HO CHI MINH CITY UNIVERSITY OF SCIENCE FACULTY OF ELECTRONICS AND TELECOMMUNICATIONS DEPARTMENT OF TELECOMMUNICATIONS AND NETWORKS

COURSE

COMPUTER NETWORKS

Chapter

Ethernet

Reference: Peter I. Dordal, "An Introduction to Computer Networks," Jul 26, 2019

Lecturer: Nguyen Viet Ha, Ph.D.

Email: nvha@fetel.hcmus.edu.vn

1. 10-Mbps Classic Ethernet

- **❖Ethernet: IEEE 802.3** (FYI: WiFi: 802.11, WiMAX: 802.16)
- **❖Broadcast bus**
 - > Consisted of a long piece of cable (possibly spliced by repeaters).
 - > Data went everywhere along that cable.

Network Interface: take care of the details of transmitting and receiving.

10-*Mbps* Classic Ethernet

1. 10-Mbps Classic Ethernet

- ❖There were three physical formats for 10 Mbps Ethernet cable.
 - ➤ Thick coax (10BASE-5) (max: 500 meters)

➤ Thin coax (10BASE-2) (max: 500 meters)

10BASE-5 vs 10BASE-2

➤ Twisted pair (10BASE-T)

(max: 100 meters)

- ❖There were three physical formats for 10 Mbps Ethernet cable.
 - >thick-coax cabling, connections were made via taps, often literally drilled into the coax central conductor.
 - >Thin coax allowed the use of T-connectors to attach hosts.
 - **➤Twisted-pair** does not allow mid-cable attachment; it is only used for **point-to-point links**.

Tap, T-connector, and RJ-45

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS

5

1. 10-Mbps Classic Ethernet

❖Bridge – later known as Switch

- >Not bit. Reads in and forwards an entire packet.
- ➤ Can determine to where the packet is forwarded. (Using MAC address)
- ➤ Note: Hubs propagate collisions; switches do not.

1. 10-Mbps Classic Ethernet

❖ Repeaters

- ➤ Signal amplifier (might attempt to clean up a noisy signal).
- > Process each bit individually and did no buffering.

. Hub

- ➤ A repeater with more than two ports
- Star topologies in which each host connects directly to the hub rather than to one long run of coax.
- ➤ Twisted-pair cable.

6

1. 10-Mbps Classic Ethernet

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS

❖Two stations transmitted at the same time, the signals would collide.

*CSMA/CD (Carrier Sense, Multiple Access, Collision Detect)

- > Before transmission, wait for the line to become quiet.
- ➤ While transmitting, continually monitor the line for signs that a collision has occurred; if a collision is detected, cease transmitting.
- ➤ If a collision occurs, use a backoff-and-retransmit strategy.

♦• CSMA/CD (Carrier Sense, Multiple Access, Collision Detect)

- > To transmit, each host will listen on the media.
 - o If a signal from another device is present, it will wait for a specific amount of time and listen again.
 - o If no signal is present, it will transmit.

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS

9

1. 10-Mbps Classic Ethernet

CSMA/CD (Carrier Sense, Multiple Access, Collision Detect)

- > It can happen that two devices will determine that it is safe to transmit at exactly the same time.
 - o In that case, both will transmit their frame.

1. 10-Mbps Classic Ethernet

♦• CSMA/CD (Carrier Sense, Multiple Access, Collision Detect)

- > To transmit, each host will listen on the media.
 - o If a signal from another device is present, it will wait for a specific amount of time and listen again.
 - o If no signal is present, it will transmit.

Lecturer: Nguyen Viet Ha, Ph.D. -

Department of Telecommunications and Networks, FETEL, HCMUS

10

1. 10-Mbps Classic Ethernet

*CSMA/CD (Carrier Sense, Multiple Access, Collision Detect)

- ➤ It can happen that two devices will determine that it is safe to transmit at exactly the same time.
 - o In that case, both will transmit their frame.

❖CSMA/CD (Carrier Sense, Multiple Access, Collision Detect)

- > Both devices detect the collision and send out a jamming signal
 - o The jamming signal is detected by all devices and all devices now know that a collision has occurred on the network.

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS

13

1. 10-Mbps Classic Ethernet

♦ The Slot Time and Collisions

- The **diameter** of an Ethernet is the maximum distance between any pair of stations.
 - Measured in bits.
 - o Maximum: 232 bits.
- >Jam signal: 32 bits (up to 48 bits)
 - \circ 16 times \rightarrow 512 bits (or 64 bytes)
 - Also, be the minimum of the frame size.
- \triangleright A slot time = 512 bits
 - The time to send 512 bits of Jam signal.
- >Time intervals are often described in bit times but in conventional time units the slot time is **51.2** µsec.

1. 10-Mbps Classic Ethernet

♦ CSMA/CD (Carrier Sense, Multiple Access, Collision Detect)

- > Each device to invoke a backoff algorithm.
 - Devices wait a random amount of time before returning to listening mode.
 - o The random time ensures that the original devices that caused the collision won't repeat it.

14

1. 10-Mbps Classic Ethernet

❖The Slot Time and Collisions

- ➤ One slot time is enough time for any other station to have realized that the first station has started transmitting and wait for the first station to finish.
- >Ethernet has a **minimum packet size** = a slot time.
 - o If a collision were to occur, the sender would detect it.
 - o If we need to send less than 46 bytes of data, the Ethernet packet must be padded out to the minimum length.
 - All protocols running on top of Ethernet need to provide some way to specify the actual data length, as it cannot be inferred from the received packet size.

❖The Slot Time and Collisions

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS

17

1. 10-Mbps Classic Ethernet

Exponential Backoff Algorithm

- ➤ Range from which the backoff value is chosen is doubled after every successive collision involving the same packet.
- ➤ If a collision does occur, send the jam signal, choose a backoff time as follows:
 - \circ For *N-th* transmission (*N=0* represents the original attempt):
 - If $1 \le N \le 10$, choose **k** randomly with $0 \le k < 2^N$.
 - If $11 \le N \le 15$, choose **k** randomly with $0 \le k < 1024$.
 - \circ Wait **k** slot times (**k** \times 51.2 μ sec).
 - \circ If reach N=16 (16 transmission attempts), give up.

1. 10-Mbps Classic Ethernet

❖Interpacket gap

- ➤ If line is busy, wait for sender to stop and then wait an additional **9.6 microseconds** (96 bits).
 - Is the **gap** between packets

Lecturer: Nguyen Viet Ha, Ph.D.

Department of Telecommunications and Networks, FETEL, HCMUS

18

1. 10-Mbps Classic Ethernet

❖Exponential Backoff Algorithm

- >A maximum of **1024 hosts** is allowed on an Ethernet.
 - \circ (k<1024).
 - o If there are 1024 hosts simultaneously trying to send.
 - Once the backoff range has reached k<1024 (N=10),
 - It is a good chance that one station will succeed in seizing the channel,
 - That is; the minimum value of all the random Ks chosen will be unique.

Exponential Backoff Algorithm

? A2 will occupy the entire bandwidth

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS

21

1. 10-Mbps Classic Ethernet

- * The address is often referred to as a burned-in address (BIA) – burned in ROM.
 - > Unique.
- ❖ **Preamble:** for synchronization: a block of 1 bits followed by a 0.
- **Type:** Identifies the Layer 3 protocol in the data field.
 - > E.g., 0x0800=IP, 0x8137=IPX, 0x0806=ARP
- ❖ Maximum Ethernet length: 1500 bytes

1. 10-Mbps Classic Ethernet

- ❖ There are two styles of Ethernet framing:
 - > IEEE 802.3 Ethernet standard which has been updated several times to include new technologies
 - > The DIX Ethernet standard which is now referred to Fthernet II

networks.

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS

22

1. 10-Mbps Classic Ethernet

- * The address is often referred to as a burned-in address (BIA) - burned in ROM.
 - > Unique.
 - The **first three bytes** of the physical address have been assigned to the manufacturer.
 - The **subsequent three bytes** are a serial number assigned by that manufacturer.

❖ Ethernet Multicast

- > Transmit to a set of stations; streaming video to multiple simultaneous viewers.
- \rightarrow IPv4 multicast \rightarrow MAC address: **01-00-5E**-??-??-??
- \rightarrow IPv6 multicast \rightarrow MAC address: 33-33-??-??-??
- > It is flooded out all Ethernet switch ports except the incoming port, unless the switch is configured for multicast snooping.

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS

1. 10-Mbps Classic Ethernet I need to send to a group of hosts on the network. Destination Source Host Host Group IP: 192.168.1.5 MAC: 00-07-E9-63-CE-53 01-00-5E-00-00-07-E9-63-192.168.1.5 224.0.0.200 User Data Trailer 00-C8 **CE-53** Dest MAC Source MAC Source IP Dest IP IP Packet **Ethernet Frame** Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS

***LLC and MAC Sublayers**

>LLC

- o Takes the network protocol data and adds control information to help deliver the packet to the destination.
- o Implemented in software.

>MAC

- Data encapsulation
- Media access control
- Implemented by hardware, typically in the computer NIC.

1. 10-Mbps Classic Ethernet

♦LLC and MAC Sublayers

➤In IEEE protocols, the LAN layer is divided into the **media access control**, or MAC, sublayer and a higher **logical link control**.

30

2 100 Mbps (Fast) Ethernet

2. 100 Mbps (Fast) Ethernet

- ❖100 Mbps Ethernet is officially known as 100BASE-TX.
 - ➤ Operates over twisted-pair cable.
 - ➤ Instead of increasing the minimum packet size, the decision was made to ensure collision detectability by reducing the network diameter.
 - The network diameter: 400 meters (10 Mbps Ethernet: up to 2500 meters).
 - Using optical-fiber-based 100BASE-FX in halfduplex mode, but this is not common.
 - The network diameter: 200 meters
 - Using 100BASE-TX network diameter with hubs.
 - maximum cable length 100 meters.

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS

33

Gigabit Ethernet

2. 100 Mbps (Fast) Ethernet

- ❖Switch partition an Ethernet into separate "collision domains".
 - ➤ Each collision domain is simply a single twisted-pair link, subject to the 100-meter maximum length.

❖Full-duplex Ethernet:

- >Two twisted pairs could be used, one for each direction.
 - Collision-free.
- >100BASE-FX with full-duplex can up to 2,000 meters.
 - Links between buildings

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS

2. Gigabit Ethernet

- ❖The problem of scaling Ethernet to handle collision detection gets harder as the transmission rate increases.
 - ➤If maintain the 51.2 µsec slot time but raise the transmission rate to 1000 Mbps, the maximum network diameter would be 20-40 meters.
 - ➤ Gigabit Ethernet moved to a **4096-bit** (**512-byte**, **or 4.096** µsec) slot time for the twisted-pair versions.
 - o Increase the minimum frame size to 512 bytes.
 - Short frames need to be padded, but this padding is done by the hardware.
- ❖Gigabit Ethernet 1000Base-T uses PAM-5 encoding (vs. 4B/5B encoding of 100Base-TX)

2. Gigabit Ethernet

- ❖Gigabit Ethernet mostly works with full-duplex.
 - ➤ Collision-free.
 - ▶10 Gigabit Ethernet has officially abandoned any pretense of supporting collisions; everything must be full-duplex.

2. Gigabit Ethernet

- ❖The most common gigabit Ethernet over copper wire is 1000BASE-T.
 - For 1000BASE-T, all four twisted pairs in the cable are used.
 - ➤ Each pair transmits at **250 Mbps**, and each pair is bidirectional, thus supporting full-duplex communication.
 - ➤On any one cable pair, there are five signaling levels. These are used to transmit two-bit symbols at a rate of 125 symbols/µsec, for a data rate of 250 bits/µsec.

➤The target bit error rate (BER) for 1000BASE-T is 10⁻¹⁰

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS

38

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS

37

4. Ethernet Switches

- ❖Switches join separate physical Ethernets.
- ❖A switch has two or more Ethernet interfaces.
 - >When a packet is received on one interface it is retransmitted on one or more other interfaces.

Ethernet Switches

- Only valid packets are forwarded; collisions are not propagated.
- Ethernet also offers much more resistance to eavesdropping than a non-switched (e.g., hub-based) Ethernet.

- ❖Ethernet Learning Algorithm
 - > Example Step 1:
 - The switch receives a frame from PC 1 on Port 1 to PC2.

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS

41

4. Ethernet Switches

- Ethernet Learning Algorithm
 - > Example Step 3: (flooding)
 - > Because the destination address is a broadcast, the switch floods the frame to all ports, except the port on which it received the frame.

4. Ethernet Switches

- ❖Ethernet Learning Algorithm
 - > Example Step 2: (learning)
 - The switch enters the source MAC address and the switch port that received the frame into the address table.

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS

42

4. Ethernet Switches

- ❖Ethernet Learning Algorithm
 - > Example Step 4:
 - >The destination device replies to the broadcast with a unicast frame addressed to PC 1.

Ethernet Learning Algorithm

> Example Step 5:

The switch enters the source MAC address of PC 2 and the port number of the switch port that received the frame into the address table.

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS

45

4. Ethernet Switches

Switch Hardware

- ➤One of the differences between an inexpensive Ethernet switch and a pricier one is the degree of internal parallelism it can support.
- ➤ The worst-case load, for a switch with 2N ports, is for packets to arrive continuously on N ports, and depart on a different N ports.

4. Ethernet Switches

❖Ethernet Learning Algorithm

> Example Step 6:

The switch can now forward frames between source and destination devices because it has entries in the address table that identify the associated ports.

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS

46

4. Ethernet Switches

Switch Hardware

>Shared-memory.

- o Consists of a single CPU, single memory and peripheral busses, and multiple Ethernet cards.
- OWhen a packet arrives:
 - The CPU must copy the packet from the arrival interface into RAM
 - Determine the forwarding
 - Copy the packet to the output interface.
- To keep up with one-at-a-time 100 Mbps transmission, the internal transfer rate must therefore be at least 200 Mbps.

Switch Hardware

>Shared-memory.

- o The maximum speed of such a device depends on the speed of the peripheral-to-RAM bus.
- o Ex: USB 3.0 bus operates at 5 Gbps. At an Ethernet speed of 100 Mbps
 - USB 3.0 bus can transfer 25 packets in and out in the time \rightarrow supporting up to 50 ports total.
 - BUT. Gigabit Ethernet, only two packets can be handled.
- o In datacenters: 10 Gbps, 40 Gbps Ethernet is now common.

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS

49

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS

50

4. Ethernet Switches

Switch Hardware

>Switch fabrics.

5×5 crossbar with 5 parallel connections $1 \rightarrow 1, 2 \rightarrow 3, 3 \rightarrow 5, 4 \rightarrow 2, 5 \rightarrow 4$

4. Ethernet Switches

Switch Hardware

>Switch fabrics.

- o In datacenters: 10 Gbps, 40 Gbps Ethernet is now common.
- Switch 24 ports is a bare minimum.
 - Shared-memory not a suitable.
- Crossbar switch fabric:
 - Consisting of a grid of N x N normally open switch nodes that can be closed under CPU control.
 - Packets travel, via a connected path through the crossbar, directly from one Ethernet interface to another.

4. Ethernet Switches

Switch Hardware

> Content-Addressable Memory (CAM)

- o Allows for the search of the forwarding table in a single memory load
 - vs. several tens of memory loads in sharedmemory switch.
- o CAM memory consists of a large number N of memory registers all attached to a common datainput bus.
 - for Ethernet switching, the data width of the bus and registers needs to be at least as large as the 48-bit address size.

Switch Hardware

≻Content-Addressable Memory (CAM)

53

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS

QA

Lecturer: Nguyen Viet Ha, Ph.D. Ho Chi Minh City University of Science Faculty of Electronics and Communications Department of Telecommunication and Networks Email: nvha@fetel.hcmus.edu.vn