
CTT526 - Kiến trúc phần mềm

Middleware
PGS.TS. Trần Minh Triết

tmtriet@fit.hcmus.edu.vn

Trường Đại học Khoa Học Tự Nhiên
Khoa Công Nghệ Thông Tin

Bộ môn Công Nghệ Phần Mềm

Version 1.0

 Nội dung của bài giảng sử dụng:

Session 4:

A Guide to Middleware Architectures and Technologies

trong bộ slide Software Architecture Essential

của GS. Ian Gorton

Software Engineering Institute

Carnegie Mellon University

2

Introduction

 Middleware is the plumbing or wiring of IT

applications

 Provides applications with fundamental services for

distributed computing

 Insulates applications from underlying platform

(OS, DBMS, etc) APIs

 Lots of middleware exists

 Different purposes

 Different vendors

 Different standards and proprietary technologies

3

Middleware Classification

4

Business Process Orchestrators

Message Brokers

Application Servers

Transport Message-Oriented Middleware, Distributed Objects Systems

J2EE, CCM, .NET

BizTalk, WebSphere Message Broker, SonicMQ

BizTalk, TIBCO StaffWare, ActiveBPEL

Outline

 CORBA

 Message-oriented middleware

 J2EE

 Message brokers

 Business process orchestrators

5

CORBA

 Venerable distributed object technology

 Still widely used in telecomms, defense

 Many different implementations

6

Network

Client

Object Reference

request

Server

Servant

reply

client ORB server ORB

CORBA Code Example

7

module ServerExample

{

interface MyObject { string isAlive(); };

};

class MyServant extends _MyObjectImplBase

{ public String isAlive() { return "\nLooks like it…\n"; }

}

ORB orb = ORB.init(args, null);

MyServant objRef = new MyServant();

orb.connect(objRef);

ORB orb = ORB.init(args, null);

// Lookup is a wrapper that actually access the CORBA Naming

// Service directory – details omitted for simplicity

MyServant servantRef = lookup(“Myservant”)String

reply = servantRef.isAlive();

CORBA IDL

Server

Client

CORBA – Some Thoughts

 Many associated services, eg

 Naming

 Notification

 Transactions

 Synchronous technology, client-server relatively tightly
coupled

 Remote calls can/will fail

 State management in server objects creates
„interesting‟ recovery issues

8

Messaging - MOM

 Basic Message Oriented Middleware (MOM) provides

features like:

 Asynchronous communications between processes,

applications and systems

 Send-and-forget

 Delivering messages despite failures

 Transactional Messaging

 Deliver all messages in a transaction, or none

 Persistence

 Messages can be logged at the server and hence

survive server failure

9

Basic Messaging

10

 Send (queue, message)
 Put message onto queue

 Receive (queue, message)
 Get message from queue

 No dependency on state of receiving
application on message send

receivesend

queue

Persistence

11

receivesend

queue

 Receipt of message at queue implies
message is written to disk log

 Removal of message from queue
deletes message from disk log

 Trade-off performance versus reliability

MOM Server

12

MOM Server

Sending

Applications

Senders

Message

Handler Thread Pool

Sending

Applications

Receivers

Peer-to-peer MOM technologies are the alternative design

MOM Transactions

13

 B e g i n t r a n s a c t i o n

. . .

u p d a t e d a t a b a s e r e c o r d

p u t m e s s a g e o n q u e u e

. . .

c o m m i t t r a n s a c t i o n

B e g i n t r a n s a c t i o n

. . .

g e t m e s s a g e f r o m q u e u e

u p d a t e d a t a b a s e r e c o r d

. . .

c o m m i t t r a n s a c t i o n

MOM Transactions

 Sender and receiver do *not* share a transaction

 Rollback on receiver does not affect the sender (already

committed)

 „Synchronous‟ operations are not atomic

 Request/response is 3 transactions not 1

 Put to request queue

 Get from request queue, put to response queue

 Get from response queue

14

receivesend

Request queue

Response queue

sendreceive

Scaling MOM

15

MOM Server

Senders Receivers

MOM Server

ApplicationQ

ApplicationQ

Messaging – Some thoughts

 Highly attractive asynchronous technology

 Supports loosely-coupled, dynamic applications

 Scales well, high throughput possible

 Many implementations, various qualities of service

 caveat emptor

16

Publish-Subscribe Messaging

 Extension of MOM to provide 1-to-N, N-to-1, and N-to-

N communications

 Messages are „published‟ to logical subjects or topics

 Subscribers receive all messages from subjects they

subscribe to

17

Pub Subject

Sub

Sub

Sub
Create/
Publish Register/

Subscribe

Publish-Subscribe with Multicast

18

r v d

r v d

P u b l is h e r

S u b s c r ib e r

r v d

S u b s c r ib e r

r v d

S u b s c r ib e r

r v r d

r v d

S u b s c r ib e r

r v d

S u b s c r ib e r

r v r d

Based on

TIBCO

Rendezvous

Performance

19

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

1 0 2 0 3 0 4 0 5 0
N o . O f S u b sc r i b e r s

M i l l i se c o n d s

M C 1

M C 2

Q B

Subject/Topic Naming

20

Sydney

DevGroup SupportGroup

InformationInformation

work gossip work gossip

Sydney

Sydney/DevGroup

Sydney/DevGroup/Information

Sydney/DevGroup/Information/work

Sydney/DevGroup/Information/gossip

Sydney/SupportGroup

Sydney/SupportGroup/Information

Sydney/SupportGroup/Information/work

Sydney/SupportGroup/Information/gossip

Sydney/*/Information

Sydney/DevGroup/*/*

Sydney/DevGroup/**

Publish-Subscribe – Some

Thoughts

 Highly decoupled messaging style

 Publishers don‟t know about subscribers

 Subscribers don‟t know who is publishing

 Publishers and Subscribers can dynamically appear

and disappear

 Issues –

 Reliability

 Transactions

 Security

 Performance

21

J2EE Overview

22

B ro w s e r -b a s e d c l ie n t

a p p lic a t io n s

(H T M L , a p p le ts ,

D H T M L /s c r ip t in g)

J a v a c l ie n t a p p l ic a t io n s

E R P s , C R M s ,

M a in f ra m e T P s y s te m s

S e rv le ts ,

J S P s

W e b

s e rv e r

H T T P

J a v a R M I

A p p l ic a t io n c o m p o n e n ts

E J B s

C lie n t t ie r B u s in e s s C o m p o n e n t t ie r E IS T ie rW e b T ie r

C o n ta in e r S e rv ic e s

C o m p o n e n ts

e g . J T S , J M S

R D B M S

J D B C

J C A

R M I

W in d o w s /C O M c l ie n t

a p p lic a t io n s

C A S C O M B r id g e , R M I o v e r I IO P

J2EE Application Server

 In J2EE, the application server container provides the
execution environment for the J2EE-specific
components
 EJBs

 Message-driven beans

 Connectors

 Container provides additional services for hosted
components
 Transactions

 Security

 Directory

 Threading

 Connection pooling

23

EJB Container

24

Application Server

EJB Container

Transaction

Service

Directory

Service

Security

Service

Thread Pool

Connection Pool

Persistence

Lifecycle Management

EJB Pool

Beans and State

25

EJB Container

state

Stateless bean pool

Stateful beans
state

state

state

state

state

state

EJB

Clients

Deployment Descriptors

26

<ejb-jar>

<enterprise-beans>

<session>

<ejb-name>EntityStock.BrokerHome</ejb-name>

<home>db.entitystock.BrokerHome</home>

<remote>db.entitystock.Broker</remote>

<ejb-class>db.entitystock.BrokerBean</ejb-class>

<session-type>Stateless</session-type>

<transaction-type>Container</transaction-type>

</session>

</enterprise-beans>

<assembly-descriptor>

<container-transaction>

<method>

<ejb-name>EntityStock.BrokerHome</ejb-name>

<method-intf>Remote</method-intf>

<method-name>*</method-name>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

</assembly-descriptor>

</ejb-jar>

J2EE – Some Thoughts

 Standards-based, multiple vendors, portable

 Good open source technology available

 Quality of implementations varies considerably

 Java only, wide platform support

 Performance is good, but varies between suppliers

 Scalable, fail over support through clustering

 Good integration with web technologies

 Supports various design patterns, flexible but more

complex (e.g. stateful beans/scalability, entity beans)

 Standards evolving, need to monitor

27

Message Brokers - Motivation

28

Web

Component

Legacy

System #1

Legacy

System #2

Legacy

System #3

Legacy

System #4

In-format

In-format In-format In-format In-format

Key:

Message =

In-format

Message

Transform Legacyformat

API

call

Queue

Read

What if …

 the common In-format message format changes?

 any legacy system API changes?

 any of the transformations needs modifying?

29

Alternative Solution

 Transformations in

broker

 Simplified

endpoints

 Decouples Web

and legacy

components

30

Web

Component

Legacy

System #1

Legacy

System #2

Legacy

System #3

Legacy

System #4

In-format

L1-format L2-format L3-format L4-format

Key:

Message =

Message

Broker

Message Brokers

 Developed specifically for Enterprise Application

Integration (EAI)

 Add new layers of functionality to MOM

 Message transformation

 Rules engine

 Intelligent routing

 Adapters

 Typically (but not necessarily) built on top of a MOM

layer

31

Message Broker Features

 Message transformation – transform between

different source/target formats

 Graphical message format definition and mapping tools

 High performance transformation engines

 Message format repositories

 Intelligent routing

 Route messages based on message content

 Rules Engine

 Scripting language, built-in functions

 Application programming environment

32

Message Brokers

33

Transformation

Routing

Rules Processing

Input Messages Output Messages

Hub and Spoke Architecture

Example - WMQI

34

BizTalk Mapping Tool

35

Adapters

 An adapter is a component that resides between the
message broker and the source/target systems

 Simplify complexity of end system interface through an
abstraction layer

 Thin adapters - simple wrappers

 Thick adapters

 Programmable

 Abstract representation of services and meta-data

 Centralized adapters co-located with broker

 Distributed adapters execute in own process and may be
located with source/target system

36

Message Brokers – Some

Thoughts

 Embeds transformations/routing in broker

 Can get complex

 Possible scaling issues

 Need to replicate brokers

 Failure handling

 Lightweight, rarely designed to recover from failure

 Often proprietary technology

 Good open source, standards-based like Mule now
available

37

Business Process Orchestration

 Commonly known as workflow

 Aim is to automate business processes which need

to access data and business logic across disparate

back-end applications

 Builds on EAI to ensure business processes are

executed in the defined order using the required

data

 Builds on middleware providing:

 Process execution engine

 Visual process definition tools

 Process monitoring tools

38

Typical Scenario

 Business process automation

39

Customer

Purchasing

SAP
Customer

Receiving

Siebel

Sales desk
Shipping

Credit

Validation

Accounts

Payable

Accounts

Receivable
Oracle

Example - BizTalk

40

BPO Architecture

41

Message Broker

Adapter Adapter Adapter

BPEL

 Web Services standard for describing workflows

 Many design and execution tools

 Eg ActiveBPEL

 Version 2.0 is a significant improvement

42

Integration Issues – Point-to-Point

 Point-to-Point evolution

 Spaghetti architecture, hard to modify potentially (N2-N)
interfaces

43

1 business process =

4 interfaces

5 business processes =

20 interfaces

Broker Spaghetti

 No free lunch …

 Just relocates the spaghetti

44

message broker

Enterprise Data Model

 Source sends message to target with common message format as
payload.

 Target receives message and transforms common format into its own
local data representation.

 2xN transformations, no broker needed

 Getting agreement is the tough bit …

45

Enterprise

Data Model

Summary

 Middleware:

 makes building complex, distributed, concurrent

applications simpler.

 institutionalizes proven design practices by

supporting them in off-the-shelf middleware

technologies.

 Architect‟s job is to „mix n‟match‟ technologies to create

appropriate solutions

 Analyze trade-offs

 Open-minded (no hammer/nail thinking)

 No good/evil, its just technology

46

