién
Khoa Cong Nghé Thong Tin
BO mon Cong Nghé Phan Mém

CTT526 - Kién tric phan mém
Cac tiéu chi va yéu cau
vé Kién truc phan mém

PGS.TS. Tran Minh Triét
tmtriet@fit.hcmus.edu.vn

ANV,

B
3 * .- KHOACONG NGHE THONG TIN
% Cdl O TRUONG DAI HOC KHOA HOC TU' NHIEN




i ; cdio

| N6i dung cua bai giang st dung:
Session 3: Quality Attributes
trong b6 slide Software Architecture Essential
cua GS. lan Gorton
Software Engineering Institute
Carnegie Mellon University

‘ :



i%“‘é&io What are Quality Attributes

| Often know as —llities
O Reliability
O Availability
O Portability
O Scalability
OO0 Performance (!)
| Part of a system’s NFRs

O “how” the system achieves its functional
requirements



i::“.;am Quality Attribute Specification

Architects are often told:

O “My application must be fast/secure/scale’
Far too imprecise to be any use at all

Quality attributes (QAs) must be made
precise/measurable for a given system design, e.g.

O “/t must be possible to scale the deployment from an

Initial 100 geographically dispersed user desktops to
10,000 without an increase in effort/cost for
installation and configuration.”



if?“é&iu Quality Attribute Specification

| QA’'s must be concrete
" | But what about testable?

[0 Test scalability by installing system on 10K
desktops?

| Often careful analysis of a proposed solution is all that
IS possible

| “It's all talk until the code runs”



if?“é&iu Performance

Many examples of poor performance in enterprise
applications

Performance requires a:
0 Metric of amount of work performed in unit time
0 Deadline that must be met

Enterprise applications often have strict performance
requirements, e.g.

0 1000 transactions per second
[0 3 second average latency for a request



i.—-:t‘:saiu Performance - Throughput

Measure of the amount of work an application must
perform in unit time

0 Transactions per second
0 Messages per minute

Is required throughput:

0 Average?

O Peak?

Many system have low average but high peak
throughput requirements



 cdio
i Throughput Example

—A— CPU % —8— VST (msp)

300 A

250 A

200 A

150 A

100 A

50 A

O_

0 5 10 15 20

# of threads

Throughput of a message queuing system
[0 Messages per second (msp)
0 Maximum sustainable throughput (MST)

Note throughput changes as number of receiving
threads increases




if?“é&iu Performance - Response Time

measure of the latency an application exhibits in
processing a request

Usually measured in (milli)seconds
Often an important metric for users
Is required response time:

OO0 Guaranteed?

0 Average?

E.g. 95% of responses in sub-4 seconds, and all within
10 seconds



{Eﬁiu' _
i Response Time

Example shows response time distribution for a
J2EE application

Response Time Distribution

| |
B
'i
o -
é I\ [ |I‘
a4 A
c W |
@ [ || f
g- 3 4 | \.:' }
2 'hu'
— |
5 1Y L
| '|hhl h
‘i |V' 'VI || 'I'
b N iy
[\ | J\J\ |
0 Al A |
0 1,000 2,000 3000 4000 5000 6,000 7,000 8,000 9,000 10,000

response time (ms)




if?“é&iu Performance - Deadlines

‘'something must be completed before some specified

time’

O Payroll system must complete by 2am so that
electronic transfers can be sent to bank

0 Weekly accounting run must complete by 6am
Monday so that figures are available to management

Deadlines often associated with batch jobs in IT
systems.




if?“é&io Something to watch for ...

What is a

0 Transaction?
[0 Message?
0 Request?

All are application specific measures.

System must achieve 100 mps throughput
O BAD!

System must achieve 100 mps peak throughput for
PaymentReceived messages
O GOOoD!!

/- |




i.-;f:aiu ICDE Performance Issues

Response time:

0 Overheads of trapping user events must be imperceptible
to ICDE users

Solution for ICDE client:

0 Decouple user event capture from storage using a queue

5. Write event

: to ICDE database queue
1T ) 2. Write event
. Trap user even to queue

=

3. Return to user thread 4. Read event
= from queue

B
»

<
<«




i.—-iam Scalability

| “How well a solution to some problem will work when
the size of the problem increases.”

| 4 common scalability issues in IT systems:
0 Request load
0 Connections
O Data size

OO0 Deployments




ig‘zaiu Scalability — Request Load

How does an 100 tps application behave when
simultaneous request load grows? E.g.

0 From 100 to 1000 requests per second?
Ideal solution, without additional hardware capacity:

[0 as the load increases, throughput remains constant
(i.e. 100 tps), and response time per request
Increases only linearly (i.e. 10 seconds).




Scale-up:
Single application instance is

/,_I_L\ executed on a multiprocessor
( — .
machine

Application

Scale-out: Application replicated on
different machines

=\

Fae—}

Application

CPU

F——oN y——oN P

i e—— i e—— ]
I e——— ]

Application Application —
Application




i;‘.;ah Scalability - reality

Adding more hard ware should improve
performance:

[0 scalability must be achieved without modifications to
application architecture

Reality as always is different!

Applications will exhibit a decrease in throughput
and a subsequent exponential increase in response
time.

] increased load causes increased contention for resources
such as CPU, network and memory

[0 each request consumes some additional resource (buffer
space, locks, and so on) in the application, and eventually
‘these are exhausted

/

Ty

-

T




ﬂhh

cdio Scalablility — J2EE example

2500

.——“. —@

2000 —— W AS SB

1500
0 IAS SB
: =g
|_
1000 § SS SB
== \W LS SB
N
500 D — N = —@—pBES SB
0 T T T T T
0 200 400 600 800 1000 1200

No.of Clients

|.Gorton, A Liu, Performance Evaluation of Alternative Component
Architectures for Enterprise JavaBean Applications, in IEEE Internet
g, vol.7, no. 3, pages 18-23, 2003.




ig‘zaiu Scalabllity - connections

What happens if number of simultaneous connections
to an application increases

0 If each connection consumes a resource?

0 Exceed maximum number of connections?
ISP example:

[0 Each user connection spawned a new process

O Virtual memory on each server exceeded at 2000
users

[0 Needed to support 100Ks of users
0 Tech crash ....




ieﬁ?‘i&aio Scalability — Data Size

How does an application behave as the data it
processes increases in size?

0 Chat application sees average message size
double?

[0 Database table size grows from 1 million to 20
million rows?

0 Image analysis algorithm processes images of
100MB instead of 1MB?

Can application/algorithms scale to handle increased
data requirements?




if?“é&iu Scalability - Deployment

How does effort to install/deploy an application increase
as installation base grows?

J Install new users?
] Install new servers?

Solutions typically revolve around automatic
download/installation

0 E.g. downloading applications from the Internet




id Scalability thoughts and ICDE

Scalability often overlooked.

[0 Major cause of application failure
0 Hard to predict

[0 Hard to test/validate

[0 Reliance on proven designs and technologies is
essential

For ICDE - application should be capable of handling a
peak load of 150 concurrent requests from ICDE clients.

0 Relatively easy to simulate user load to validate this




i;:t‘:aau Modifiability

Modifications to a software system during its lifetime are
a fact of life.

Modifiable systems are easier to change/evolve

Modifiability should be assessed in context of how a
system is likely to change

0 No need to facilitate changes that are highly unlikely
to occur

0 Over-engineering!




i;:t“.;aau Modifiability

Modifiability measures how easy it may be to change
an application to cater for new (non-) functional
requirements.

O ‘may’ — nearly always impossible to be certain
0 Must estimate cost/effort

Modifiability measures are only relevant in the context
of a given architectural solution.

0 Components
[0 Relationships
0 Responsibilities




iaﬁ‘zam Modifiability Scenarios

Provide access to the application through firewalls in
addition to existing “behind the firewall” access.
Incorporate new features for self-service check-out
Kiosks.

The COTS speech recognition software vendor goes
out of business and we need to replace this component.

The application needs to be ported from Linux to the
Microsoft Windows platform.




i::‘:;am Modifiability Analysis

Impact is rarely easy to quantify
The best possible is a:
0 Convincing impact analysis of changes needed

0 A demonstration of how the solution can
accommodate the modification without change.

Minimizing dependencies increases modifiability

[0 Changes isolated to single components likely to be
less expensive than those that cause ripple effects
across the architecture.




id Modifiability for ICDE

| The range of events trapped and stored by the ICDE
client to be expanded.

| Third party tools to communicate new message types.
Change database technology used
| Change server technology used

[]




i%“‘é&io Security

| Difficult, specialized quality attribute:
0 Lots of technology available

0 Requires deep knowledge of approaches and
solutions

| Security is a multi-faceted quality ...




“ cdio Security

Authentication: Applications can verify the identity of their
users and other applications with which they communicate.

Authorization: Authenticated users and applications have
defined access rights to the resources of the system.

Encryption: The messages sent to/from the application are
encrypted.

Integrity: This ensures the contents of a message are not
altered in transit.

Non-repudiation: The sender of a message has proof of
delivery and the receiver is assured of the sender’s identity. This
means neither can subsequently refute their participation in the
message exchange.




i%“‘é&io Security Approaches

SSL

PKI

Web Services security
JAAS

Operating system security
Database security

Etc etc

I I R N B N O I A R

‘ 30



iff“éﬁiu ICDE Security Requirements

| Authentication of ICDE users and third party ICDE tools
to ICDE server

| Encryption of data to ICDE server from 3" party

tools/users executing remotely over an insecure
network




i Fadio Availability

Key requirement for most IT applications

Measured by the proportion of the required time it is
useable. E.g.

0 100% available during business hours

0 No more than 2 hours scheduled downtime per week
O 24x7x52 (100% availability)

Related to an application’s reliability

0 Unreliable applications suffer poor availability




id Availability

Period of loss of availability determined by:
0 Time to detect failure

0 Time to correct failure

0 Time to restart application

Strategies for high availabllity:
OO0 Eliminate single points of failure
[0 Replication and failover

0 Automatic detection and restart

Recoverability (e.g. a database)

0 the capability to reestablish performance levels and
dieegver affected data after an application or system




id Availability for ICDE

| Achieve 100% availability during business hours

| Plenty of scope for downtime for system upgrade,
backup and maintenance.

| Include mechanisms for component replication and
failover




i;:t‘:aau Integration

| ease with which an application can be incorporated into
a broader application context

[0 Use component in ways that the designer did not
originally anticipate
| Typically achieved by:
O Programmatic APIs

0 Data integration




if?‘:;aiu Integration Strategies

Interoperability through an API facade

=

API

Application

Third Party
Application

Interoperability achieved by direct data
access

Data — expose application data for access by other
components

API| — offers services to read/write application data
through an abstracted interface

Each has strengths and weaknesses ...




i.-;f:;aiu ICDE Integration Needs

| Revolve around the need to support third party analysis

tools.
| Well-defined and understood mechanism for third party
tools to access data in the ICDE data store.




if?‘:;aiu Misc. Quality Attributes

Portability

0 Can an application be easily executed on a different
software/hardware platform to the one it has been
developed for?

Testability
0 How easy or difficult is an application to test?
Supportability

0 How easy an application is to support once it is
deployed?




iff‘é&fu Design Trade-offs

QAs are rarely orthogonal
0 They interact, affect each other
O highly secure system may be difficult to integrate

O highly available application may trade-off lower
performance for greater availability

0 high performance application may be tied to a given
platform, and hence not be easily portable

Architects must create solutions that makes

sensible design compromises

0 not possible to fully satisfy all competing requirements

0 Must satisfy all stakeholder needs

O _This is the difficult bit!




i.-:“.;ai.;. Summary

| QAs are part of an application’s non-functional
requirements

| Many QAs

| Architect must decide which are important for a given
application

0 Understand implications for application
0 Understand competing requirements and trade-offs




id Selected Further Reading

L. Chung, B. Nixon, E. Yu, J. Mylopoulos,

(Editors). Non-Functional Requirements in Software
Engineering Series: The Kluwer International
Series in Software Engineering. Vol. 5, Kluwer
Academic Publishers. 1999.

J. Ramachandran. Designing Security Architecture
Solutions. Wiley & Sons, 2002.

|.Gorton, L. Zhu. Tool Support for Just-in-Time
Architecture Reconstruction and Evaluation: An
Experience Report. International Conference on
Software Engineering (ICSE) 2005, St Loius, USA,

ACM Press

A\ -




