HO CHI MINH CITY UNIVERSITY OF SCIENCE FACULTY OF ELECTRONICS AND TELECOMMUNICATIONS DEPARTMENT OF TELECOMMUNICATIONS AND NETWORKS

COURSE

COMPUTER NETWORKS

Packet

Reference: Peter L Dordal, "An Introduction to Computer Networks," Jul 26, 2019

Lecturer: Nguyen Viet Ha, Ph.D.

Email: nvha@fetel.hcmus.edu.vn

1. Packet Delay

⇔Bandwidth delay

- The time needed for a sender to get the packet onto the wire.
- >Ex: 1500-byte packet on 100 Mbps Ethernet,

o Bandwidth delay =
$$\frac{12\ 000\ bits}{\frac{100\ bits}{\mu s}}$$
 = 120 μs .

❖Propagation delay

- The time it takes for the head of the signal to travel from the sender to the receiver.
- \triangleright The distance divided by the x speed of light.

1

Packet Delay

1. Packet Delay

Medium	Propagation speed
Thick Coax	0.77c (231,000 km/sec)
Thin Coax	0.65c (195,000 km/sec)
Twisted Pair	0.59c (177,000 km/sec)
Fiber	0.66c (198,000 km/sec)

❖Propagation delay

- The time it takes for the head of the signal to travel from the sender to the receiver.
- \triangleright The distance divided by the x speed of light.
- >Ex: 1,000 m of Ethernet using twisted pair

$$\circ$$
 Propagation delay = — = μs .

1. Packet Delay

♦Store-and-forward delay

The time spent reading in the entire packet before any of it can be retransmitted.

Queuing delay

- > Depend on competing traffic and/or the system specifications.
 - Other words, is a delay based on how long the packet has to stay around in the intermediate device (e.g., router).

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS

Delay examples.

- >Case 1: A------B
 - o Propagation delay is 40 µsec
 - o Bandwidth is 1 byte/µsec (1 MB/sec, 8 Mbit/sec)

1. Packet Delay

- o Packet size is 200 bytes (200 µsec bandwidth delay)
- →One-way transmit time = usec

Department of Telecommunications and Networks, FETEL, HCMUS

1. Packet Delay

♦ Delay examples.

- > Case 2: A ----- R ----- B
 - o Two links, each with propagation delay 40 usec; bandwidth and packet size as in Case 1.
 - →One-way transmit time =

1. Packet Delay

Delay examples.

- > Case 3: A ----- B ----- B
 - o The same as 3, but with data sent as two 100-byte packets.
- →One-way transmit time = µsec Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS

1. Packet Delay

❖Round-trip time (RTT)

- >At most non-LAN scales, the delay is typically simplified to the RTT.
 - o The time between sending a packet and receiving a response.
- ➤ Different delay scenarios have implications for protocols:
 - o If a network is bandwidth-limited then protocols are easier to design. Extra RTTs do not cost much, so we can build in a considerable amount of back-and-forth exchange.
 - o However, if a network is delay-limited, the protocol designer must focus on minimizing extra RTTs.
 - As an extreme case, consider wireless transmission to the moon (0.3 sec RTT), or to Jupiter (1 hour RTT).

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS

10

1. Packet Delay

❖Packet Delay Variability

>RTT is variable.

- o On Ethernet and Wi-Fi networks there is an initial "contention period" before transmission actually begins.
- o Different packets are routed via slightly different paths
- o Or are handled differently by different queues of a parallel-processing switch.
- o Mobile nodes are involved, then the distance and thus the propagation delay can change.

1. Packet Delay

♦ Bandwidth x Delay

- > Represents how much we can send before we hear anything back.
- >(Delay: usually involving RTT)

≽Ex:

RTT	bandwidth	bandwidth \times delay
1 ms	10 Mbps	1.2 kB
100 ms	1.5 Mbps	20 kB
100 ms	600 Mbps	8 MB
100 ms	1.5 Gbps	20 MB

1. Packet Delay

Link's bandwidth, too, can vary dynamically.

- ➤ Shared bandwidth
- ➤ QoS (Quality of Service)
 - o E.g., routers reserve a varying amount of bandwidth for
 - High-priority traffic
 - Depending on demand
 - Best-effort traffic

1. Packet Delay

Link's bandwidth, too, can vary dynamically.

- > RTT_{noLoad} to be the time it takes to transmit a packet from A to B, and receive an acknowledgment back, with no queuing delay.
- ➤ We will usually assume that *RTT*_{noLoad} is fixed and well-defined.

2

Packet Size

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS

2. Packet Size

*How big should packets be?

- ➤ Should they be large (e.g., 64 kB)
- \triangleright or small (*e.g.*, 48 bytes)?
- Large packets would not allow other senders timely access to transmit.
- Large packets waste a smaller percentage of bandwidth on headers.
- ➤In store-and-forward switches, smaller packets have much better throughput.

2. Packet Size

❖Packet Size vs. Error Rates

- For relatively high error rates, it turns out to be better to send smaller packet, because when an error does occur then the entire packet containing it is lost.
 - o Choose the packet size small enough that most packets do not encounter errors.
- ➤To be fair, very large packets can be sent reliably on most cable links (e.g., TDM and SONET). Wireless, however, is more of a problem.

2. Packet Size

❖Packet Size vs. Real-Time Traffic

- >It is common to commingle bulk traffic on the same links with real-time traffic.
 - o Real-time traffic has higher priority than bulk traffic.
 - Router does not begin forwarding a bulk-traffic packet if there are any real-time packets waiting.
 - However, once a bulk-traffic packet has begun transmission, it is impractical to interrupt it.
- **❖**Limited to the maximum **Ethernet packet size.**

∘ IPv4: 1500 bytes

∘ IPv6: 2 MB

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS

17

3. Error Detection

- ❖Packet error detection is to add some extra bits (or called error-detection code)
 - ➤ Allow the receiver to determine if the packet has been corrupted in transit.
- ❖A corrupted packet will then be discarded by the receiver.
- ❖Reasons:
 - >Low-frequency bit errors due to things like cosmic rays.
 - ➤ Interference errors, typically generated by nearby electrical equipment.

Error Detection

3. Error Detection

❖Single parity bit: this will catch all one-bit errors.

≻Ex:

o Data: **1001**

■ \rightarrow parity bit = $1^0^0 = 0$

o Send: **10010**

∘ Receive: 10**1**10

■ \rightarrow Check: $1^0^1^1^0 = 1 \neq 0$

■ → Data is corrupted.

3. Error Detection

- **❖Internet checksum**: used by IP, TCP and UDP
 - ➤ Taking the **one's-complement sum** of the 16-bit words of the message.
 - One's-complement sum: take the sum A+B. If there is an overflow bit, add it back in as low-order bit.
 - A weakness of any error-detecting code based on sums is that transposing words leads to the same sum, and the error is not detected.
 - o In particular, if a message is fragmented and the fragments are reassembled in the wrong order, the ones-complement sum will likely not detect it.

Lecturer: Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS

21

3. Error Detection

*Error-Correcting Codes (also called forward error correction)

- That allows the receiver in many cases to figure out which bits are corrupted, and fix them.
- ➤ Mostly used in the Physical layer.

3. Error Detection

*Cyclical Redundancy Check (CRC)

>Ethernet frame.

QA

Lecturer: Nguyen Viet Ha, Ph.D.
Ho Chi Minh City University of Science
Faculty of Electronics and Communications
Department of Telecommunication and Networks
Finall: nyha@fetel.hcmus.edu.yn