
CTT526 - Kiến trúc phần mềm

Các tiêu chí và yêu cầu
về Kiến trúc phần mềm

PGS.TS. Trần Minh Triết

tmtriet@fit.hcmus.edu.vn

Trường Đại học Khoa Học Tự Nhiên
Khoa Công Nghệ Thông Tin

Bộ môn Công Nghệ Phần Mềm

Version 1.0

 Nội dung của bài giảng sử dụng:

Session 3: Quality Attributes

trong bộ slide Software Architecture Essential

của GS. Ian Gorton

Software Engineering Institute

Carnegie Mellon University

2

What are Quality Attributes

 Often know as –ilities

 Reliability

 Availability

 Portability

 Scalability

 Performance (!)

 Part of a system‟s NFRs

 “how” the system achieves its functional

requirements

3

Quality Attribute Specification

 Architects are often told:

 “My application must be fast/secure/scale”

 Far too imprecise to be any use at all

 Quality attributes (QAs) must be made
precise/measurable for a given system design, e.g.

 “It must be possible to scale the deployment from an
initial 100 geographically dispersed user desktops to
10,000 without an increase in effort/cost for
installation and configuration.”

4

Quality Attribute Specification

 QA‟s must be concrete

 But what about testable?

 Test scalability by installing system on 10K

desktops?

 Often careful analysis of a proposed solution is all that

is possible

 “It‟s all talk until the code runs”

5

Performance

 Many examples of poor performance in enterprise

applications

 Performance requires a:

 Metric of amount of work performed in unit time

 Deadline that must be met

 Enterprise applications often have strict performance

requirements, e.g.

 1000 transactions per second

 3 second average latency for a request

6

Performance - Throughput

 Measure of the amount of work an application must

perform in unit time

 Transactions per second

 Messages per minute

 Is required throughput:

 Average?

 Peak?

 Many system have low average but high peak

throughput requirements

7

Throughput Example

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

0 5 1 0 1 5 2 0

o f th r e a d s

C PU % M S T (m s p)

 Throughput of a message queuing system

 Messages per second (msp)

 Maximum sustainable throughput (MST)

 Note throughput changes as number of receiving

threads increases

8

Performance - Response Time

 measure of the latency an application exhibits in
processing a request

 Usually measured in (milli)seconds

 Often an important metric for users

 Is required response time:

 Guaranteed?

 Average?

 E.g. 95% of responses in sub-4 seconds, and all within
10 seconds

9

Response Time

 Example shows response time distribution for a

J2EE application

10

Performance - Deadlines

 „something must be completed before some specified

time‟

 Payroll system must complete by 2am so that

electronic transfers can be sent to bank

 Weekly accounting run must complete by 6am

Monday so that figures are available to management

 Deadlines often associated with batch jobs in IT

systems.

11

Something to watch for …

 What is a

 Transaction?

 Message?

 Request?

 All are application specific measures.

 System must achieve 100 mps throughput

 BAD!!

 System must achieve 100 mps peak throughput for

PaymentReceived messages

 GOOD!!!

12

ICDE Performance Issues

 Response time:

 Overheads of trapping user events must be imperceptible

to ICDE users

 Solution for ICDE client:

 Decouple user event capture from storage using a queue

13

1. Trap user event
2. Write event

to queue

3. Return to user thread 4. Read event

from queue

5. Write event

to ICDE database queue

Scalability

 “How well a solution to some problem will work when

the size of the problem increases.”

 4 common scalability issues in IT systems:

 Request load

 Connections

 Data size

 Deployments

14

Scalability – Request Load

 How does an 100 tps application behave when

simultaneous request load grows? E.g.

 From 100 to 1000 requests per second?

 Ideal solution, without additional hardware capacity:

 as the load increases, throughput remains constant

(i.e. 100 tps), and response time per request

increases only linearly (i.e. 10 seconds).

15

Scalability – Add more hardware

…

16

Application

ApplicationApplication
Application

Application

Scale-out: Application replicated on

different machines

Scale-up:

Single application instance is

executed on a multiprocessor

machine

CPU

Scalability - reality

 Adding more hard ware should improve
performance:
 scalability must be achieved without modifications to

application architecture

 Reality as always is different!

 Applications will exhibit a decrease in throughput
and a subsequent exponential increase in response
time.
 increased load causes increased contention for resources

such as CPU, network and memory

 each request consumes some additional resource (buffer
space, locks, and so on) in the application, and eventually
these are exhausted

17

Scalability – J2EE example

18

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0

N o . o f C lie n ts

T
P

S

W A S S B

J B o s s S B

IA S S B

S S S B

W L S S B

B E S S B

I.Gorton, A Liu, Performance Evaluation of Alternative Component

Architectures for Enterprise JavaBean Applications, in IEEE Internet

Computing, vol.7, no. 3, pages 18-23, 2003.

Scalability - connections

 What happens if number of simultaneous connections
to an application increases

 If each connection consumes a resource?

 Exceed maximum number of connections?

 ISP example:

 Each user connection spawned a new process

 Virtual memory on each server exceeded at 2000
users

 Needed to support 100Ks of users

 Tech crash ….

19

Scalability – Data Size

 How does an application behave as the data it
processes increases in size?

 Chat application sees average message size
double?

 Database table size grows from 1 million to 20
million rows?

 Image analysis algorithm processes images of
100MB instead of 1MB?

 Can application/algorithms scale to handle increased
data requirements?

20

Scalability - Deployment

 How does effort to install/deploy an application increase

as installation base grows?

 Install new users?

 Install new servers?

 Solutions typically revolve around automatic

download/installation

 E.g. downloading applications from the Internet

21

Scalability thoughts and ICDE

 Scalability often overlooked.

 Major cause of application failure

 Hard to predict

 Hard to test/validate

 Reliance on proven designs and technologies is
essential

 For ICDE - application should be capable of handling a
peak load of 150 concurrent requests from ICDE clients.

 Relatively easy to simulate user load to validate this

22

Modifiability

 Modifications to a software system during its lifetime are

a fact of life.

 Modifiable systems are easier to change/evolve

 Modifiability should be assessed in context of how a

system is likely to change

 No need to facilitate changes that are highly unlikely

to occur

 Over-engineering!

23

Modifiability

 Modifiability measures how easy it may be to change

an application to cater for new (non-) functional

requirements.

 ‘may’ – nearly always impossible to be certain

 Must estimate cost/effort

 Modifiability measures are only relevant in the context

of a given architectural solution.

 Components

 Relationships

 Responsibilities

24

Modifiability Scenarios

 Provide access to the application through firewalls in
addition to existing “behind the firewall” access.

 Incorporate new features for self-service check-out
kiosks.

 The COTS speech recognition software vendor goes
out of business and we need to replace this component.

 The application needs to be ported from Linux to the
Microsoft Windows platform.

25

Modifiability Analysis

 Impact is rarely easy to quantify

 The best possible is a:

 Convincing impact analysis of changes needed

 A demonstration of how the solution can

accommodate the modification without change.

 Minimizing dependencies increases modifiability

 Changes isolated to single components likely to be

less expensive than those that cause ripple effects

across the architecture.

26

Modifiability for ICDE

 The range of events trapped and stored by the ICDE

client to be expanded.

 Third party tools to communicate new message types.

 Change database technology used

 Change server technology used

27

Security

 Difficult, specialized quality attribute:

 Lots of technology available

 Requires deep knowledge of approaches and

solutions

 Security is a multi-faceted quality …

28

Security

 Authentication: Applications can verify the identity of their
users and other applications with which they communicate.

 Authorization: Authenticated users and applications have
defined access rights to the resources of the system.

 Encryption: The messages sent to/from the application are
encrypted.

 Integrity: This ensures the contents of a message are not
altered in transit.

 Non-repudiation: The sender of a message has proof of
delivery and the receiver is assured of the sender‟s identity. This
means neither can subsequently refute their participation in the
message exchange.

29

Security Approaches

 SSL

 PKI

 Web Services security

 JAAS

 Operating system security

 Database security

 Etc etc

30

ICDE Security Requirements

 Authentication of ICDE users and third party ICDE tools

to ICDE server

 Encryption of data to ICDE server from 3rd party

tools/users executing remotely over an insecure

network

31

Availability

 Key requirement for most IT applications

 Measured by the proportion of the required time it is

useable. E.g.

 100% available during business hours

 No more than 2 hours scheduled downtime per week

 24x7x52 (100% availability)

 Related to an application‟s reliability

 Unreliable applications suffer poor availability

32

Availability

 Period of loss of availability determined by:

 Time to detect failure

 Time to correct failure

 Time to restart application

 Strategies for high availability:

 Eliminate single points of failure

 Replication and failover

 Automatic detection and restart

 Recoverability (e.g. a database)

 the capability to reestablish performance levels and

recover affected data after an application or system

failure 33

Availability for ICDE

 Achieve 100% availability during business hours

 Plenty of scope for downtime for system upgrade,

backup and maintenance.

 Include mechanisms for component replication and

failover

34

Integration

 ease with which an application can be incorporated into

a broader application context

 Use component in ways that the designer did not

originally anticipate

 Typically achieved by:

 Programmatic APIs

 Data integration

35

Integration Strategies

 Data – expose application data for access by other
components

 API – offers services to read/write application data
through an abstracted interface

 Each has strengths and weaknesses …

36

Application

Data

Third Party

Application

API

Interoperability through an API facade

Interoperability achieved by direct data

access

ICDE Integration Needs

 Revolve around the need to support third party analysis

tools.

 Well-defined and understood mechanism for third party

tools to access data in the ICDE data store.

37

Misc. Quality Attributes

 Portability

 Can an application be easily executed on a different

software/hardware platform to the one it has been

developed for?

 Testability

 How easy or difficult is an application to test?

 Supportability

 How easy an application is to support once it is

deployed?

38

Design Trade-offs

 QAs are rarely orthogonal

 They interact, affect each other

 highly secure system may be difficult to integrate

 highly available application may trade-off lower

performance for greater availability

 high performance application may be tied to a given

platform, and hence not be easily portable

 Architects must create solutions that makes

sensible design compromises

 not possible to fully satisfy all competing requirements

 Must satisfy all stakeholder needs

 This is the difficult bit!

39

Summary

 QAs are part of an application‟s non-functional

requirements

 Many QAs

 Architect must decide which are important for a given

application

 Understand implications for application

 Understand competing requirements and trade-offs

40

Selected Further Reading

 L. Chung, B. Nixon, E. Yu, J. Mylopoulos,
(Editors). Non-Functional Requirements in Software
Engineering Series: The Kluwer International
Series in Software Engineering. Vol. 5, Kluwer
Academic Publishers. 1999.

 J. Ramachandran. Designing Security Architecture
Solutions. Wiley & Sons, 2002.

 I.Gorton, L. Zhu. Tool Support for Just-in-Time
Architecture Reconstruction and Evaluation: An
Experience Report. International Conference on
Software Engineering (ICSE) 2005, St Loius, USA,
ACM Press

41

