Module 6:

Review

Dr. Tran Minh Triet

1

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Acknowledgement

<+ Slides
= Course €S202: Programming Systems
Instructor: MSc. Karla Fant,
Portland State University
= Course €5202: Programming Systems
Instructor: Dr. Dinh Ba Tien,
University of Science, VNU-HCMC

= Course DEV275: Essentials of Visual Modeling with
UML 2.0
IBM Software Group

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

<+ OOP: class/object, data hiding, encapsulation...

< Constructors, destructor
<+ Copy constructor and assignment operator
<» Operators overloading

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Object-oriented Hf UJI amming

<+ Class/object?
<»Data hiding
<»Encapsulation
<*Inheritance

\/
”’ o000

=> portable, mantainable, extensible code

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

-

Object-oriented programming

<+ Class: an abstraction representing a user
defined data type that defines structure and
behavior.

<+Object: an instance of a class that gets
allocated and deallocated.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

<»* Member: data and operations that are
defined as part of a class.

<> Data members: the data that is specified as
part of a class.

<» Member functions: the operations (or
methods) that can be performed on each
object.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

zmentation

“»Class interface: declares the data and
operations for a user defined type. Also
known as a class definition.

<+ Class implementation: implements the
operations of the class.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

< Syntax? return type?
“*When is it invoked?
<»Overloading?
» Default constructor
< Initialization list

= Better or worse?

= In which case, do we have to use initialization list?
= The order of being initialized.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

2

< Constructors: implicitly invoked when the
lifetime of an object begins; typically they
are used to initialize data members.

<» Default constructor: a constructor with no
arguments or with arguments that all have
default values.

<+ Initialization list: supplies the initial values
for data members.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

< Syntax?
“*When do we have to define?
<» Anything else?

uongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

< Destructors: implicitly invoked when the
lifetime of an object ends; typically they are
used to release any resources set aside for
the object.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

<» Do we have default copy constructor
generated by the compiler?

“»*What does it do?

<» Shallow copy VS deep copy

<»*When do we need to write a copy
constructor?

< Syntax?
< Anything else?

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Assignment or)/r’frror

< Syntax?
<» Default assignment operator?

<*When do we need to write our own assignment
operator?

<*What is the difference between copy
constructor and assignment operator?

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Copy constructor and assignment op.

<+ Copy constructor: makes a copy of an object
upoh an object's creation.

< Assignment operator: makes a copy of an
object when one object is assigned to
another.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Shallow vs Deep copy

-

Memberwise copy: the data members of one
object are copied into the data members of
another object.

Shallow copy: the data members of one object
are copied into the data members of another
object without taking any dynamic memory
pointed to by those data members into
consideration.

Deep copy: any dynamic memory pointed to by
the data members is duplicated and the contents
of that memory is copied.

ccccccccccccccccc

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Operator overloading

<»Guidelines?

<*Non-member functions?

<»QOverload insertion and extraction operators
<» Subscript operator

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Operator overloading

< Operator overloading: defining the behavior
of C++ operators when one or more of the
operands are objects of a class.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

O Operator overloading restriction

Operators must come from the built-in operators. We
cannot define our own operators.

Operators maintain their precedence and
associativity. We cannot alter it for our own classes.

Operators must be overloaded to expect the correct
number of operands. Unary operators expect one
operand and binary operators expect two operands.

Operators can only be overloaded when at least one
of the operands is a object of a class. We cannot
redefine the operation of operators on built-in types.

Operators cannot have default arguments.

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Guidelines

Determine if any of the class operations should be
implemented as overloaded operators instead of
member functions.

Be sure that the operators provided for our class
make sense to the abstraction being defined.

Be consistent with how the operators work with the
built-in types. Understand what data types are
allowed as operands, what conversions can be applied
to the operands, whether or not the operands are
modified, what data type is returned...

Provide a complete set of overloaded operators for
each class.

ccccccccccccccccc

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

@pem‘ror‘s that cannot be overloaded

scope resolution operator
direct member access operator
.* direct pointer to member access operator
?: conditional operator
sizeof size of object operator
new memory allocation operator
delete memory deallocation operator

static _cast cast operator
const cast cast operator
reinterpret cast cast operator

dynamic_cast run time type identification cast operator
typeid run tfime type identification type operator

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

.Qpar’c&‘for’;’ must be overloaded as members

o= simple assignment operator

XN subscript operator

() function call operator

@=> indirect member access operator
e —>* indirect pointer to member access

operator

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Unary operators
that should be overloaded as members

& address of operator

* dereference operator

++ increment operator (both prefix and postfix)
-- decrement operator (both prefix and postfix)
+ plus operator

- minus operator

~ bitwise negation operator (complement)

! logical negation operator

ccccccccccccccccc

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

r)

=] ”f/ peia

e k= /— = 4= —-=
arithmetic assignment operators

P<<= >>= §= A= |=
bitwise assignment operators

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

“* [/ % + - arithmetic operators

<< >> & ~ | bitwise operators
< <= > >= relational operators

S== I= equality operators

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

| .) =J } - - | :‘ ‘ll" ~) ~
”dJo%r)cr,mrJ 'nat should not be overloaded

< && || logical operators

“, comma operator

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Wo=> > indirect member and pointer to member
access operators

v & * address of and dereference operators

o+t -- increment and decrement operators (both
prefix and postfix)

w4 - plus and minus operators
ek / multiplication and division operators
w4 - addition and subtraction operators

0

*new delete dynamic allocation/deallocation

‘*new[] deletel] dynamic array
allocation/deallocation

CuuDuongThanCong.com https://fb.com/tailieudientucntt

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

