
CTT526 - Kiến trúc phần mềm

Middleware
PGS.TS. Trần Minh Triết

tmtriet@fit.hcmus.edu.vn

Trường Đại học Khoa Học Tự Nhiên
Khoa Công Nghệ Thông Tin

Bộ môn Công Nghệ Phần Mềm

Version 1.0

 Nội dung của bài giảng sử dụng:

Session 4:

A Guide to Middleware Architectures and Technologies

trong bộ slide Software Architecture Essential

của GS. Ian Gorton

Software Engineering Institute

Carnegie Mellon University

2

Introduction

 Middleware is the plumbing or wiring of IT

applications

 Provides applications with fundamental services for

distributed computing

 Insulates applications from underlying platform

(OS, DBMS, etc) APIs

 Lots of middleware exists

 Different purposes

 Different vendors

 Different standards and proprietary technologies

3

Middleware Classification

4

Business Process Orchestrators

Message Brokers

Application Servers

Transport Message-Oriented Middleware, Distributed Objects Systems

J2EE, CCM, .NET

BizTalk, WebSphere Message Broker, SonicMQ

BizTalk, TIBCO StaffWare, ActiveBPEL

Outline

 CORBA

 Message-oriented middleware

 J2EE

 Message brokers

 Business process orchestrators

5

CORBA

 Venerable distributed object technology

 Still widely used in telecomms, defense

 Many different implementations

6

Network

Client

Object Reference

request

Server

Servant

reply

client ORB server ORB

CORBA Code Example

7

module ServerExample

{

interface MyObject { string isAlive(); };

};

class MyServant extends _MyObjectImplBase

{ public String isAlive() { return "\nLooks like it…\n"; }

}

ORB orb = ORB.init(args, null);

MyServant objRef = new MyServant();

orb.connect(objRef);

ORB orb = ORB.init(args, null);

// Lookup is a wrapper that actually access the CORBA Naming

// Service directory – details omitted for simplicity

MyServant servantRef = lookup(“Myservant”)String

reply = servantRef.isAlive();

CORBA IDL

Server

Client

CORBA – Some Thoughts

 Many associated services, eg

 Naming

 Notification

 Transactions

 Synchronous technology, client-server relatively tightly
coupled

 Remote calls can/will fail

 State management in server objects creates
„interesting‟ recovery issues

8

Messaging - MOM

 Basic Message Oriented Middleware (MOM) provides

features like:

 Asynchronous communications between processes,

applications and systems

 Send-and-forget

 Delivering messages despite failures

 Transactional Messaging

 Deliver all messages in a transaction, or none

 Persistence

 Messages can be logged at the server and hence

survive server failure

9

Basic Messaging

10

 Send (queue, message)
 Put message onto queue

 Receive (queue, message)
 Get message from queue

 No dependency on state of receiving
application on message send

receivesend

queue

Persistence

11

receivesend

queue

 Receipt of message at queue implies
message is written to disk log

 Removal of message from queue
deletes message from disk log

 Trade-off performance versus reliability

MOM Server

12

MOM Server

Sending

Applications

Senders

Message

Handler Thread Pool

Sending

Applications

Receivers

Peer-to-peer MOM technologies are the alternative design

MOM Transactions

13

 B e g i n t r a n s a c t i o n

. . .

u p d a t e d a t a b a s e r e c o r d

p u t m e s s a g e o n q u e u e

. . .

c o m m i t t r a n s a c t i o n

B e g i n t r a n s a c t i o n

. . .

g e t m e s s a g e f r o m q u e u e

u p d a t e d a t a b a s e r e c o r d

. . .

c o m m i t t r a n s a c t i o n

MOM Transactions

 Sender and receiver do *not* share a transaction

 Rollback on receiver does not affect the sender (already

committed)

 „Synchronous‟ operations are not atomic

 Request/response is 3 transactions not 1

 Put to request queue

 Get from request queue, put to response queue

 Get from response queue

14

receivesend

Request queue

Response queue

sendreceive

Scaling MOM

15

MOM Server

Senders Receivers

MOM Server

ApplicationQ

ApplicationQ

Messaging – Some thoughts

 Highly attractive asynchronous technology

 Supports loosely-coupled, dynamic applications

 Scales well, high throughput possible

 Many implementations, various qualities of service

 caveat emptor

16

Publish-Subscribe Messaging

 Extension of MOM to provide 1-to-N, N-to-1, and N-to-

N communications

 Messages are „published‟ to logical subjects or topics

 Subscribers receive all messages from subjects they

subscribe to

17

Pub Subject

Sub

Sub

Sub
Create/
Publish Register/

Subscribe

Publish-Subscribe with Multicast

18

r v d

r v d

P u b l is h e r

S u b s c r ib e r

r v d

S u b s c r ib e r

r v d

S u b s c r ib e r

r v r d

r v d

S u b s c r ib e r

r v d

S u b s c r ib e r

r v r d

Based on

TIBCO

Rendezvous

Performance

19

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

1 0 2 0 3 0 4 0 5 0
N o . O f S u b sc r i b e r s

M i l l i se c o n d s

M C 1

M C 2

Q B

Subject/Topic Naming

20

Sydney

DevGroup SupportGroup

InformationInformation

work gossip work gossip

Sydney

Sydney/DevGroup

Sydney/DevGroup/Information

Sydney/DevGroup/Information/work

Sydney/DevGroup/Information/gossip

Sydney/SupportGroup

Sydney/SupportGroup/Information

Sydney/SupportGroup/Information/work

Sydney/SupportGroup/Information/gossip

Sydney/*/Information

Sydney/DevGroup/*/*

Sydney/DevGroup/**

Publish-Subscribe – Some

Thoughts

 Highly decoupled messaging style

 Publishers don‟t know about subscribers

 Subscribers don‟t know who is publishing

 Publishers and Subscribers can dynamically appear

and disappear

 Issues –

 Reliability

 Transactions

 Security

 Performance

21

J2EE Overview

22

B ro w s e r -b a s e d c l ie n t

a p p lic a t io n s

(H T M L , a p p le ts ,

D H T M L /s c r ip t in g)

J a v a c l ie n t a p p l ic a t io n s

E R P s , C R M s ,

M a in f ra m e T P s y s te m s

S e rv le ts ,

J S P s

W e b

s e rv e r

H T T P

J a v a R M I

A p p l ic a t io n c o m p o n e n ts

E J B s

C lie n t t ie r B u s in e s s C o m p o n e n t t ie r E IS T ie rW e b T ie r

C o n ta in e r S e rv ic e s

C o m p o n e n ts

e g . J T S , J M S

R D B M S

J D B C

J C A

R M I

W in d o w s /C O M c l ie n t

a p p lic a t io n s

C A S C O M B r id g e , R M I o v e r I IO P

J2EE Application Server

 In J2EE, the application server container provides the
execution environment for the J2EE-specific
components
 EJBs

 Message-driven beans

 Connectors

 Container provides additional services for hosted
components
 Transactions

 Security

 Directory

 Threading

 Connection pooling

23

EJB Container

24

Application Server

EJB Container

Transaction

Service

Directory

Service

Security

Service

Thread Pool

Connection Pool

Persistence

Lifecycle Management

EJB Pool

Beans and State

25

EJB Container

state

Stateless bean pool

Stateful beans
state

state

state

state

state

state

EJB

Clients

Deployment Descriptors

26

<ejb-jar>

<enterprise-beans>

<session>

<ejb-name>EntityStock.BrokerHome</ejb-name>

<home>db.entitystock.BrokerHome</home>

<remote>db.entitystock.Broker</remote>

<ejb-class>db.entitystock.BrokerBean</ejb-class>

<session-type>Stateless</session-type>

<transaction-type>Container</transaction-type>

</session>

</enterprise-beans>

<assembly-descriptor>

<container-transaction>

<method>

<ejb-name>EntityStock.BrokerHome</ejb-name>

<method-intf>Remote</method-intf>

<method-name>*</method-name>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

</assembly-descriptor>

</ejb-jar>

J2EE – Some Thoughts

 Standards-based, multiple vendors, portable

 Good open source technology available

 Quality of implementations varies considerably

 Java only, wide platform support

 Performance is good, but varies between suppliers

 Scalable, fail over support through clustering

 Good integration with web technologies

 Supports various design patterns, flexible but more

complex (e.g. stateful beans/scalability, entity beans)

 Standards evolving, need to monitor

27

Message Brokers - Motivation

28

Web

Component

Legacy

System #1

Legacy

System #2

Legacy

System #3

Legacy

System #4

In-format

In-format In-format In-format In-format

Key:

Message =

In-format

Message

Transform Legacyformat

API

call

Queue

Read

What if …

 the common In-format message format changes?

 any legacy system API changes?

 any of the transformations needs modifying?

29

Alternative Solution

 Transformations in

broker

 Simplified

endpoints

 Decouples Web

and legacy

components

30

Web

Component

Legacy

System #1

Legacy

System #2

Legacy

System #3

Legacy

System #4

In-format

L1-format L2-format L3-format L4-format

Key:

Message =

Message

Broker

Message Brokers

 Developed specifically for Enterprise Application

Integration (EAI)

 Add new layers of functionality to MOM

 Message transformation

 Rules engine

 Intelligent routing

 Adapters

 Typically (but not necessarily) built on top of a MOM

layer

31

Message Broker Features

 Message transformation – transform between

different source/target formats

 Graphical message format definition and mapping tools

 High performance transformation engines

 Message format repositories

 Intelligent routing

 Route messages based on message content

 Rules Engine

 Scripting language, built-in functions

 Application programming environment

32

Message Brokers

33

Transformation

Routing

Rules Processing

Input Messages Output Messages

Hub and Spoke Architecture

Example - WMQI

34

BizTalk Mapping Tool

35

Adapters

 An adapter is a component that resides between the
message broker and the source/target systems

 Simplify complexity of end system interface through an
abstraction layer

 Thin adapters - simple wrappers

 Thick adapters

 Programmable

 Abstract representation of services and meta-data

 Centralized adapters co-located with broker

 Distributed adapters execute in own process and may be
located with source/target system

36

Message Brokers – Some

Thoughts

 Embeds transformations/routing in broker

 Can get complex

 Possible scaling issues

 Need to replicate brokers

 Failure handling

 Lightweight, rarely designed to recover from failure

 Often proprietary technology

 Good open source, standards-based like Mule now
available

37

Business Process Orchestration

 Commonly known as workflow

 Aim is to automate business processes which need

to access data and business logic across disparate

back-end applications

 Builds on EAI to ensure business processes are

executed in the defined order using the required

data

 Builds on middleware providing:

 Process execution engine

 Visual process definition tools

 Process monitoring tools

38

Typical Scenario

 Business process automation

39

Customer

Purchasing

SAP
Customer

Receiving

Siebel

Sales desk
Shipping

Credit

Validation

Accounts

Payable

Accounts

Receivable
Oracle

Example - BizTalk

40

BPO Architecture

41

Message Broker

Adapter Adapter Adapter

BPEL

 Web Services standard for describing workflows

 Many design and execution tools

 Eg ActiveBPEL

 Version 2.0 is a significant improvement

42

Integration Issues – Point-to-Point

 Point-to-Point evolution

 Spaghetti architecture, hard to modify potentially (N2-N)
interfaces

43

1 business process =

4 interfaces

5 business processes =

20 interfaces

Broker Spaghetti

 No free lunch …

 Just relocates the spaghetti

44

message broker

Enterprise Data Model

 Source sends message to target with common message format as
payload.

 Target receives message and transforms common format into its own
local data representation.

 2xN transformations, no broker needed

 Getting agreement is the tough bit …

45

Enterprise

Data Model

Summary

 Middleware:

 makes building complex, distributed, concurrent

applications simpler.

 institutionalizes proven design practices by

supporting them in off-the-shelf middleware

technologies.

 Architect‟s job is to „mix n‟match‟ technologies to create

appropriate solutions

 Analyze trade-offs

 Open-minded (no hammer/nail thinking)

 No good/evil, its just technology

46

