
Dr. Tran Minh Triet

1

Module 6:

Review

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Acknowledgement

Slides
 Course CS202: Programming Systems

Instructor: MSc. Karla Fant,

Portland State University

 Course CS202: Programming Systems

Instructor: Dr. Dinh Ba Tien,

University of Science, VNU-HCMC

 Course DEV275: Essentials of Visual Modeling with
UML 2.0
IBM Software Group

2

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Outline

OOP: class/object, data hiding, encapsulation...

Constructors, destructor

Copy constructor and assignment operator

Operators overloading

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Object-oriented programming

Class/object?

Data hiding

Encapsulation

Inheritance

...

 portable, mantainable, extensible code

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Object-oriented programming

Class: an abstraction representing a user
defined data type that defines structure and
behavior.

Object: an instance of a class that gets
allocated and deallocated.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Class members

Member: data and operations that are

defined as part of a class.

Data members: the data that is specified as

part of a class.

Member functions: the operations (or

methods) that can be performed on each

object.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Class interface & implementation

Class interface: declares the data and

operations for a user defined type. Also

known as a class definition.

Class implementation: implements the

operations of the class.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Constructors

Syntax? return type?

When is it invoked?

Overloading?

Default constructor

Initialization list
 Better or worse?

 In which case, do we have to use initialization list?

 The order of being initialized.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Constructor

Constructors: implicitly invoked when the
lifetime of an object begins; typically they
are used to initialize data members.

Default constructor: a constructor with no
arguments or with arguments that all have
default values.

Initialization list: supplies the initial values
for data members.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Destructor

Syntax?

When do we have to define?

Anything else?

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Destructor

Destructors: implicitly invoked when the
lifetime of an object ends; typically they are
used to release any resources set aside for
the object.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Copy constructor

Do we have default copy constructor
generated by the compiler?

What does it do?

Shallow copy VS deep copy

When do we need to write a copy
constructor?

Syntax?

Anything else?

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Assignment operator

Syntax?

Default assignment operator?

When do we need to write our own assignment
operator?

What is the difference between copy
constructor and assignment operator?

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Copy constructor and assignment op.

Copy constructor: makes a copy of an object

upon an object's creation.

Assignment operator: makes a copy of an

object when one object is assigned to

another.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Shallow vs Deep copy

Memberwise copy: the data members of one
object are copied into the data members of
another object.

Shallow copy: the data members of one object
are copied into the data members of another
object without taking any dynamic memory
pointed to by those data members into
consideration.

Deep copy: any dynamic memory pointed to by
the data members is duplicated and the contents
of that memory is copied.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Operator overloading

Guidelines?

Non-member functions?

Overload insertion and extraction operators

Subscript operator

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Operator overloading

Operator overloading: defining the behavior
of C++ operators when one or more of the
operands are objects of a class.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Operator overloading restriction

Operators must come from the built-in operators. We
cannot define our own operators.

Operators maintain their precedence and
associativity. We cannot alter it for our own classes.

Operators must be overloaded to expect the correct
number of operands. Unary operators expect one
operand and binary operators expect two operands.

Operators can only be overloaded when at least one
of the operands is a object of a class. We cannot
redefine the operation of operators on built-in types.

Operators cannot have default arguments.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Guidelines

 Determine if any of the class operations should be
implemented as overloaded operators instead of
member functions.

 Be sure that the operators provided for our class
make sense to the abstraction being defined.

 Be consistent with how the operators work with the
built-in types. Understand what data types are
allowed as operands, what conversions can be applied
to the operands, whether or not the operands are
modified, what data type is returned...

 Provide a complete set of overloaded operators for
each class.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Operators that cannot be overloaded

 :: scope resolution operator
 . direct member access operator
 .* direct pointer to member access operator
 ?: conditional operator
 sizeof size of object operator
 new memory allocation operator
 delete memory deallocation operator
 static_cast cast operator
 const_cast cast operator
 reinterpret_cast cast operator
 dynamic_cast run time type identification cast operator
 typeid run time type identification type operator

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Operators must be overloaded as members

= simple assignment operator

[] subscript operator

() function call operator

-> indirect member access operator

->* indirect pointer to member access
operator

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Unary operators
that should be overloaded as members

& address of operator

* dereference operator

++ increment operator (both prefix and postfix)

-- decrement operator (both prefix and postfix)

+ plus operator

- minus operator

~ bitwise negation operator (complement)

! logical negation operator

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Binary operators
that should be overloaded as members

*= /= %= += -=

arithmetic assignment operators

<<= >>= &= ^= |=

bitwise assignment operators

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Operators that
should be overloaded as non-members

* / % + - arithmetic operators

<< >> & ^ | bitwise operators

< <= > >= relational operators

== != equality operators

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Operators that should not be overloaded

&& || logical operators

, comma operator

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Operators that work best in pairs

 -> ->* indirect member and pointer to member
access operators

 & * address of and dereference operators

++ -- increment and decrement operators (both
prefix and postfix)

+ - plus and minus operators

* / multiplication and division operators

+ - addition and subtraction operators

new delete dynamic allocation/deallocation

new[] delete[] dynamic array
allocation/deallocation

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

