Module 5:

Operator Overloading

Dr. Tran Minh Triet

1

CuuDuongThan ICong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Acknowledgement

<+ Slides
= Course €S202: Programming Systems
Instructor: MSc. Karla Fant,
Portland State University
= Course €5202: Programming Systems
Instructor: Dr. Dinh Ba Tien,
University of Science, VNU-HCMC

= Course DEV275: Essentials of Visual Modeling with
UML 2.0
IBM Software Group

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

<*What is function overloading?
<+ Operator overloading in C++
<»Operator overloading in C#
<»Overloading cin and cout

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

< There are many different “definitions” for
the same name

“+In C++, overloading functions are
differentiated by their (i.e.
number/types of arguments)

< Note: the return type is not considered in
differentiating overloading functions.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

< To define operator implementations for our
new user-defined types

“*For example, operators such as +, -, *, / are
already defined for built-in types

<*When we have a new data type, e.g. CFraction,
we need to define new operator
implementations to work with it.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

+ - * / o B &

~ | = < > +=
= *= /= Yo= "= &= |=
<< >> >>= <<= == |= <=
>= && || ++ - >* ,
-> [] O new newl[] delete | delete]]

* Operator :: or . or .* cannot be defined by users.

» Operators sizeof, typeid, ?: cannot be overloaded.

* Operators =, ->, [], () can only be overloaded by non-static functions

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

_ J.

<» Do what users expect for that operator.

<»Define them if they make logical sense. E.g.
subtraction of dates are ok but not
multiplication or division

“*Provide a complete set of properly related
operators: a = a + b and a+= b have the same
effect

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

- J"-i

<»Declared & defined like other methods,
except that the keyword operator is used.

<returned-type> operator <op>(<arguments>)
Example:

bool CFullName::operator==(const CFullNameé& rhs)
{

return ((m_sFirstName==rhs.m_sFirstFName) &&
(m_sSurname==rhs.m_sSurName));

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

int main()

{
CFullName s1, s2;

if (s1==s2)//sl.operator==(s2)
{

}

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

— | JJ.

< Implement a CFraction class with basic
arithmetic operators: +, -, *, /
<*Remember to handle:
CFraction x, y;
y=x+D5;
y=5+x
< Implement prefix and postfix increment:
x++ and ++x. Hint: using dummy int

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

) Notes about Op overlooding

<+ Subscript operators often come in pair

const A& operator[] (int index) const;
A& operator(] (int index);

<» Maintain the usual identities for x ==y and
X =y

<*Prefix/Postfix operators for ++ and --
= Prefix returns a reference
= Postfix return a copy

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

int main()

{

CFullName s1, s2;
if (s1==352)
// member: sl.operator==(s2)
// or non-member: operator==(sl, s2)

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

The keyword: friend

-

With the keyword friend, you grant access to
other functions or classes

Friend functions give a flexibility to the class.
It doesn't violate the encapsulation of the
class.

Friendship is "directional”. It means if class A
considers class B as its friend, it doesn't mean
that class B considers A as a friend.

ccccccccccccccccc

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

A Bewe

class CDate

{

public:

Fr'iend void doSomething():
private:
int m_iDay, m_iMonth, m_iYear;

}

<*In doSomething(), we can have access to
private data members of the class CDate

https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

A Fedfmis

“*Friend functions is called like f(x) while
member functions is called x.f()

<*Use member functions if you can. Only choose
friend functions when you have to.

<» Sometimes, friend functions are good:
= Binary infix arithmetic operators, e.g. +, -
= Cannot modify original class, e.g. ostream

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

class CSample

{
private:
int m_a, m_b;
public:
friend int Compute(CSample x);

uongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

int Compute(CSample x)
{

return x.m_a+x.m_b:;

}

main()

{
CSample x;

cout <« "The result is:" <« Compute (x);

}

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Overloading cin and cout

-

We do not have access to the istream or
ostream code = cannot overload << or »>as
member functions

They cannot be members of the user-defined
class because the first parameter must be an
object of that type

Operators << and > must be non-members, but
it needs to access to private data members >
make them friend functions

ccccccccccccccccc

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

< The general syntax for insertion and
extraction operator overloadings:

ostreamd operator<«(ostreamé out, const CFraction& x)

{

out << x.numerator <«< " / " <« x.denominator:;
return out;

}

istreamd& operator>>(istream& in, CFraction& x):

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

<*Implement insertion and extraction operators
for CFraction and CDate class

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Operator Overloading In C#

Source: Operator Overloading In C#
By Rajesh (rajeshvs@msn.com)

URL: http://www.csharphelp.com/archives/archivel35.html

http://www.csharphelp.com/bio/rajesh.html
http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

< All C# binary operators can be overloaded.
+I -I *l /l o/ol &l |l <<l >>

< All C# unary operators can be overloaded.
+ -, 1 ~ ++ -- tfrue, false

< All relational operators can be overloaded,
but only as pairs.

::!:<><: >=
A Y Y | /

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

A o oustmgmmer

<*Compound assignment operators can be
overloaded.

“In C#, compound assignment operators are
automatically overloaded when the respective
binary operator is overloaded.

- - X - 9 _
+-l T T /—/ /O—

<» These operators cannot be overloaded:
&4, ||
() (Conversion operator)
=, .,?:, -> new, is, as, sizeof

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

<»Operator functions must be and
< They can take only arguments.

<*The ref and out parameters are not allowed
as arguments to operator functions.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

“* The general form of an operator function:
public static <return_type> operator <op>
(<argument list>)

“* For overloading the unary operators, there is
only one argument and for overloading a
binary operator there are two arguments.

“* At least one of the arguments must be a user-
defined type such as class or struct type.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

A o oustmgmmer

* The general form of operator function for
unary operators is as follows.

public static <return_type> operator <op>
(<Type> t)

{ /* Statements */ }

where Type must be a class or struct.

< The <refurn type> can be any type except void
for unary operators like +, ~, | and dot (.). but
the <refturn type> must be the type of <Type>
for ++ and --

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2

<* An overloaded binary operator must take two
arguments, at least one of them must be of
the type class or struct, in which the
operation is defined.

<»Overloaded binary operators can return any
value except the type void.

<* The general form of a overloaded binary
operator is as follows.

public static <return_type> operator <op>
(Typel t1, Type2 t2) { /*Statements™/}

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

