HO CHI MINH CITY UNIVERSITY OF SCIENCE FACULTY OF ELECTRONICS AND TELECOMMUNICATIONS DEPARTMENT OF TELECOMMUNICATIONS AND NETWORKS

COURSE

COMPUTER NETWORKS

Chapter 03

Packet

Reference: Peter L Dordal, "An Introduction to Computer Networks," Feb 05, 20.

1

Packet Delay

Lecturer: Nguyen Viet Ha, Ph.D.

Email: nvha@fetel.hcmus.edu.vn

1. Packet Delay

♦ Bandwidth delay

- The time needed for a sender to get the packet onto the wire.
- >Ex: 1500-byte packet on 100 Mbps Ethernet,

$$\circ$$
 Bandwidth delay = $\frac{12\ 000\ bits}{\frac{100\ bits}{\mu s}}$ = 120 μs.

❖Propagation delay

- The time it takes for the head of the signal to travel from the sender to the receiver.
- \triangleright The distance divided by the x speed of light.

1. Packet Delay

Medium	Propagation speed
Thick Coax	0.77c (231,000 km/sec)
Thin Coax	0.65c (195,000 km/sec)
Twisted Pair	0.59c (177,000 km/sec)
Fiber	0.66c (198,000 km/sec)

❖Propagation delay

➤ Ex: 1,000 *m* of Ethernet using twisted pair

$$\circ$$
 Propagation delay = $-----== \mu s$.

1. Packet Delay

1. Packet Delay

Represents how much we can send before we hear anything back.

❖Round-trip time (RTT)

- >At most non-LAN scales, the delay is typically simplified to the RTT.
 - The time between sending a packet and receiving a response.
- ➤ Different delay scenarios have implications for protocols:
 - o If a network is bandwidth-limited then protocols are easier to design. Extra RTTs do not cost much, so we can build in a considerable amount of back-and-forth exchange.
 - However, if a network is delay-limited, the protocol designer must focus on minimizing extra RTTs.
 - As an extreme case, consider wireless transmission to the moon (0.3 sec RTT), or to Jupiter (1 hour RTT).

≽Ex:

RTT	bandwidth	bandwidth \times delay
1 ms	10 Mbps	1.2 kB
100 ms	1.5 Mbps	20 kB
100 ms	600 Mbps	8 MB
100 ms	1.5 Gbps	20 MB

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS, HCM-VNU

9

Lecturer: Nguy

ven Viet Ha. Ph.D. -

♦ Bandwidth x Delay

>(Delay: usually involving RTT)

epartment of Telecommunications and Networks, FETEL,

10

1. Packet Delay

La Ciliana

❖Packet Delay Variability

>RTT is variable.

- o On Ethernet and Wi-Fi networks there is an initial "contention period" before transmission actually begins.
- o Different packets are routed via slightly different paths.
- Different packets are handled differently by different queues of a parallel-processing switch.
- Mobile nodes are involved, then the distance and thus the propagation delay can change.

1. Packet Delay

Link's bandwidth, too, can vary dynamically.

- >Shared bandwidth
- ➤ QoS (Quality of Service)
 - o E.g., routers reserve a varying amount of bandwidth for
 - High-priority traffic
 - Depending on demand
 - Best-effort traffic
- > RTT_{noLoad} to be the time it takes to transmit a packet from A to B, and receive an acknowledgment back, with no queuing delay.
- ➤ We will usually assume that *RTT_{noLoad}* is fixed and well-defined

Packet Size

2. Packet Size

❖How big should packets be?

- ➤ Should they be large (e.g., 64 kB)
- ➤or small (e.g., 48 bytes)?
- >Large packets would not allow other senders timely access to transmit.
- Large packets waste a smaller percentage of bandwidth on headers.
- ➤In store-and-forward switches, smaller packets have much better throughput.

1

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS, HCM-V

14

2. Packet Size

❖Packet Size vs. Error Rates

- For relatively high error rates, it turns out to be better to send smaller packet, because when an error does occur then the entire packet containing it is lost.
 - o Choose the packet size small enough that most packets do not encounter errors.
- ➤To be fair, very large packets can be sent reliably on most cable links (e.g., TDM and SONET).
- >Wireless, however, is more of a problem.

- **❖Packet Size vs. Real-Time Traffic**
 - >It is common to commingle bulk traffic on the same links with realtime traffic.

2. Packet Size

- o Real-time traffic has higher priority than bulk traffic.
 - Router does not begin forwarding a bulk-traffic packet if there are any real-time packets waiting.
 - However, once a bulk-traffic packet has begun transmission, it is impractical to interrupt it.
- **❖**Limited to the maximum **Ethernet packet size**.
 - ∘ IPv4: 1500 bytes
 - o IPv6: 2 MB

3. Error Detection

- ❖Packet error detection is to add some extra bits (or called error-detection code)
 - >Allow the receiver to determine if the packet has been corrupted in transit.
 - >A corrupted packet will then be discarded by the receiver.

3

Error Detection

❖Reasons:

- Low-frequency bit errors due to things like cosmic rays.
- ➤ Interference errors, typically generated by nearby electrical equipment.

17

turer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS, HCM-VNU

3. Error Detection

- **❖Single parity bit**: this will catch all one-bit errors.
 - ≻Ex:
 - o Data: **1001**
 - \rightarrow parity bit = 1^0^0 = 0
 - o Send: 10010
 - o Receive: 10110
 - \rightarrow Check: $1^0^1^1^0 = 1 \neq 0$
 - → Data is corrupted.

3. Error Detection

- **❖Internet checksum**: used by IP, TCP and UDP
 - > Taking the **one's-complement sum** of the 16-bit words of the message.
 - o One's-complement sum:
 - Take the sum A+B.
 - If there is an overflow bit, add it back in as low-order bit.
 - A weakness of any error-detecting code based on sums is that transposing words leads to the same sum, and the error is **not detected**.
 - o In particular, if a message is fragmented and the fragments are reassembled in the wrong order, the ones-complement sum will likely not detect it.

3. Error Detection

3. Error Detection

*Cyclical Redundancy Check (CRC)

➤ Ethernet frame.

***Error-Correcting Codes (also called forward error correction)**

>That allows the receiver in many cases to figure out which bits are corrupted, and fix them.

➤ Mostly used in the Physical layer.

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS, HCM-VNU

Lecturer: Nguyen Viet Ha, Ph.D. The University of Science, Vietnam National University, Ho Chi Minh City Faculty of Electronics and Communications Department of Telecommunication and Networks Email: nvha@fetel.hcmus.edu.vn