Module 9:

Relationships in Class Diagrams

Dr. Tran Minh Triet

1

CuuDuongThan ICong.com https://fb.com/tailieudientucntt


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Acknowledgement

<+ Slides
= Course €S202: Programming Systems
Instructor: MSc. Karla Fant,
Portland State University
= Course €5202: Programming Systems
Instructor: Dr. Dinh Ba Tien,
University of Science, VNU-HCMC

= Course DEV275: Essentials of Visual Modeling with
UML 2.0
IBM Software Group


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

CuuDuongThanCong.com https://fb.com/tailieudientucntt


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

<*Relationships in class diagrams
< Generalization

<» Association

<* Aggregation

<»Composition

<» Dependency


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

-

The Need for Relationships

All systems encompass many classes and
objects

Objects contribute to the behavior of a
system by collaborating with one another

» Collaboration is accomplished through
relationships

Important types of relationships:
* Generalization
» Association/Aggregation/Composition
- Dependency

ccccccccccccccccc


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

-

Associations

An association is a bi-directional semantic
cohnection between classes

» This implies that there is a link between
objects in the associated classes

Associations are represented on class
diagrams by a (solid) line connecting the
associated classes

Data may flow in either direction or both
directions across a link

ccccccccccccccccc


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

<+ Association relationship between class A and
class B
= there is at least one attribute of class B in class A
or
= there is at least one attribute of class A in class B



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

_ J.

= Aggregation is a specialized form of
association in which a whole is related to its
part(s)
* Aggregation is known as a "part-of"” or
containment relationship

= An aggregation is represented as an
association with a diamond next to the
class denoting the aggregate (whole)

Car Wheel



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

= Is the phrase "part of" used to describe
the relationship?

* A Door is "part of" a Car

= Are some operations on the whole
automatically applied to its parts?

* Move the Car, Move the Door


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

A e

= Are some attribute values propagated from
the whole to all or some of its parts?

» The Car is blue, the Door is Blue
= Is there an intrinsic asymmetry to the

relationship where one class is subordinate
to the other?

» A Door IS part of a Car, a Car IS NOT part
of a Door


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

= If two objects are tightly bound by a whole-part
relationship

* The relationship is an aggregation

= If two objects are usually considered as
independent, even though they are often linked

* The relationship is an association

Curriculum Course Student

O *
1 T 1. 0.* T 3..10

Curriculum and Course are Independent objects
tightly coupled -- the Curriculum is
“made up of” 1 to many Courses

CuuDuongThanCong.com https://fb.com/tailieudientucntt


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

= In a reflexive association, objects in the same
class are related

» Indicates that multiple objects in the same class
collaborate together in some way

Course [0

Pre-requisite | «

CuuDuongThanCong.com https://fb.com/tailieudientucntt


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

= Aggregates can also be reflexive
* Classic bill of materials type problem

= This indicates a recursive relationship

ProductPart

0..1
>——

CuuDuongThanCong.com

One ProductPart object contains
zero or more ProductPart objects

https://fb.com/tailieudientucntt


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

< A form of aggregation with strong ownership
and coincident lifetimes
= The parts cannot survive the whole/aggregate

Whole Part
Whole Part
<

Composition


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

<+ Shared Aggregation

Multiplicity > 1

Whole 1. 0.7 Part

<* Non-shared Aggregation
Multiplicity = 1 Multiplicity = 1

Whole 1 / 0..* Part Whole 1 / 0..* Part
Composition

By definition, composition is non-shared aggregation.

CuuDuongThanCong.com https://fb.com/tailieudientucntt


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

“»Consideration
= Lifetimes of Classl and Class?2

Classl Class?2

Aggregation

Classl Class?2

Composition

CuuDuongThanCong.com https://fb.com/tailieudientucntt


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

A oefnedependeny

“*What Is a Dependency?
= A relationship between two objects

Client | N Supplier
“*Purpose
= Determine where structural relationships are NOT
required

< Things to look for :
= What causes the supplier to be visible to the client


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

“» Associations are structural
relationships

<+ Dependencies are non-structural

Supplier2

relationships

<» In order for objects to "know each

N\

other” they must be visible
= Local variable reference Client

= Parameter reference ~ Dependency

= Global reference )

» Field reference } Association /l

Supplierl

CuuDuongThanCong.com https://fb.com/tailieudientucntt



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Associations vs. Dependencies in
Collaborations

-

An instance of an association is a link

All links become associations unless they have
global, local, or parameter visibility

Relationships are context-dependent
Dependencies are transient links with:

A limited duration

A context-independent relationship

A summary relationship

ccccccccccccccccc


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

<» The op1() operation contains a local variable

of type ClassB

ClassA

+opl ()

ClassB



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

<» The ClassB instance is passed to the ClassA

iInstance

ClassA

+ opl ([in] aParam : ClassB )

ClassB



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

< The ClassUtility instance is visible because it

is global Cncen

+0opl ()

v
ClassB

+ utilityOp ()



http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Gien’rifying Dependencies: Considerations

Permanent relationships — Association (field visibility)

Transient relationships — Dependency
Multiple objects share the same instance
» Pass instance as a parameter (parameter visibility)
* Make instance a managed global (global visibility)
Multiple objects don't share the same instance (local
visibility)
How long does it take to create/destroy?
Expensive? Use field, parameter, or global visibility
Strive for the lightest relationships possible


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

