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Introduction

 Middleware is the plumbing or wiring of IT 

applications

 Provides applications with fundamental services for 

distributed computing

 Insulates applications from underlying platform 

(OS, DBMS, etc) APIs

 Lots of middleware exists

 Different purposes

 Different vendors

 Different standards and proprietary technologies

3



Middleware Classification
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Business Process Orchestrators

Message Brokers

Application Servers

Transport Message-Oriented Middleware, Distributed Objects Systems

J2EE, CCM, .NET

BizTalk, WebSphere Message Broker, SonicMQ

BizTalk, TIBCO StaffWare, ActiveBPEL



Outline

 CORBA

 Message-oriented middleware

 J2EE

 Message brokers

 Business process orchestrators
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CORBA

 Venerable distributed object technology

 Still widely used in telecomms, defense

 Many different implementations
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CORBA Code Example
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module ServerExample 

{    

interface MyObject    {        string isAlive();      };

}; 

class MyServant extends _MyObjectImplBase 

{  public String isAlive()   {    return "\nLooks like it…\n";    }

} 

ORB orb = ORB.init(args, null);

MyServant objRef = new MyServant();

orb.connect(objRef); 

ORB orb = ORB.init(args, null);

// Lookup is a wrapper that actually access the CORBA Naming 

// Service directory – details omitted for simplicity

MyServant servantRef = lookup(“Myservant”)String 

reply = servantRef.isAlive(); 

CORBA IDL

Server

Client



CORBA – Some Thoughts

 Many associated services, eg

 Naming 

 Notification

 Transactions

 Synchronous technology, client-server relatively tightly 
coupled

 Remote calls can/will fail

 State management in server objects creates 
„interesting‟ recovery issues
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Messaging - MOM

 Basic Message Oriented Middleware (MOM) provides 

features like:

 Asynchronous communications between processes, 

applications and systems

 Send-and-forget 

 Delivering messages despite failures

 Transactional Messaging

 Deliver all messages in a transaction, or none

 Persistence

 Messages can be logged at the server and hence 

survive server failure
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Basic Messaging
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 Send (queue, message)
 Put message onto queue

 Receive (queue, message)
 Get message from queue

 No dependency on state of receiving 
application on message send

receivesend

queue



Persistence
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receivesend

queue

 Receipt of message at queue implies 
message is written to disk log

 Removal of message from queue 
deletes message from disk log

 Trade-off performance versus reliability



MOM Server
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MOM Server

Sending 

Applications
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Message 

Handler Thread Pool

Sending 

Applications

Receivers

Peer-to-peer MOM technologies are the alternative design



MOM Transactions
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MOM Transactions

 Sender and receiver do *not* share a transaction

 Rollback on  receiver does not affect the sender (already 

committed)

 „Synchronous‟ operations are not atomic

 Request/response is 3 transactions not 1

 Put to request queue

 Get from request queue, put to response queue

 Get from response queue
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Scaling MOM
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Messaging – Some thoughts

 Highly attractive asynchronous technology

 Supports loosely-coupled, dynamic applications 

 Scales well, high throughput possible

 Many implementations, various qualities of service

 caveat emptor
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Publish-Subscribe Messaging

 Extension of MOM to provide 1-to-N, N-to-1, and N-to-

N communications

 Messages are „published‟ to logical subjects or topics

 Subscribers receive all messages from subjects they 

subscribe to
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Publish-Subscribe with Multicast
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Performance
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Subject/Topic Naming
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Sydney

DevGroup SupportGroup

InformationInformation

work gossip work gossip

Sydney

Sydney/DevGroup

Sydney/DevGroup/Information

Sydney/DevGroup/Information/work

Sydney/DevGroup/Information/gossip

Sydney/SupportGroup

Sydney/SupportGroup/Information

Sydney/SupportGroup/Information/work

Sydney/SupportGroup/Information/gossip

Sydney/*/Information

Sydney/DevGroup/*/*

Sydney/DevGroup/**



Publish-Subscribe – Some 

Thoughts

 Highly decoupled messaging style

 Publishers don‟t know about subscribers

 Subscribers don‟t know who is publishing

 Publishers and Subscribers can dynamically appear 

and disappear

 Issues –

 Reliability

 Transactions

 Security

 Performance
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J2EE Overview
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J2EE Application Server

 In J2EE, the application server container provides the 
execution environment for the J2EE-specific 
components
 EJBs

 Message-driven beans

 Connectors

 Container provides additional services for hosted 
components
 Transactions

 Security

 Directory

 Threading

 Connection pooling
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EJB Container
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Application Server

EJB Container
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Service
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EJB Pool



Beans and State
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EJB Container

state

Stateless bean pool

Stateful beans 
state

state

state

state

state

state

EJB
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Deployment Descriptors
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<ejb-jar>

<enterprise-beans>

<session>

<ejb-name>EntityStock.BrokerHome</ejb-name>

<home>db.entitystock.BrokerHome</home>

<remote>db.entitystock.Broker</remote>

<ejb-class>db.entitystock.BrokerBean</ejb-class>

<session-type>Stateless</session-type>

<transaction-type>Container</transaction-type>

</session>

</enterprise-beans>

<assembly-descriptor>

<container-transaction>

<method>

<ejb-name>EntityStock.BrokerHome</ejb-name>

<method-intf>Remote</method-intf>

<method-name>*</method-name>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

</assembly-descriptor>

</ejb-jar>



J2EE – Some Thoughts

 Standards-based, multiple vendors, portable

 Good open source technology available

 Quality of implementations varies considerably

 Java only, wide platform support

 Performance is good, but varies between suppliers

 Scalable, fail over support through clustering

 Good integration with web technologies

 Supports various design patterns, flexible but more 

complex (e.g. stateful beans/scalability, entity beans)

 Standards evolving, need to monitor
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Message Brokers - Motivation

28

Web

Component

Legacy 

System #1

Legacy 

System #2

Legacy 

System #3

Legacy 

System #4

In-format

In-format In-format In-format In-format

Key:

Message = 

In-format

Message 

Transform Legacyformat

API

call

Queue

Read



What if …

 the common In-format message format changes?

 any legacy system API changes?

 any of the transformations needs modifying? 
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Alternative Solution

 Transformations in 

broker

 Simplified 

endpoints

 Decouples Web 

and legacy 

components

30

Web

Component

Legacy 

System #1

Legacy 

System #2

Legacy 

System #3

Legacy 

System #4

In-format

L1-format L2-format L3-format L4-format

Key:

Message = 

Message

Broker



Message Brokers

 Developed specifically for Enterprise Application 

Integration (EAI)

 Add new layers of functionality to MOM

 Message transformation

 Rules engine 

 Intelligent routing

 Adapters

 Typically (but not necessarily) built on top of a MOM 

layer
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Message Broker Features

 Message transformation – transform between 

different source/target formats

 Graphical message format definition and mapping tools

 High performance transformation engines

 Message format repositories

 Intelligent routing

 Route messages based on message content

 Rules Engine

 Scripting language, built-in functions

 Application programming environment
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Message Brokers
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Transformation

Routing

Rules Processing

Input Messages Output Messages

Hub and Spoke Architecture



Example - WMQI
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BizTalk Mapping Tool
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Adapters

 An adapter is a component that resides between the 
message broker and the source/target systems

 Simplify complexity of end system interface through an 
abstraction layer

 Thin adapters - simple wrappers

 Thick adapters

 Programmable

 Abstract representation of services and meta-data

 Centralized adapters co-located with broker

 Distributed adapters execute in own process and may be 
located with source/target system
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Message Brokers – Some 

Thoughts

 Embeds transformations/routing in broker

 Can get complex

 Possible scaling issues

 Need to replicate brokers

 Failure handling

 Lightweight, rarely designed to recover from failure

 Often proprietary technology

 Good open source, standards-based like Mule now 
available
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Business Process Orchestration

 Commonly known as workflow

 Aim is to automate business processes which need 

to access data and business logic across disparate 

back-end applications

 Builds on EAI to ensure business processes are 

executed in the defined order using the required 

data

 Builds on middleware providing:

 Process execution engine

 Visual process definition tools

 Process monitoring tools
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Typical Scenario

 Business process automation

39

Customer

Purchasing

SAP
Customer

Receiving

Siebel

Sales desk
Shipping

Credit

Validation

Accounts

Payable

Accounts

Receivable
Oracle



Example - BizTalk
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BPO Architecture
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BPEL

 Web Services standard for describing workflows

 Many design and execution tools

 Eg ActiveBPEL

 Version 2.0 is a significant improvement
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Integration Issues – Point-to-Point

 Point-to-Point evolution 

 Spaghetti architecture, hard to modify potentially (N2-N) 
interfaces

43

1 business process = 

4 interfaces

5 business processes = 

20 interfaces



Broker Spaghetti

 No free lunch …

 Just relocates the spaghetti
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message broker



Enterprise Data Model

 Source sends message to target with common message format as 
payload.

 Target receives message and transforms common format into its own 
local data representation.

 2xN transformations, no broker needed

 Getting agreement is the tough bit …
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Enterprise 

Data Model



Summary

 Middleware:

 makes building complex, distributed, concurrent 

applications simpler.

 institutionalizes proven design practices by 

supporting them in off-the-shelf middleware 

technologies.

 Architect‟s job is to „mix n‟match‟ technologies to create 

appropriate solutions

 Analyze trade-offs

 Open-minded (no hammer/nail thinking)

 No good/evil, its just technology
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