
Dr. Tran Minh Triet

1

Module 6:

Review

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Acknowledgement

Slides
 Course CS202: Programming Systems

Instructor: MSc. Karla Fant,

Portland State University

 Course CS202: Programming Systems

Instructor: Dr. Dinh Ba Tien,

University of Science, VNU-HCMC

 Course DEV275: Essentials of Visual Modeling with
UML 2.0
IBM Software Group

2

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Outline

OOP: class/object, data hiding, encapsulation...

Constructors, destructor

Copy constructor and assignment operator

Operators overloading

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Object-oriented programming

Class/object?

Data hiding

Encapsulation

Inheritance

...

 portable, mantainable, extensible code

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Object-oriented programming

Class: an abstraction representing a user
defined data type that defines structure and
behavior.

Object: an instance of a class that gets
allocated and deallocated.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Class members

Member: data and operations that are

defined as part of a class.

Data members: the data that is specified as

part of a class.

Member functions: the operations (or

methods) that can be performed on each

object.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Class interface & implementation

Class interface: declares the data and

operations for a user defined type. Also

known as a class definition.

Class implementation: implements the

operations of the class.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Constructors

Syntax? return type?

When is it invoked?

Overloading?

Default constructor

Initialization list
 Better or worse?

 In which case, do we have to use initialization list?

 The order of being initialized.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Constructor

Constructors: implicitly invoked when the
lifetime of an object begins; typically they
are used to initialize data members.

Default constructor: a constructor with no
arguments or with arguments that all have
default values.

Initialization list: supplies the initial values
for data members.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Destructor

Syntax?

When do we have to define?

Anything else?

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Destructor

Destructors: implicitly invoked when the
lifetime of an object ends; typically they are
used to release any resources set aside for
the object.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Copy constructor

Do we have default copy constructor
generated by the compiler?

What does it do?

Shallow copy VS deep copy

When do we need to write a copy
constructor?

Syntax?

Anything else?

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Assignment operator

Syntax?

Default assignment operator?

When do we need to write our own assignment
operator?

What is the difference between copy
constructor and assignment operator?

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Copy constructor and assignment op.

Copy constructor: makes a copy of an object

upon an object's creation.

Assignment operator: makes a copy of an

object when one object is assigned to

another.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Shallow vs Deep copy

Memberwise copy: the data members of one
object are copied into the data members of
another object.

Shallow copy: the data members of one object
are copied into the data members of another
object without taking any dynamic memory
pointed to by those data members into
consideration.

Deep copy: any dynamic memory pointed to by
the data members is duplicated and the contents
of that memory is copied.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Operator overloading

Guidelines?

Non-member functions?

Overload insertion and extraction operators

Subscript operator

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Operator overloading

Operator overloading: defining the behavior
of C++ operators when one or more of the
operands are objects of a class.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Operator overloading restriction

Operators must come from the built-in operators. We
cannot define our own operators.

Operators maintain their precedence and
associativity. We cannot alter it for our own classes.

Operators must be overloaded to expect the correct
number of operands. Unary operators expect one
operand and binary operators expect two operands.

Operators can only be overloaded when at least one
of the operands is a object of a class. We cannot
redefine the operation of operators on built-in types.

Operators cannot have default arguments.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Guidelines

 Determine if any of the class operations should be
implemented as overloaded operators instead of
member functions.

 Be sure that the operators provided for our class
make sense to the abstraction being defined.

 Be consistent with how the operators work with the
built-in types. Understand what data types are
allowed as operands, what conversions can be applied
to the operands, whether or not the operands are
modified, what data type is returned...

 Provide a complete set of overloaded operators for
each class.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Operators that cannot be overloaded

 :: scope resolution operator
 . direct member access operator
 .* direct pointer to member access operator
 ?: conditional operator
 sizeof size of object operator
 new memory allocation operator
 delete memory deallocation operator
 static_cast cast operator
 const_cast cast operator
 reinterpret_cast cast operator
 dynamic_cast run time type identification cast operator
 typeid run time type identification type operator

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Operators must be overloaded as members

= simple assignment operator

[] subscript operator

() function call operator

-> indirect member access operator

->* indirect pointer to member access
operator

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Unary operators
that should be overloaded as members

& address of operator

* dereference operator

++ increment operator (both prefix and postfix)

-- decrement operator (both prefix and postfix)

+ plus operator

- minus operator

~ bitwise negation operator (complement)

! logical negation operator

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Binary operators
that should be overloaded as members

*= /= %= += -=

arithmetic assignment operators

<<= >>= &= ^= |=

bitwise assignment operators

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Operators that
should be overloaded as non-members

* / % + - arithmetic operators

<< >> & ^ | bitwise operators

< <= > >= relational operators

== != equality operators

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Operators that should not be overloaded

&& || logical operators

, comma operator

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Operators that work best in pairs

 -> ->* indirect member and pointer to member
access operators

 & * address of and dereference operators

++ -- increment and decrement operators (both
prefix and postfix)

+ - plus and minus operators

* / multiplication and division operators

+ - addition and subtraction operators

new delete dynamic allocation/deallocation

new[] delete[] dynamic array
allocation/deallocation

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

