HO CHI MINH CITY UNIVERSITY OF SCIENCE FACULTY OF ELECTRONICS AND TELECOMMUNICATIONS DEPARTMENT OF TELECOMMUNICATIONS AND NETWORKS

COURSE

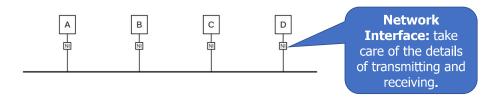
COMPUTER NETWORK

Chapter

Ethernet

Reference: Peter L Dordal, "An Introduction to Computer Networks," Feb 05, 2022

Lecturer: Nguyen Viet Ha, Ph.D.

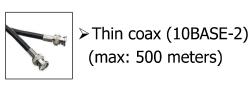

Email: nvha@fetel.hcmus.edu.vn

1. 10-Mbps Classic Ethernet

❖Ethernet: IEEE 802.3 (FYI: WiFi: 802.11, WiMAX: 802.16)

♦ Broadcast bus

- >Consisted of a long piece of cable (possibly spliced by **repeaters**).
- > Data went everywhere along that cable.



1. 10-Mbps Classic Ethernet

- ❖There were three physical formats for 10 Mbps Ethernet cable.
 - ➤ Thick coax (10BASE-5) (max: 500 meters)

10-Mbps Classic Ethernet

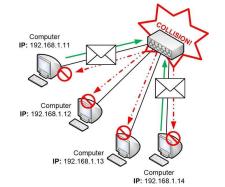
10BASE-5 vs 10BASE-2

➤ Twisted pair (10BASE-T)

(max: 100 meters)

- ❖There were three physical formats for 10 Mbps Ethernet cable.
 - >thick-coax cabling, connections were made via taps, often literally drilled into the coax central conductor.
 - >Thin coax allowed the use of T-connectors to attach hosts.
 - **➤Twisted-pair** does not allow mid-cable attachment; it is only used for **point-to-point links**.

Tap, T-connector, and RJ-45

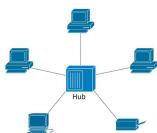

ecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETE

turer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS, HCM-Vi

1. 10-Mbps Classic Ethernet

❖Bridge – later known as Switch

- ➤ Not bit. Reads in and forwards an entire packet.
- ➤ Can determine to where the packet is forwarded. (Using MAC address)
- ➤Note:
 - Hubs propagate collisions;
 - Switches do not.


1. 10-Mbps Classic Ethernet

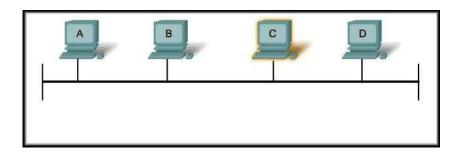
❖ Repeaters

- ➤ Signal amplifier (might attempt to clean up a noisy signal).
- > Process each bit individually and did no buffering.

. Hub

- >A repeater with more than two ports.
- >Star topologies in which each host connects directly to the hub rather than to one long run of coax.
- > Twisted-pair cable.

1. 10-Mbps Classic Ethernet

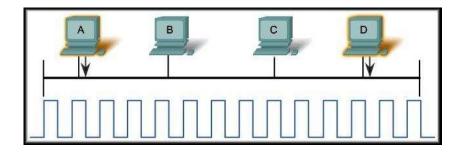

❖Two stations transmitted at the same time, the signals would collide.

*CSMA/CD (Carrier Sense, Multiple Access, Collision Detect)

- ➤ Before transmission, wait for the line to become quiet.
- ➤ While transmitting, continually monitor the line for signs that a collision has occurred; if a collision is detected, cease transmitting.
- ➤ If a collision occurs, use a backoff-and-retransmit strategy.

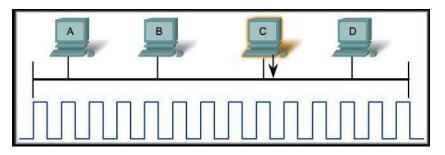
*CSMA/CD (Carrier Sense, Multiple Access, Collision Detect)

- > To transmit, each host will listen on the media.
 - o If a signal from another device is present, it will wait for a specific amount of time and listen again.
 - o If no signal is present, it will transmit.


Lecturer: Nauven Viet Ha. Ph.D. - Department of Telecommunications and Networks, FETEL. HCMUS, HCM-VNU

1. 10-Mbps Classic Ethernet

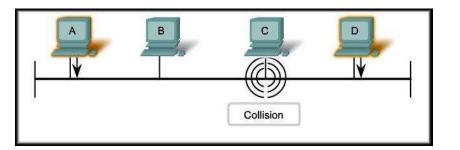
♦• CSMA/CD (Carrier Sense, Multiple Access, Collision Detect)


- > It can happen that two devices will determine that it is safe to transmit at exactly the same time.
 - o In that case, both will transmit their frame.

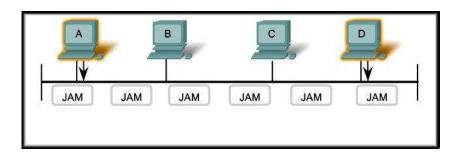
1. 10-Mbps Classic Ethernet

♦ CSMA/CD (Carrier Sense, Multiple Access, Collision Detect)

- > To transmit, each host will listen on the media.
 - \circ If a signal from another device is present, it will wait for a specific amount of time (e.g., 9.6 μs for 10-Mbps Ethernet) and listen again.
 - If no signal is present, it will transmit.


Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS, HCM-VNU

1. 10-Mbps Classic Ethernet


♦ CSMA/CD (Carrier Sense, Multiple Access, Collision Detect)

- > It can happen that two devices will determine that it is safe to transmit at exactly the same time.
 - o In that case, both will transmit their frame.

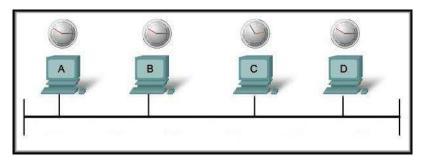
*CSMA/CD (Carrier Sense, Multiple Access, Collision Detect)

- > Both devices detect the collision and send out a jamming signal.
 - The jamming signal is detected by all devices and all devices now know that a collision has occurred on the network.

ecturer: Nauven Viet Ha. Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS, HCM-VN

13

1. 10-Mbps Classic Ethernet


♦ The Slot Time and Collisions

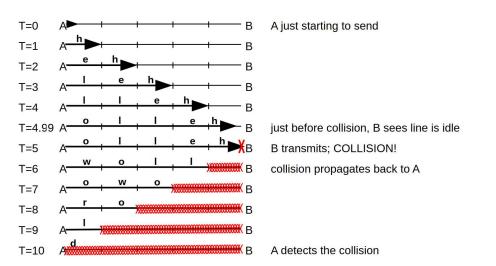
- ➤ The **diameter** of an Ethernet is the maximum distance between any pair of stations.
 - o Measured in bits.
 - o Maximum: 232 bits.
- >Jam signal: 32 bits (up to 48 bits)
 - \circ 16 times \rightarrow 512 bits (or 64 bytes)
 - Also, be the **minimum of the frame size**.
- >A slot time = 512 bits
 - The time to send 512 bits of Jam signal.
- ➤ Time intervals are often described in bit times but in conventional time units the slot time is 51.2 µsec.

1. 10-Mbps Classic Ethernet

♦ CSMA/CD (Carrier Sense, Multiple Access, Collision Detect)

- > Each device to invoke a backoff algorithm.
 - Devices wait a random amount of time before returning to listening mode.
 - The random time ensures that the original devices that caused the collision won't repeat it.

ecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS, HCM



1. 10-Mbps Classic Ethernet

❖The Slot Time and Collisions

- ➤ One slot time is enough time for any other station to have realized that the first station has started transmitting and wait for the first station to finish.
- ➤ Ethernet has a minimum packet size = a slot time.
 - o If a collision were to occur, the sender would detect it.
 - o If we need to send less than 46 bytes of data, the Ethernet packet must be padded out to the minimum length.
 - All protocols running on top of Ethernet need to provide some way to specify the actual data length, as it cannot be inferred from the received packet size.

❖The Slot Time and Collisions

cturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS, HCM-VNU

17

1. 10-Mbps Classic Ethernet

Exponential Backoff Algorithm

- ➤ Range from which the backoff value is chosen is doubled after every successive collision involving the same packet.
- ➤If a collision does occur, send the jam signal, choose a backoff time as follows:
 - ∘ For *N-th* transmission (*N=0* represents the original attempt):
 - If $1 \le N \le 10$, choose **k** randomly with $0 \le k < 2^N$.
 - If $11 \le N \le 15$, choose **k** randomly with $0 \le k < 1024$.
 - \circ Wait **k** slot times (**k** \times 51.2 µsec).
 - \circ If reach N=16 (16 transmission attempts), give up.

1. 10-Mbps Classic Ethernet

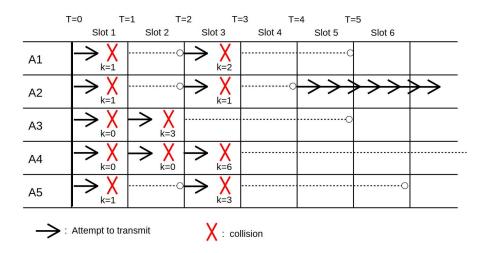
❖Interpacket gap (IPG)

- ➤ Also known as interframe spacing, or interframe gap.
- ➤ A delay or time gap between CSMA/CD packets intended to provide interframe recovery time for other CSMA/CD sublayers and for the Physical Medium.
- The standard minimum interpacket gap for transmission is 96 bit.

Pack	et	Packet		Packet		Packet	
	gap	•	gap		gap		

Ethernet variant	Minimum transmitted IPG
10 Mbit/s Ethernet	9.6 μs
100 Mbit/s (Fast) Ethernet	0.96 μs
Gigabit Ethernet	96 ns
2.5 Gigabit Ethernet	38.4 ns
5 Gigabit Ethernet	19.2 ns
10 Gigabit Ethernet	9.6 ns

urer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS, HCM-V


1. 10-Mbps Classic Ethernet

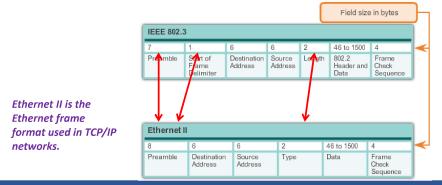
*Exponential Backoff Algorithm

- A maximum of **1024 hosts** is allowed on an Ethernet. \circ (k<1024).
 - o If there are 1024 hosts simultaneously trying to send.
 - Once the backoff range has reached k<1024 (N=10),
 - It is a good chance that one station will succeed in seizing the channel,
 - That is; the minimum value of all the random *k*'s chosen will be unique.

❖Exponential Backoff Algorithm

? A2 will occupy the entire bandwidth

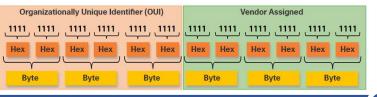
Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS, HCM-VNU


21

1. 10-Mbps Classic Ethernet

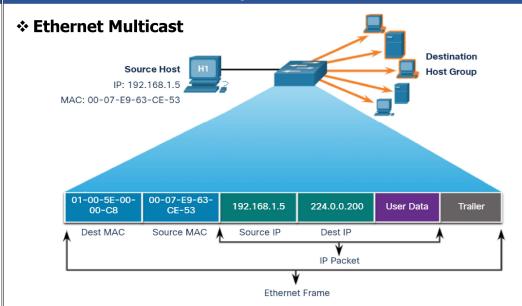
- **❖ The address** is often referred to as a **burned-in address** (BIA)
 - > Burned in ROM.
 - ➤ Unique.
- ❖ Preamble: for synchronization: a block of 1 bits followed by a 0.
- * Type: Identifies the Layer 3 protocol in the data field.
 - > E.g., 0x0800=IP, 0x8137=IPX, 0x0806=ARP
- ❖ Maximum Ethernet length: 1500 bytes

1. 10-Mbps Classic Ethernet


- ❖ There are two styles of Ethernet framing:
 - ➤ IEEE 802.3 Ethernet standard which has been updated several times to include new technologies
 - The DIX Ethernet standard which is now referred to Ethernet II

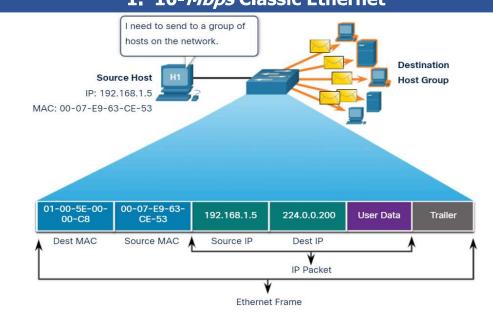
cturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS, HCM-VNU

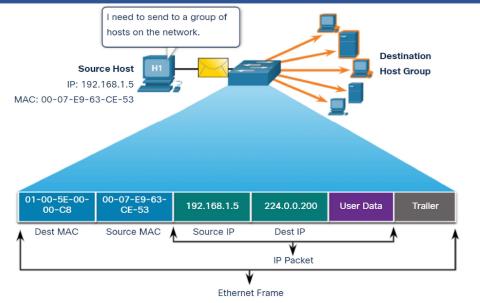
1. 10-Mbps Classic Ethernet

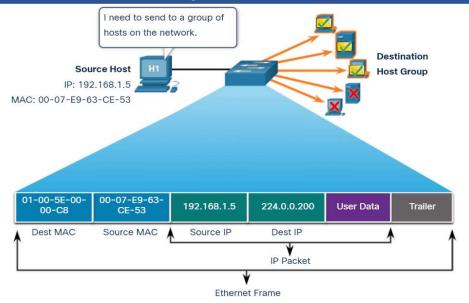

- * The address is often referred to as a burned-in address (BIA)
 - > Burned in ROM.
 - Unique.
 - The **first three bytes** of the physical address have been assigned to the manufacturer.
 - The **subsequent three bytes** are a serial number assigned by that manufacturer.

❖ Ethernet Multicast

- > Transmit to a set of stations; streaming video to multiple simultaneous viewers.
- ➤ IPv4 multicast → MAC address: **01-00-5E**-??-??-??
- \rightarrow IPv6 multicast \rightarrow MAC address: 33-33-??-??-??-??
- > It is flooded out all Ethernet switch ports except the incoming port, unless the switch is configured for **multicast snooping**.


1. 10-Mbps Classic Ethernet


Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS, HCM-VNU


Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS, HCM-VNU

1. 10-Mbps Classic Ethernet

1. 10-Mbps Classic Ethernet

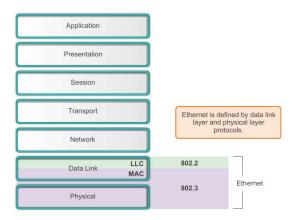
Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS, HCM-VNU

1. 10-Mbps Classic Ethernet

***LLC and MAC Sublayers**

>LLC

- o Takes the network protocol data and adds control information to help deliver the packet to the destination.
- o Implemented in **software.**


>MAC

- o Data encapsulation
- Media access control
- $_{\odot}$ Implemented by $\boldsymbol{hardware},$ typically in the computer NIC.

1. 10-Mbps Classic Ethernet

❖LLC and MAC Sublayers

➤In IEEE protocols, the LAN layer is divided into the **media access control**, or MAC, sublayer and a higher **logical link control**.

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS, HCM-VNG

2

100 Mbps (Fast) Ethernet

2. 100 Mbps (Fast) Ethernet

- ❖100 Mbps Ethernet is officially known as 100BASE-TX.
 - ➤ Operates over twisted-pair cable.
 - ➤Instead of increasing the minimum packet size, the decision was made to ensure collision detectability by reducing the network diameter.
 - The network diameter: 400 meters (10 Mbps Ethernet: up to 2500 meters).
 - Using optical-fiber-based 100BASE-FX in half-duplex mode, but this is not common.
 - The network diameter: 200 meters
 - Using 100BASE-TX network diameter with hubs.
 - maximum cable length 100 meters.

cturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS, HCM-VNU

rer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FE

34

2. Gigabit Ethernet

- ❖The problem of scaling Ethernet to handle collision detection gets harder as the transmission rate increases.
 - ➤If maintain the 51.2 µsec slot time but raise the transmission rate to 1000 Mbps, the maximum network diameter would be 20-40 meters.
 - ➤ Gigabit Ethernet moved to a **4096-bit (512-byte, or 4.096 µsec)** slot time for the twisted-pair versions.
 - Increase the minimum frame size to 512 bytes.
 - Short frames need to be padded, but this padding is done by the hardware.

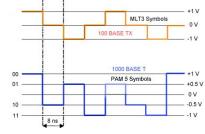
Gigabit Ethernet

3

2. 100 Mbps (Fast) Ethernet

- ❖Switch partition an Ethernet into separate "collision domains".
 - ➤ Each collision domain is simply a single twisted-pair link, subject to the 100-meter maximum length.

❖Full-duplex Ethernet:


- >Two twisted pairs could be used, one for each direction.
 - Collision-free.
- >100BASE-FX with full-duplex can up to 2,000 meters.
 - Links between buildings

2. Gigabit Ethernet

- ❖Gigabit Ethernet mostly works with full-duplex.
 - **≻**Collision-free.
 - ▶10 Gigabit Ethernet has officially abandoned any pretense of supporting collisions; everything must be full-duplex.
- ❖Gigabit Ethernet 1000Base-T uses PAM-5 encoding (vs. 4B/5B encoding of 100Base-TX)

2. Gigabit Ethernet

- ❖The most common gigabit Ethernet over copper wire is 1000BASE-T.
 - For 1000BASE-T, all four twisted pairs in the cable are used.
 - ➤ Each pair transmits at **250 Mbps**, and each pair is bidirectional, thus supporting full-duplex communication.
 - ➤On any one cable pair, there are five signaling levels. These are used to transmit two-bit symbols at a rate of 125 symbols/µsec, for a data rate of 250 bits/µsec.

➤ The target bit error rate (BER) for 1000BASF-T is 10-10

cturer: Nauven Viet Ha. Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS, HCM-VNU

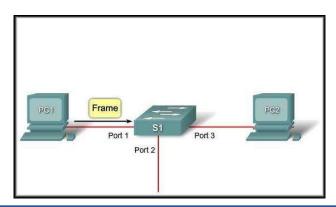
37

er: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS, HCM-VNU

4. Ethernet Switches

- ❖Switches join separate physical Ethernets.
- ❖A switch has two or more Ethernet interfaces.
 - >When a packet is received on one interface it is retransmitted on one or more other interfaces.
- ❖Only valid packets are forwarded; collisions are not propagated.
- Ethernet also offers much more resistance to eavesdropping than a non-switched (e.g., hub-based) Ethernet.

4


Ethernet Switches

4. Ethernet Switches

Ethernet Learning Algorithm

>Example Step 1:

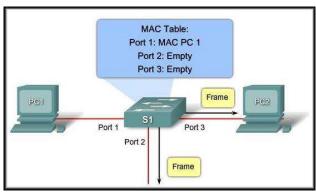
The switch receives a frame from PC 1 on Port 1 to PC2.

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS, HCM-VNU

41

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS, HCM-VNU

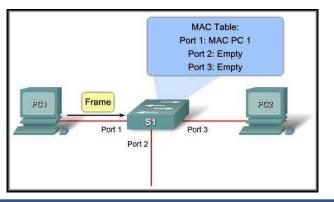
42


4. Ethernet Switches

4. Ethernet Switche

❖Ethernet Learning Algorithm

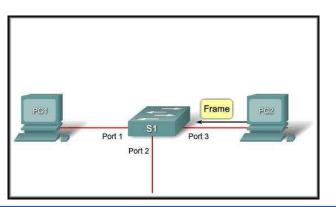
>Example Step 3: (flooding)


➤ Because the destination address is a broadcast, the switch floods the frame to all ports, except the port on which it received the frame.

❖Ethernet Learning Algorithm

> Example Step 2: (learning)

The switch enters the source MAC address and the switch port that received the frame into the address table.

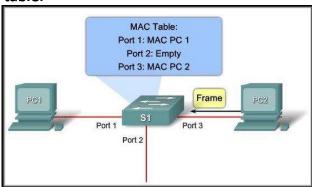


4. Ethernet Switches

❖Ethernet Learning Algorithm

>Example Step 4:

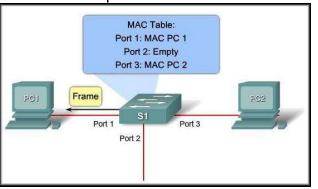
➤ The destination device replies to the broadcast with a unicast frame addressed to PC 1.



4. Ethernet Switches

❖Ethernet Learning Algorithm

> Example Step 5:


>The switch enters the source MAC address of PC 2 and the port number of the switch port that received the frame into the address table.

❖Ethernet Learning Algorithm

> Example Step 6:

>The switch can now forward frames between source and destination devices because it has entries in the address table that identify the associated ports.

4. Ethernet Switches

4. Ethernet Switches

Switch Hardware

Switch Hardware

➤One of the differences between inexpensive Ethernet switch and a pricier one is the degree of internal parallelism it can support.

The worst-case load, for a switch with 2N ports, is for packets to arrive continuously on N ports, and depart on a different N ports.

- >Shared-memory.
 - o Consists of a single CPU, single memory, peripheral busses, and multiple Ethernet cards.
 - OWhen a packet arrives:
 - The CPU must copy the packet from the arrival interface into RAM
 - Determine the forwarding
 - Copy the packet to the output interface.
 - o To keep up with one-at-a-time 100 Mbps transmission, the internal transfer rate must therefore be at least 200 Mbps.

4. Ethernet Switches

⇔Switch Hardware

- >Shared-memory.
 - The maximum speed of such a device depends on the speed of the peripheral-to-RAM bus.
 - $_{\odot}$ Ex: USB 3.0 bus operates at 5 Gbps. At an Ethernet speed of 100 Mbps
 - USB 3.0 bus can transfer 25 packets in and out in the time → supporting up to 50 ports total.
 - BUT. Gigabit Ethernet, only two packets can be handled.

o In datacenters: 10 Gbps, 40 Gbps Ethernet is now common.

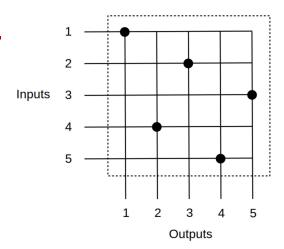
Switch Hardware

- >Switch fabrics.
 - o In datacenters: 10 Gbps, 40 Gbps Ethernet is now common.
 - Switch 24 ports is a bare minimum.
 - Shared-memory not a suitable.

Crossbar switch fabric:

- Consisting of a grid of *N* x *N* normally open switch nodes that can be closed under CPU control.
- Packets travel, via a connected path through the crossbar, directly from one Ethernet interface to another.

icures Vist Ha. Bb.D. . . . Benartment of Telecommunications and Networks. EETEL HOMIS HOMANNI


turer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS, HCM-

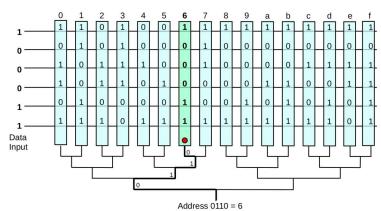
50

4. Ethernet Switches

♦Switch Hardware

>Switch fabrics.

 5×5 crossbar with 5 parallel connections $1\rightarrow1,\ 2\rightarrow3,\ 3\rightarrow5,\ 4\rightarrow2,\ 5\rightarrow4$


4. Ethernet Switches

Switch Hardware

- **≻Content-Addressable Memory (CAM)**
 - Allows for the search of the forwarding table in a single memory load.
 - vs. several tens of memory loads in shared-memory switch.
 - CAM memory consists of a large number *N* of memory registers all attached to a common data-input bus.
 - For Ethernet switching, the data width of the bus and registers needs to be at least as large as the 48-bit address size.

⇔Switch Hardware

>Content-Addressable Memory (CAM)

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS, HCM-VNU

Lecturer: Nguyen Viet Ha, Ph.D.
The University of Science, Vietnam National University, Ho Chi Minh City
Faculty of Electronics and Communications
Department of Telecommunication and Networks
Email: nvha@fetel.hcmus.edu.vn