
CTT526 - Kiến trúc phần mềm

Các tiêu chí và yêu cầu
về Kiến trúc phần mềm

PGS.TS. Trần Minh Triết

tmtriet@fit.hcmus.edu.vn

Trường Đại học Khoa Học Tự Nhiên
Khoa Công Nghệ Thông Tin

Bộ môn Công Nghệ Phần Mềm

Version 1.0

 Nội dung của bài giảng sử dụng:

Session 3: Quality Attributes

trong bộ slide Software Architecture Essential

của GS. Ian Gorton

Software Engineering Institute

Carnegie Mellon University

2

What are Quality Attributes

 Often know as –ilities

 Reliability

 Availability

 Portability

 Scalability

 Performance (!)

 Part of a system‟s NFRs

 “how” the system achieves its functional

requirements

3

Quality Attribute Specification

 Architects are often told:

 “My application must be fast/secure/scale”

 Far too imprecise to be any use at all

 Quality attributes (QAs) must be made
precise/measurable for a given system design, e.g.

 “It must be possible to scale the deployment from an
initial 100 geographically dispersed user desktops to
10,000 without an increase in effort/cost for
installation and configuration.”

4

Quality Attribute Specification

 QA‟s must be concrete

 But what about testable?

 Test scalability by installing system on 10K

desktops?

 Often careful analysis of a proposed solution is all that

is possible

 “It‟s all talk until the code runs”

5

Performance

 Many examples of poor performance in enterprise

applications

 Performance requires a:

 Metric of amount of work performed in unit time

 Deadline that must be met

 Enterprise applications often have strict performance

requirements, e.g.

 1000 transactions per second

 3 second average latency for a request

6

Performance - Throughput

 Measure of the amount of work an application must

perform in unit time

 Transactions per second

 Messages per minute

 Is required throughput:

 Average?

 Peak?

 Many system have low average but high peak

throughput requirements

7

Throughput Example

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

0 5 1 0 1 5 2 0

o f th r e a d s

C PU % M S T (m s p)

 Throughput of a message queuing system

 Messages per second (msp)

 Maximum sustainable throughput (MST)

 Note throughput changes as number of receiving

threads increases

8

Performance - Response Time

 measure of the latency an application exhibits in
processing a request

 Usually measured in (milli)seconds

 Often an important metric for users

 Is required response time:

 Guaranteed?

 Average?

 E.g. 95% of responses in sub-4 seconds, and all within
10 seconds

9

Response Time

 Example shows response time distribution for a

J2EE application

10

Performance - Deadlines

 „something must be completed before some specified

time‟

 Payroll system must complete by 2am so that

electronic transfers can be sent to bank

 Weekly accounting run must complete by 6am

Monday so that figures are available to management

 Deadlines often associated with batch jobs in IT

systems.

11

Something to watch for …

 What is a

 Transaction?

 Message?

 Request?

 All are application specific measures.

 System must achieve 100 mps throughput

 BAD!!

 System must achieve 100 mps peak throughput for

PaymentReceived messages

 GOOD!!!

12

ICDE Performance Issues

 Response time:

 Overheads of trapping user events must be imperceptible

to ICDE users

 Solution for ICDE client:

 Decouple user event capture from storage using a queue

13

1. Trap user event
2. Write event

to queue

3. Return to user thread 4. Read event

from queue

5. Write event

to ICDE database queue

Scalability

 “How well a solution to some problem will work when

the size of the problem increases.”

 4 common scalability issues in IT systems:

 Request load

 Connections

 Data size

 Deployments

14

Scalability – Request Load

 How does an 100 tps application behave when

simultaneous request load grows? E.g.

 From 100 to 1000 requests per second?

 Ideal solution, without additional hardware capacity:

 as the load increases, throughput remains constant

(i.e. 100 tps), and response time per request

increases only linearly (i.e. 10 seconds).

15

Scalability – Add more hardware

…

16

Application

ApplicationApplication
Application

Application

Scale-out: Application replicated on

different machines

Scale-up:

Single application instance is

executed on a multiprocessor

machine

CPU

Scalability - reality

 Adding more hard ware should improve
performance:
 scalability must be achieved without modifications to

application architecture

 Reality as always is different!

 Applications will exhibit a decrease in throughput
and a subsequent exponential increase in response
time.
 increased load causes increased contention for resources

such as CPU, network and memory

 each request consumes some additional resource (buffer
space, locks, and so on) in the application, and eventually
these are exhausted

17

Scalability – J2EE example

18

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0

N o . o f C lie n ts

T
P

S

W A S S B

J B o s s S B

IA S S B

S S S B

W L S S B

B E S S B

I.Gorton, A Liu, Performance Evaluation of Alternative Component

Architectures for Enterprise JavaBean Applications, in IEEE Internet

Computing, vol.7, no. 3, pages 18-23, 2003.

Scalability - connections

 What happens if number of simultaneous connections
to an application increases

 If each connection consumes a resource?

 Exceed maximum number of connections?

 ISP example:

 Each user connection spawned a new process

 Virtual memory on each server exceeded at 2000
users

 Needed to support 100Ks of users

 Tech crash ….

19

Scalability – Data Size

 How does an application behave as the data it
processes increases in size?

 Chat application sees average message size
double?

 Database table size grows from 1 million to 20
million rows?

 Image analysis algorithm processes images of
100MB instead of 1MB?

 Can application/algorithms scale to handle increased
data requirements?

20

Scalability - Deployment

 How does effort to install/deploy an application increase

as installation base grows?

 Install new users?

 Install new servers?

 Solutions typically revolve around automatic

download/installation

 E.g. downloading applications from the Internet

21

Scalability thoughts and ICDE

 Scalability often overlooked.

 Major cause of application failure

 Hard to predict

 Hard to test/validate

 Reliance on proven designs and technologies is
essential

 For ICDE - application should be capable of handling a
peak load of 150 concurrent requests from ICDE clients.

 Relatively easy to simulate user load to validate this

22

Modifiability

 Modifications to a software system during its lifetime are

a fact of life.

 Modifiable systems are easier to change/evolve

 Modifiability should be assessed in context of how a

system is likely to change

 No need to facilitate changes that are highly unlikely

to occur

 Over-engineering!

23

Modifiability

 Modifiability measures how easy it may be to change

an application to cater for new (non-) functional

requirements.

 ‘may’ – nearly always impossible to be certain

 Must estimate cost/effort

 Modifiability measures are only relevant in the context

of a given architectural solution.

 Components

 Relationships

 Responsibilities

24

Modifiability Scenarios

 Provide access to the application through firewalls in
addition to existing “behind the firewall” access.

 Incorporate new features for self-service check-out
kiosks.

 The COTS speech recognition software vendor goes
out of business and we need to replace this component.

 The application needs to be ported from Linux to the
Microsoft Windows platform.

25

Modifiability Analysis

 Impact is rarely easy to quantify

 The best possible is a:

 Convincing impact analysis of changes needed

 A demonstration of how the solution can

accommodate the modification without change.

 Minimizing dependencies increases modifiability

 Changes isolated to single components likely to be

less expensive than those that cause ripple effects

across the architecture.

26

Modifiability for ICDE

 The range of events trapped and stored by the ICDE

client to be expanded.

 Third party tools to communicate new message types.

 Change database technology used

 Change server technology used

27

Security

 Difficult, specialized quality attribute:

 Lots of technology available

 Requires deep knowledge of approaches and

solutions

 Security is a multi-faceted quality …

28

Security

 Authentication: Applications can verify the identity of their
users and other applications with which they communicate.

 Authorization: Authenticated users and applications have
defined access rights to the resources of the system.

 Encryption: The messages sent to/from the application are
encrypted.

 Integrity: This ensures the contents of a message are not
altered in transit.

 Non-repudiation: The sender of a message has proof of
delivery and the receiver is assured of the sender‟s identity. This
means neither can subsequently refute their participation in the
message exchange.

29

Security Approaches

 SSL

 PKI

 Web Services security

 JAAS

 Operating system security

 Database security

 Etc etc

30

ICDE Security Requirements

 Authentication of ICDE users and third party ICDE tools

to ICDE server

 Encryption of data to ICDE server from 3rd party

tools/users executing remotely over an insecure

network

31

Availability

 Key requirement for most IT applications

 Measured by the proportion of the required time it is

useable. E.g.

 100% available during business hours

 No more than 2 hours scheduled downtime per week

 24x7x52 (100% availability)

 Related to an application‟s reliability

 Unreliable applications suffer poor availability

32

Availability

 Period of loss of availability determined by:

 Time to detect failure

 Time to correct failure

 Time to restart application

 Strategies for high availability:

 Eliminate single points of failure

 Replication and failover

 Automatic detection and restart

 Recoverability (e.g. a database)

 the capability to reestablish performance levels and

recover affected data after an application or system

failure 33

Availability for ICDE

 Achieve 100% availability during business hours

 Plenty of scope for downtime for system upgrade,

backup and maintenance.

 Include mechanisms for component replication and

failover

34

Integration

 ease with which an application can be incorporated into

a broader application context

 Use component in ways that the designer did not

originally anticipate

 Typically achieved by:

 Programmatic APIs

 Data integration

35

Integration Strategies

 Data – expose application data for access by other
components

 API – offers services to read/write application data
through an abstracted interface

 Each has strengths and weaknesses …

36

Application

Data

Third Party

Application

API

Interoperability through an API facade

Interoperability achieved by direct data

access

ICDE Integration Needs

 Revolve around the need to support third party analysis

tools.

 Well-defined and understood mechanism for third party

tools to access data in the ICDE data store.

37

Misc. Quality Attributes

 Portability

 Can an application be easily executed on a different

software/hardware platform to the one it has been

developed for?

 Testability

 How easy or difficult is an application to test?

 Supportability

 How easy an application is to support once it is

deployed?

38

Design Trade-offs

 QAs are rarely orthogonal

 They interact, affect each other

 highly secure system may be difficult to integrate

 highly available application may trade-off lower

performance for greater availability

 high performance application may be tied to a given

platform, and hence not be easily portable

 Architects must create solutions that makes

sensible design compromises

 not possible to fully satisfy all competing requirements

 Must satisfy all stakeholder needs

 This is the difficult bit!

39

Summary

 QAs are part of an application‟s non-functional

requirements

 Many QAs

 Architect must decide which are important for a given

application

 Understand implications for application

 Understand competing requirements and trade-offs

40

Selected Further Reading

 L. Chung, B. Nixon, E. Yu, J. Mylopoulos,
(Editors). Non-Functional Requirements in Software
Engineering Series: The Kluwer International
Series in Software Engineering. Vol. 5, Kluwer
Academic Publishers. 1999.

 J. Ramachandran. Designing Security Architecture
Solutions. Wiley & Sons, 2002.

 I.Gorton, L. Zhu. Tool Support for Just-in-Time
Architecture Reconstruction and Evaluation: An
Experience Report. International Conference on
Software Engineering (ICSE) 2005, St Loius, USA,
ACM Press

41

