CS202: Programming Systems

Module 4: Constructor - Destructor

Dr. Tran Minh Triet

1

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Acknowledgement

<+ Slides
= Course €S202: Programming Systems
Instructor: MSc. Karla Fant,
Portland State University
= Course €5202: Programming Systems
Instructor: Dr. Dinh Ba Tien,
University of Science, VNU-HCMC

= Course DEV275: Essentials of Visual Modeling with
UML 2.0
IBM Software Group

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

<»Constructors

<» The this pointer

<» Destructor

<»* Member Initialization
<» Copy constructor

<* Assignment operator

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

S e

<*Remember that when you define a local
variable in C++, the memory is not
automatically initialized for you.

<+ This could be a problem with classes and
objects

< Luckily, with a constructor we can write a
function to initialize our data members and
have it implicitly be invoked whenever a client
creates an object of the class

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2

< Constructor is a physical piece of code (in
fact, it is a special type of method) that is
used to construct and initialize objects.

<+ It is automatically invoked when a new object
IS created.

“» There is no returned value, even a void.
<+ A class can have many constructors (overload)

“*Name of the constructors must be the same
as the class name.

ongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

NoTes on construcrors

<» Default Constructor

<»Constructor with no parameters
<»Constructor with parameter(s)

< Constructor with default parameter(s)

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

B

Notes on constructors

<+ If no constructor is implemented, the
compiler will issue a default constructor

“»* The default constructor:

= No argument

= Invoke other default constructors of data
members if they are objects.

= Doesn't initialize other data members if they are
not objects.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Detault constructor

< If there is at least one constructor, the default
constructor will not be created by the compiler

class CDate
{ int main()
public: {
CDate(int iNewDay); CDate today; //error
private: return O;
}
).

< Advice: always define your own default
constructor!

ongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Other constructors

< They allow users different options to create a

new object
class CDate
{
private:

int m_iDay, m_iMonth, m_iYear;
public:

CDate();

CDate(int, int);

CDate(int, int, int);

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

<»Check the following lines of code, are they
correct in ferms of: syntax? semantics?
useful?

CDate::CDate(int m_iDay, int m_iMonth, int m_iYear)
{
m_iDay = m_iDay:
m_iMonth = m_iMonth;

m_iYear = m_iYear;

}

CDate today(4, 11, 2009);

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

today nextweek

tomorrow

- m_iDay - m_iDay - m_iDay
- m_iMonth - m_iMonth - m_iMonth
-m_iYear -m_iYear - m_iYear

int CDate::GetMonth()
{

}

<» How can we know day, month or year of which
object are using?

return m_iMonth;

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

<+ C++ adds an implicit function parameter - the
pointer to the current object instance: this

<+ this is a constant pointer, you cannot modify it
within a member function.
int month = today.GetMonth();

int CDate::GetMonth(CDate* const this) today

{
}

- m_iDay
- m_iMonth
-m_iYear

return this->m_iMonth;

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

CDate::CDate(int m_iDay, int m_iMonth, int m_iYear)
{
m_iDay = m_iDay;
m_iMonth = m_iMonth;

m_iYear = m_iYear;

}

< Syntax: correct
<» Semantic: legal
< Useful: NO!I!

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

CDate::CDate(int iDay, int iMonth, int iYear)
{
this->m_iDay = iDay;
this->m_iMonth = iMonth;

this->m_iYear = iYear;

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Destructor

We can deallocate the memory when the
lifetime of a list object is over

When is that?

Luckily, when the client's object of the list
class lifetime is over (at the end of the block
in which it is defined) -the destructor is
implicitly invoked

So, all we have to do is write a destructor to
deallocate our dynamic memory

15

ccccccccccccccccc

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Destructor

Invoked automatically, when the variable is
removed from memory (e.g. goes out of
scope).

Each class can have at most one destructor

The destructor name is a name of a class
preceded by a tilde sign (~).

Destructor, the same as constructor, has no
return type (even void)

Destructor frees the resources used by the
object (allocated memory, file descriptors,
semaphores etc.)

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

class CDate

{
private:
int m_iDay, m_iMonth, m_iYear;

public:
CDate();
CDate(int, int, int);
~CDate();

https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

<+ Distinguish between Assignment and

CDate::CDate(int iNDay, int iNMonth, int iNYear)
{
m_iDay = iNDay:
m_iMonth = iNMonth;

m_iYear = iNYear;

<*This is Assignment, not

ongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

“» This is members

class CDate
{
private:

int m_iDay, m_iMonth, m_iYear;
public:

CDate();

CDate(int iNDay, int iNMonth, int iNYear)

. iDay(iNDay), iMonth(iNMonth), iYear(iNYear)
{}

virtual ~CDate();

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Mandatory Members Lnitializati

< Const members
“*References

< Sub-objects which require arguments in
constructors

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

ndatory Members Lnitializati

class CTest
{
private:

Another& refA;// reference member

const int MAX; // const member

vector arr,;

public:

CTest(Another& r) : refA(r), MAX(100), arr (MAX) {}
}.

21

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Default copy constructor

<»In each class, if there is no copy constructor, a
default copy constructor will be generated. It
helps to create a new object of this class from
another object. For example:

int main()
{
CRectangle a,
CRectangle b(a):; // invoke copy constructor
CRectangle c = a; // invoke copy constructor
}

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

<» Default copy constructor performs a bitwise
copy from the source to the current object:

o

uongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

y o

<»Due to the bitwise copy of the default
constructor, it will cause a serious problem if
the copying takes place when the object has a
member pointer with a dynamic allocated
memory.

= Pointers of the source obj and the destination obj
will refer into the same memory

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

A e

<» Depending on the members of the class to
decide whether to have a copy constructor

= When having dynamic allocated members

CTest::CTest(const CTest& src)
{
1Size = src.iSize;

ptr = new int [iSize];
for (int i=0; iSize; ++i)
ptrli] = src.ptr[i];

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

O The default assignment operator

Similar to the default copy constructor, in
each class, if there is no assignment operator,
a default assignment operator will be
generated

It also has a similar functionality of a default
copy constructor, i.e. doing a bitwise copy
from the source object to the destination
object.

ccccccccccccccccc

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Assignment operator

-

Thus, if there is a pointer member in the class,
an assignment operator should be defined.

Note: assignment operator is a bit different
from the copy constructor:

Clean up the allocated memory that the pointer
member is pointing to before being allocated with a
new memory.

Remember to check for self-assignment

ccccccccccccccccc

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

* Clean up the memory it is pointing to

» Copy the memory to a new place

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

CTest& CTest::operator=(const CTest& src)

{
if (this = &src)

{
delete [] ptr;
1Size = src.iSize,;
ptr = new int [iSize];
for (int i=0; i<iSize; ++i)
ptrli] = src.ptr[i];
}

return *this;

}

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

The 3 following functions often go tfogether:
<» Copy constructor

<* Assignment operator

<» Destructor

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

