
CTT526 - Kiến trúc phần mềm

Quy trình
kiến trúc phần mềm

PGS.TS. Trần Minh Triết

tmtriet@fit.hcmus.edu.vn

Trường Đại học Khoa Học Tự Nhiên
Khoa Công Nghệ Thông Tin

Bộ môn Công Nghệ Phần Mềm

Version 1.0

 Nội dung của bài giảng sử dụng:

Session 5:

A Software Architecture Process

trong bộ slide Software Architecture Essential

của GS. Ian Gorton

Software Engineering Institute

Carnegie Mellon University

2

A Software Architecture Process

 Architects must be versatile:
 Work with the requirements team: The architect plays

an important role in requirements gathering by
understanding the overall systems needs and ensuring
that the appropriate quality attributes are explicit and
understood.

 Work with various application stakeholders: Architects
play a pivotal liaison role by making sure all the
application‟s stakeholder needs are understood and
incorporated into the design.

 Lead the technical design team: Defining the
application architecture is a design activity.

 Work with the project management: Planning,
estimates, budgets, schedules

3

An Architecture Process

 Highly iterative

 Can scale to small/large projects

4

D e te rm in e

A rc h ite c tu ra l

R e q u ire m e n ts
A rc h ite c tu re

D e s ig n

V a lid a t io n

Determine Architectural

Requirements

 Sometime called:

 architecturally significant

requirements

 architecture use cases

 essentially the quality

and non-functional

requirements for a

system.

5

Functional

Requirements

Stakeholder

Requirements

Architecture

Requirements

Determine

Architecture

Requirements

Examples

 A typical architecture requirement :

 “Communications between components must be

guaranteed to succeed with no message loss”

 Some architecture requirements are constraints:

 “The system must use the existing IIS-based web server

and use Active Server Page to process web requests”

 Constraints impose restrictions on the architecture

and are (almost always) non-negotiable.

 They limit the range of design choices an architect

can make.

6

Quality Attribute Requirements

Quality

Attribute

Architecture Requirement

Performance Application performance must provide sub-four second response times for 90% of

requests.

Security All communications must be authenticated and encrypted using certificates.

Resource

Management

The server component must run on a low end office-based server with 512MB memory.

Usability The user interface component must run in an Internet browser to support remote users.

Availability The system must run 24x7x365, with overall availability of 0.99.

Reliability No message loss is allowed, and all message delivery outcomes must be known with 30

seconds

Scalability The application must be able to handle a peak load of 500 concurrent users during the

enrollment period.

Modifiability The architecture must support a phased migration from the current Forth Generation

Language (4GL) version to a .NET systems technology solution.

7

Constraints

Constraint Architecture Requirement

Business The technology must run as a plug-in for MS BizTalk, as we want to sell this to

Microsoft.

Development The system must be written in Java so that we can use existing development staff.

Schedule The first version of this product must be delivered within six months.

Business We want to work closely with and get more development funding from MegaHugeTech

Corp, so we need to use their technology in our application.

8

Priorities

 All requirements are not equal
 High: the application must support this requirement.

 Medium: this requirement will need to be supported at some
stage

 Low: this is part of the requirements wish list.

 Tricky in face of conflicts, eg:
 Reusability of components in the solution versus rapid

time-to-market. Making components generalized and
reusable always takes more time and effort.

 Minimal expenditure on COTS products versus reduced
development effort/cost. COTS products mean you have
to develop less code, but they cost money.

 It‟s design – not meant to be easy!

9

Architecture Design

 Design steps are iterative

 Risk identification is a

crucial output of the

design

10

Architecture

Requirements

Architecture

Views

Choose

Architecture

Framework

Allocate

Components

Architecture

Document

Choosing the Architecture

Framework

 Choose a architecture pattern/patterns that suit

requirements

 No magic formula

 Analyze requirements and quality attributed

supported by each pattern

 Complex architectures require creative blending of

multiple patterns.

11

N-Tier Client Server Pattern

 Separation of concerns:
Presentation, business and
data handling logic are clearly
partitioned in different tiers.

 Synchronous
communications:
Communications between tiers
is synchronous request-reply.
Each tier waits for a response
from the other tier before
proceeding.

 Flexible deployment: There
are no restrictions on how a
multi-tier application is
deployed. All tiers could run on
the same machine, or each tier
may be deployed on its own
machine.

12

Databases

Application Server

Web Server

Web

Client

Web

Client

Web

Client

Client

Tier

Web Server

Tier

Business

Logic Tier

Data

Management

Tier

N-Tier Client Server – Quality

Attribute Analysis
Quality

Attribute

Issues

Availability Servers in each tier can be replicated, so that if one fails, others remain available.

Overall the application will provide a lower quality of service until the failed

server is restored.

Failure handling If a client is communicating with a server that fails, most web and application

servers implement transparent failover. This means a client request is, without

its knowledge, redirected to a live replica server that can satisfy the request.

Modifiability Separation of concerns enhances modifiability, as the presentation, business and

data management logic are all clearly encapsulated. Each can have its internal

logic modified in many cases without changes rippling into other tiers.

Performance This architecture has proven high performance. Key issues to consider are the

amount of concurrent threads supported in each server, the speed of

connections between tiers and the amount of data that is transferred. As

always with distributed systems, it makes sense to minimize the calls needed

between tiers to fulfill each request.

Scalability As servers in each tier can be replicated, and multiple server instances run on the

same or different servers, the architecture scales out and up well. In practice,

the data management tier often becomes a bottleneck on the capacity of a

system. 13

Messaging Pattern

 Asynchronous
communications: Clients
send requests to the queue,
where the message is
stored until an application
removes it. Configurable
QoS: The queue can be
configured for high-speed,
non-reliable or slower,
reliable delivery. Queue
operations can be
coordinated with database
transactions.

 Loose coupling: There is
no direct binding between
clients and servers.

14

Server
Server

Client
Client

Client
Que

ue Server

Messaging – Quality Attribute

Analysis
Quality

Attribute

Issues

Availability Physical queues with the same logical name can be replicated across different

messaging server instances. When one fails, clients can send messages to

replica queues.

Failure handling If a client is communicating with a queue that fails, it can find a replica queue and

post the message there.

Modifiability Messaging is inherently loosely coupled, and this promotes high modifiability as

clients and servers are not directly bound through an interface. Changes to

the format of messages sent by clients may cause changes to the server

implementations. Self-describing, discoverable message formats can help

reduce this dependency on message formats.

Performance Message queuing technology can deliver thousands of messages per second. Non-

reliable messaging is faster than reliable, with the difference dependent of

the quality of the messaging technology used.

Scalability Queues can be hosted on the communicating endpoints, or be replicated across

clusters of messaging servers hosted on a single or multiple server machines.

This makes messaging a highly scalable solution.

15

Publish-Subscribe Pattern

 Many-to-Many messaging:
Published messages are
sent to all subscribers who
are registered with the topic.

 Configurable QoS: In
addition to non-reliable and
reliable messaging, the
underlying communication
mechanism may be point-to-
point or broadcast/multicast.

 Loose Coupling: As with
messaging, there is no
direct binding between
publishers and subscribers.

16

Subscriber

Publisher Subscriber

Subscriber

Topic

Publish-Subscribe – Quality Attribute

Analysis
Quality

Attribute

Issues

Availability Topics with the same logical name can be replicated across different server

instances managed as a cluster. When one fails, publishers send messages to

replica queues.

Failure handling If a publisher is communicating with a topic hosted by a server that fails, it can

find a live replica server and send the message there.

Modifiability Publish-subscribe is inherently loosely coupled, and this promotes high

modifiability. New publishers and subscribers can be added to the system

without change to the architecture or configuration. Changes to the format of

messages published may cause changes to the subscriber implementations.

Performance Publish-subscribe can deliver thousands of messages per second, with non-

reliable messaging faster than reliable. If a publish-subscribe broker supports

multicast/broadcast, it will deliver multiple messages in a more uniform time

to each subscriber.

Scalability Topics can be replicated across clusters of servers hosted on a single or multiple

server machines. Clusters of server can scale to provide very high message

volume throughput. Also, multicast/broadcast solutions scale better than their

point-to-point counterparts.

17

Broker Pattern

 Hub-and-spoke architecture:
The broker acts as a
messaging hub, and senders
and receivers connect as
spokes.

 Performs message routing:
The broker embeds processing
logic to deliver a message
received on an input port to an
output port.

 Performs message
transformation: The broker
logic transforms the source
message type received on the
input port to the destination
message type required on the
output port.

18

Receiver-2

Sender-1 Receiver-1

Broker

Sender-2

inPort1

inPort2

OutPort1

OutPort2

Broker Pattern - Quality Attribute

Analysis
Quality

Attribute

Issues

Availability To build high availability architectures, brokers must be replicated. This

is typically supported using similar mechanisms to messaging and

publish-subscribe server clustering.

Failure handling As brokers have typed input ports, they validate and discard any

messages that are sent in the wrong format. With replicated brokers,

senders can fail over to a live broker should one of the replicas fail.

Modifiability Brokers separate the transformation and message routing logic from the

senders and receivers. This enhances modifiability, as changes to

transformation and routing logic can be made without affecting

senders or receivers.

Performance Brokers can potentially become a bottleneck, especially if they must

service high message volumes and execute complex transformation

logic. Their throughput is typically lower than simple messaging

with reliable delivery.

Scalability Clustering broker instances makes it possible to construct systems scale

to handle high request loads.

19

Process Coordinator Pattern

 Process encapsulation: The
process coordinator
encapsulates the sequence of
steps needed to fulfill the
business process. The
sequence can be arbitrarily
complex.

 Loose coupling: The server
components are unaware of
their role in the overall business
process, and of the order of the
steps in the process.

 Flexible communications:
Communications between the
coordinator and servers can be
synchronous or asynchronous.

20

Server-3Server-2 Server-4

Process

Coordinator

Server-1

step1

step2 step3 step4

Start

process

request

Process

results

Process Coordinator – Quality

Attribute Analysis
Quality

Attribute

Issues

Availability The coordinator is a single point of failure. Hence it needs to be replicated to

create a high availability solution.

Failure handling Failure handling is complex, as it can occur at any stage in the business process

coordination. Failure of a later step in the process may require earlier steps

to be undone using compensating transactions. Handling failures needs

careful design to ensure the data maintained by the servers remains

consistent.

Modifiability Process modifiability is enhanced because the process definition is

encapsulated in the coordinator process. Servers can change their

implementation without affecting the coordinator or other servers, as long

as their external service definition doesn’t change.

Performance To achieve high performance, the coordinator must be able to handle multiple

concurrent requests and manage the state of each as they progress through

the process. Also, the performance of any process will be limited by the

slowest step, namely the slowest server in the process.

Scalability The coordinator can be replicated to scale the application both up and out.

21

Allocate Components

 Need to:

 Identify the major application components, and how they

plug into the framework.

 Identify the interface or services that each component

supports.

 Identify the responsibilities of the component, stating what

it can be relied upon to do when it receives a request.

 Identify dependencies between components.

 Identify partitions in the architecture that are candidates

for distribution over servers in a network

 And independent development

22

Some Design Guidelines

 Minimize dependencies between components. Strive for a
loosely coupled solution in which changes to one component do
not ripple through the architecture, propagating across many
components.

 Remember, every time you change something, you have to re-
test it.

 Design components that encapsulate a highly “cohesive” set of
responsibilities. Cohesion is a measure of how well the parts of
a component fit together.

 Isolate dependencies on middleware and any COTS
infrastructure technologies.

 Use decomposition to structure components hierarchically.

 Minimize calls between components, as these can prove costly
if the components are distributed.

23

A Simple Design Example

24

Validate

OrderInput

read

New

Orders

O
rd

erQ

Store

Customer

System

Order

System

SendEmail

Email

Server

Write

Order

Check

Order

Write

Order

Get

Order

Figure Key

Existing

Component

New

Component

Dependency

Database

Persistent

Queue

Error

Log

Example Design

 Based on messaging

 Application components are:

 OrderInput: responsible for accessing the new orders
database, encapsulating the order processing logic, and writing
to the queue.

 Validate: encapsulates the responsibility of interacting with the
customer system to carry out validation, and writing to the error
logs if an order is invalid.

 Store: responsibility of interacting with the order system to
store the order data.

 SendEmail: removes a message from the queue, formats an
email message and sends it via an email server. It encapsulates
all knowledge of the email format and email server access.

 Clear responsibilities and dependencies

25

Architecture Validation

 Aim of the validation phase is to increase confidence of the
design team that the architecture is fit for purpose.

 The validation has to be achieved within the project constraints
of time and budget
 The trick is to be as rigorous and efficient as possible.

 Validating an architecture design poses tough challenges.
 „coz it‟s a design that can‟t be executed or tested

 consists of new and COTS components that have to be
integrated

 Two main techniques:
1. manual testing of the architecture using test scenarios.

2. construction of a prototype that creates a simple archetype of the
desired application

 aim of both is to identify potential flaws in the design so that they
can be improved before implementation commences.
 Cheaper to fix before built

26

Scenarios

 Part of SEI‟s ATAM work

 Involves defining:

 some kind of stimulus that will have an impact on the

architecture.

 working out how the architecture responds to this

stimulus.

 If the response is desirable, then a scenario is

deemed to be satisfied by the architecture.

 If the response is undesirable, or hard to quantify,

then a flaw or at least an area of risk in the

architecture may have been uncovered.

27

Scenario Examples
Quality

Attribute

Stimulus Response

Availability The network connection to the

message consumers fails.

Messages are stored on the MOM server until the

connection is restored. Messages will only be

lost if the server fails before the connection

comes back up.

Modifiability A new set of data analysis

components must be made

available in the application.

The application needs to be rebuilt with the new

libraries, and the all configuration files must be

updated on every desktop to make the new

components visible in the GUI toolbox.

Security No requests are received on a user

session for ten minutes.

The system treats this session as potentially insecure

and invalidates the security credentials

associated with the session. The user must

logon again to connect to the application.

Modifiability The supplier of the transformation

engine goes out of business.

A new transformation engine must be purchased.

The abstract service layer that wraps the

transformation engine component must be re-

implemented to support the new engine. Client

components are unaffected as they only use the

abstract service layer.

Scalability The concurrent user request load

doubles during the 3 week

enrollment period.

The application server is scaled out on a two

machine cluster to handle the increased request

load. 28

Scenarios for Order Processing

Example
Quality

Attribute

Stimulus Response

Modifiability The Customer System packaged

application is updated to an Oracle

database.

The Validate component must be rewritten to

interface to the Oracle system.

Availability The email server fails. Messages build up in the OrderQ until the

email server restarts. Messages are then

sent by the SendEmail component to

remove the backlog. Order processing is

not affected.

Reliability The Customer or Order systems are

unavailable.

If either fails, order processing halts and alerts

are sent to system administrators so that

the problem can be fixed.

29

Needs fixing ….

Prototyping

 Scenarios can‟t address everything:
 “On Friday afternoon, orders must be processed before close-

of-business to ensure delivery by Monday. Five thousand
orders arrive through various channels (Web/Call
centre/business partners) five minutes before close-of-
business.”

 Only one way – build something!
 Proof-of-concept prototype: Can the architecture as

designed be built in a way that can satisfy the
requirements?

 Proof-of-technology prototype : Does the technology
(middleware, integrated applications, libraries, etc)
selected to implement the application behave as
expected?

30

Prototyping Strategy

 Build minimal system required to validate

architecture, eg:

 An existing application shows that the queue and

email systems are capable of supporting five

thousand messages in five minutes

 So:

 Write a test program that calls the Customer System

validation APIs five thousand times, and time how long

this takes.

 Write a test program that calls the Order System store

APIs five thousand times, and time how long this takes.

31

Prototyping Thoughts

 Prototypes should be used judiciously to help
reduce the risks inherent in a design.

 Only way to address:
 Performance

 Scalability

 Ease of integration

 Capabilities of off-the-shelf components

 Need to be carefully scoped and managed.
 Ideally take a day or two, a week or two at most.

 Usually thrown-away so keep them cheap

 Don‟t let them acquire a life of their own

32

Summary

 3 step, iterative architecture design process

 Can be customized to small/meduim/large projects

 Agnostic to overall process framework (ie RUP, agile,

waterfall, etc)

33

