Triro'ng Dai hoc Khoa Hoc Tw Nhién
Khoa Cong Nghé Thong Tin
BO mon Cong Nghé Phan Mém

CTT526 - Kién tric phan mém
Middleware

PGS.TS. Tran Minh Triét
tmtriet@fit.hcmus.edu.vn

ANy
~F

= * ~n- KHOA CONG NGHE THONG TIN
% Cdl O TRUONG DAI HOC KHOA HOC TU' NHIEN

i ; cdio

| N6i dung cua bai giang st dung:
Session 4.
A Guide to Middleware Architectures and Technologies
trong b6 slide Software Architecture Essential
cua GS. lan Gorton
Software Engineering Institute
Carnegie Mellon University

‘ :

igﬁ‘zaiu Introduction

Middleware is the plumbing or wiring of IT
applications

Provides applications with fundamental services for
distributed computing

Insulates applications from underlying platform
(OS, DBMS, etc) APIs

Lots of middleware exists

0 Different purposes
0 Different vendors
0 Different standards and proprietary technologies

Middleware Classification

BizTalk, TIBCO StaffWare, ActiveBPEL

Business Process Orchestrators

BizTalk, WebSphere Message Broker, SonicMQ

Message Brokers

J2EE, CCM, .NET

Application Servers

Message-Oriented Middleware, Distributed Objects Systems

Transport

iu Outline

| CORBA

| Message-oriented middleware
1 J2EE

| Message brokers

| Business process orchestrators

‘ ;

id CORBA

Venerable distributed object technology
Still widely used in telecomms, defense
Many different implementations

Client Server

Object Reference Servant
request reply

clent ORB sefver ORB

Network

£ edio CORBA Code Example

module ServerExample

1 _ o CORBA IDL
interface MyObject { string isAlive(); };

class MyServant extends _MyObjectimplBase
Server { public String isAlive() { return "\nLooks like it...\n"; }

ORB orb = ORB.init(args, null);
MyServant objRef = new MyServant();
orb.connect(objRef);

ORB orb = ORB.init(args, null);

// Lookup is a wrapper that actually access the CORBA Naming Client
/| Service directory — details omitted for simplicity
MyServant servantRef = lookup(“Myservant”)String
reply = sep@aiRef.isAlive();

I'i:::'\“-..""__ -

if?“é&iu CORBA — Some Thoughts

Many associated services, eg
0 Naming

0 Notification

0 Transactions

Synchronous technology, client-server relatively tightly
coupled

Remote calls can/will fail

State management in server objects creates
‘interesting’ recovery issues

i%“é&fu Messaging - MOM

Basic Message Oriented Middleware (MOM) provides
features like:

0 Asynchronous communications between processes,
applications and systems

[0 Send-and-forget

Delivering messages despite failures
0 Transactional Messaging

Deliver all messages in a transaction, or none
0 Persistence

Messages can be logged at the server and hence
survive server failure

 cdio _ _
i Basic Messaging

= Send (queue, message)
o Put message onto queue

= Recelve (queue, message)
o Get message from queue

= No dependency on state of receiving
application on message send

send receive

queue

i cdio _
pgrsistence

send receive

= Receipt of message at queue implies

message is written to disk log

= Removal of message from queue
deletes message from disk log

= Trade-off performance versus reliability

i.-;f:;aau MOM Server

1 o ><I |<> A e |
RGO

[
[
Message
Handler Thread Pool

.

Peer-to-peer MOM technologies are the alternative design

/

b

s

Eﬁiu' _
MOM Transactions

Begin transaction

transaction
get message from gueue
update database

Begin
database record
record

update
on gueue

put message
commit transaction

commit transaction

pe > .

/ \

£ edio MOM Transactions

Sender and receiver do *not* share a transaction

0 Rollback on receiver does not affect the sender (already
committed)

O ‘Synchronous’ operations are not atomic

Request/response is 3 transactions not 1
= Put to request queue
= Get from request queue, put to response queue

= Get from response queue
Request queue

» »
L L

send receive

<
<

A

receive send
Response queue

111';‘

3

cdio Scaling MOM

MOM Server
< ApplicationQ
Senders Receivers
MOM Server

\ ApplicationQ ’

if?“é&iu Messaging — Some thoughts

Highly attractive asynchronous technology
Supports loosely-coupled, dynamic applications
Scales well, high throughput possible

Many implementations, various qualities of service
0 caveat emptor

(1 OO0 OO O

i::“.;am Publish-Subscribe Messaging

Extension of MOM to provide 1-to-N, N-to-1, and N-to-
N communications

Messages are ‘published’ to logical subjects or topics

Subscribers receive all messages from subjects they
subscribe to

Sub

v

Create/ 2 y
- o < f
Pub ™™ Subject Subscribe Sub

™ Sub

iff“éﬁiu Publish-Subscribe with Multicast

Subscriber Subscriber

\V el \Yd

Based on
TIBCO
Rendezvous

£ edio Performance

Milliseconds

700
600
500
m—— \1 C 1
400
300
200] QB
100
0 - T T T

10 20 30 40 50

No. Of Subscribers

%

sy,

‘o
=
=
=]

Subject/Topic Naming

Sydney
DevGroup SupportGroup
Information Information
work gossip work gossip

Sydney
Sydney/DevGroup Sydney/*/Information
Sydney/DevGroup/Information Sydney/DevGroup/*/*
Sydney/DevGroup/Information/work Sydney/DevGroup/**
Sydney/DevGroup/Information/gossip
Sydney/SupportGroup

Sydney/SupportGroup/Information
Sydney/SupportGroup/Information/work
Sydney/SupportGroup/Information/gossip

/

o Publish-Subscribe — Some
i Thoughts

Highly decoupled messaging style
0 Publishers don’t know about subscribers
0 Subscribers don’t know who is publishing

0 Publishers and Subscribers can dynamically appear
and disappear

Issues —

O Reliability

[0 Transactions
0 Security

0 Performance

(F

'-ﬂ..

cdio

" J2EE Overview

Wy,

F.

(HTML, applets,
DHTML/scripting)

Client tier Web Tier Business Component tier EIS Tier
-4 > <« p - > - >
D HTTP Web RMI |
+—> server <+“—>
I:] Servlets, Application components |:]
Browser-based client JSPs EJBs JCA
applications ~ |:]

v

Mainframe TP systems

di
|

Container Services
Components

Java client applications

JDBC

eg.JTS,JMS
—
< RDBMS
CAS COM Bridge, RMI over IIOP |

Windows/COM client
applications

v

-Ilil""""-!-_-'ﬂﬂ'ﬂi‘#’r

ief“é&iu J2EE Application Server

In J2EE, the application server container provides the
execution environment for the J2EE-specific
components

0 EJBs

[0 Message-driven beans

0 Connectors

Container provides additional services for hosted
components

0 Transactions

O Security

0 Directory

OO0 Threading

0 Connection pooling

‘ cdio EJB Container

Application Server

/ EJB Container

EJB Pool Transaction
Service
Directory
Lifecycle Management Service

Persistence

Security

Connection Pool .
Service

Thread Pool

i%“‘é&io Beans and State

/ EJB Container \ e
Stateless bean pool a
@ é state
EJB

Clients
«—
Stateful beans

/

%

sy,

cdio Deployment Descriptors

<ejb-jar>
<enterprise-beans>
<session>
<ejb-name>EntityStock.BrokerHome</ejb-name>
<home>db.entitystock.BrokerHome</home>
<remote>db.entitystock.Broker</remote>
<ejb-class>db.entitystock.BrokerBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
</session>

</enterprise-beans>
<assembly-descriptor>
<container-transaction>

<method>
<ejb-name>EntityStock.BrokerHome</ejb-name>

<method-intf>Remote</method-intf>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
</assembly-descriptor>

iﬂam J2EE - Some Thoughts

Standards-based, multiple vendors, portable

Good open source technology available

Quality of implementations varies considerably
Java only, wide platform support

Performance is good, but varies between suppliers
Scalable, fail over support through clustering

Good integration with web technologies

Supports various design patterns, flexible but more
complex (e.g. stateful beans/scalabllity, entity beans)

Standards evolving, need to monitor
/ w

b
.

Message Brokers - Motivation

cdio

s

Web

Key:
Message =1 Component

In-format
)\ 4

Legacy Legacy Legacy Legacy
System #1 System #2 System #3 System #4
API
call

Queue

Read Message
Legacyformat

Transform

\ 4

| In-format
_/—

iu What if ...

| the common In-format message format changes?
| any legacy system API changes?
| any of the transformations needs modifying?

‘ 29

£ edio Alternative Solution

Key: Web
Message = I:l Component

| Transformations in

'L C broker

| Simplified
Meseage endpoints

| Decouples Web
Q @ < @ @ and legacy
components

Legacy Legacy Legacy Legacy
System #1 System #2 System #3 System #4

if?“é&iu Message Brokers

| Developed specifically for Enterprise Application
Integration (EAI)

| Add new layers of functionality to MOM
0 Message transformation
0 Rules engine
O Intelligent routing
0 Adapters

| Typically (but not necessarily) built on top of a MOM
layer

/- |

i%“é&fu Message Broker Features

Message transformation — transform between
different source/target formats

0 Graphical message format definition and mapping tools
OO0 High performance transformation engines

[0 Message format repositories

Intelligent routing
[0 Route messages based on message content

Rules Engine
0 Scripting language, built-in functions
O Application programming environment

i.-:‘:aau Message Brokers

Hub and Spoke Architecture

Input Messages Output Messages

I > Transformation 1 >
::j‘> Routing ﬂﬂjl>

Rules Processing

A

v,

cdio

20,

iy,

Example - WMQI

[:i MQ5eries Integrator Control Center - annal HE B
File Edit ¥iew Message Flow Definition Help

DS W b e

Message Sets Message Flows IAssignments | Topologyl Topics | Subscriptions | Operations | Log |

T | MessageFlo.. | O[] | TUTORIAL | Messane Flow Definition |
(E Message Flows

O

Compute2

=

Publication

& DataDelete
“ Datalnsert
[EE Datalpdate
- [Br Extract
- 5P Filter
& Input Terminal
...... Malnput
------ i MaOutput
E MaReply
- B MeanFormatter i i
. B MeanRules MQInput1 Failure Handling 1
B Output Terminal
------ of S Publication
------ 'ﬁ ResetContentDescriptar
o Recet MQOUtpUL2
...... 1uaw Trace
------ & TryCatch
------ B warehouse

" cdio BizTalk Mapping Tool

#¢ EAlSchemas - Microsoft BizTalk Server 2004 [de... |:||E“g|

File Edit View Project Buid Debug BizTak Tools Window

% | Development = @

b

o 4

=153 <Schema>
= {j Request
E| {J Header

A ID—

Ialo|dx3 serkes fiE

est.xsd | RequestDenied.xsd | ERFPipeline.btp BadReqMap.btm*® | 1F X

Destination Schema

<5chemas ﬂ =
RejectedReq L} =

i [Date]
EHJ ttem

-{%] Description
{2 OrderQuantity —
{4] Price
%] Total

Help

X

b

saftedold i3

Item(s) Saved

i ‘ cdio Adapters

An adapter is a component that resides between the
message broker and the source/target systems

Simplify complexity of end system interface through an
abstraction layer

Thin adapters - simple wrappers

Thick adapters

OO0 Programmable

[0 Abstract representation of services and meta-data
Centralized adapters co-located with broker

Distributed adapters execute in own process and may be
located with source/target system

o Message Brokers — Some
iﬁ Thoughts

Embeds transformations/routing in broker

0 Can get complex

Possible scaling issues

0 Need to replicate brokers

Failure handling

O Lightweight, rarely designed to recover from failure
Often proprietary technology

0 Good open source, standards-based like Mule now
available

i%ﬁ“éafu Business Process Orchestration

Commonly known as workflow

Aim Is to automate business processes which need
to access data and business logic across disparate
back-end applications

Builds on EAI to ensure business processes are
executed in the defined order using the required
data

Builds on middleware providing:
0 Process execution engine

0 Visual process definition tools

0 Process monitoring tools

ﬁsﬁ(’/

%

LN

cdio Typical Scenario

| Business process automation

£ yosiaygouy

=
—
<
k=
— -

s
S
S
Q
2
=
63

Fle Edit View Project Buid Debug BizTak Took Window Help
B-rim-sldd =28 -85) Deveopment -~

| B £

| | -|

Start Page Purchase.odx|
M ﬂ Port Surface («) @
kp.| 1

B OrderReceiveP...

| J2Jo|dxg JoAles ﬂgg| L

91X

(») Port Surface

= OrderIn E‘g

5% R Request Receive_Order

& P.

& =

T oT. Parallelactions_1

& M.

o 7 7

Fc SendToAccounts l l SendToSiebel

= ToAccounts 2 B2 . EZRMIn
: eques

Request SendToAccou... SendToCRM q

| |
y 4

. T

f: L. | (sendToshipping L
P.. ToShipping -
.. Request SendToShippi... |

LAl S-.. S I
N T %
o
Gen...
—_[|[Eorchestration|

|Index Results

Reavdy ”

40

i;:t‘:aau BPO Architecture
i | i 1 i |

Adapter Adapter Adapter

i

i

ia BPEL

| Web Services standard for describing workflows
| Many design and execution tools
0 Eg ActiveBPEL

| Version 2.0 is a significant improvement

‘ 2

i%“‘é&io Integration Issues — Point-to-Point

" | Point-to-Point evolution

| Spaghetti architecture, hard to modify potentially (N2-N)
Interfaces

b A

N

1 business process = 5 business processes =
4 interfaces 20 interfaces

i%“‘é&io Broker Spaghetti

| No free lunch ...
| Just relocates the spaghetti

message broker

‘ ua

‘cdio Enterprise Data Model

Source sends message to target with common message format as
payload.

Target receives message and transforms common format into its own
local data representation.

2xN transformations, no broker needed
Getting agreement is the tough bit ...

I N N I

I

\4

A
A
\4

Enterprise
Data Model

i * cdio Summary

Middleware:
makes building complex, distributed, concurrent
applications simpler.

Institutionalizes proven design practices by
supporting them in off-the-shelf middleware

technologies.
Architect’s job is to ‘mix n’'match’ technologies to create
appropriate solutions

Analyze trade-offs
Open-minded (no hammer/nail thinking)
No good/evil, its just technology

