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Preface 

 

In 1972 Per Kofstad published his "Non-stoichiometry, diffusion and electrical 
conductivity in binary metal oxides". It has been a popular textbook in defect chemistry 
of oxides worldwide, not least because it contained a comprehensive review of defect 
structure and defect-related properties of all binary metal oxides. It followed Kofstad's 
equally well-recognized book "High temperature oxidation of metals" from 1967, 
revised and published under the title "High temperature corrosion" in 1987. 

In the 25 years that have passed since 1972 the field of defect chemistry in oxides 
has grown and developed in many ways. New and improved measurement techniques, 
new synthesis techniques, as well as skilled and devoted investigators have produced 
better data for many oxides, partly encouraged by industrial developments in the use of 
solid electrolytes (solid oxide fuel cells, gas separation membranes, ceramic electrodes, 
catalysts, etc). Computer modelling enables detailed analysis of defect chemistry and 
transport processes, and helps us interpret experimental data. Although the increasing 
accuracy and complexity is welcome and unavoidable, the sound overview and ability 
to analyse a situation may be obscured or lost. The newcomer may find the field 
difficult to enter,  

Along with the development in the application of theory and modelling, the field 
has changed focus from binary oxides to ternary or higher oxides, much due to the 
growing awareness that perovskite and related structures tolerate very large 
substitutions and variations in valence and stoichiometry. Here we find lanthanum 
aluminate insulators, titanate and zirconate electroceramics with ferroelectricity, 
piezoelectricity, etc, the high-Tc cuprate and other superconductors, high-temperature 
electronic conductors such as doped lanthanum cobaltate and chromite, high 
temperature ionic conductors such as barium indate and doped lanthanum gallate, 
mixed conductors, and alkaline earth cerates which dissolve protons and become proton 
conductors at high temperatures. 

A revision of the book from 1972 as such is thus utopic in many respects. In the 
early 1990s Kofstad decided to author a new text that represented a development of the 
general and theoretical first part of the former book, while he intended to include only a 
few examples of data from important example oxide systems. After having sketched the 
book he was struck by cancer in 1993. He fought the cancer for four years, with the 
obligation to finish the book as one of the driving forces. However, deprived of much 
of his usual strength, he was unable to finish the work. I became engaged as a co-author 
at that time with the purpose of completing the book. 

I used the new text as a curriculum when I took over the teaching of Kofstad’s 
course in defect chemistry at the University of Oslo, thereby being able to adjust and 
improve it step by step. However, the burdens of taking over the research group has 
kept me from finishing the book. Furthermore, a textbook on defect chemistry by 
Kofstad’s close friend and colleague, Donald M. Smyth was published that took away 
some of the immediate need for our textbook. All in all I have felt that the new book 
needs more work and refinement. With the present text I am still in the middle of that 
process, and feedback is thus as welcome as ever.  

 

Truls Norby,  February 2006 
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Copyrights and use of graphic material  
 

Graphic material is original, except where stated. Reproduction from other 
sources have in most instances not yet been authorised in the present manuscript which 
is not sold commercially. Such authorisations will be collected – or original artwork 
created - before any commercial version of this text is printed. 
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1.1.1.1. Structure and defectsStructure and defectsStructure and defectsStructure and defects    
 

Introduction 

 

Classical chemistry and crystallography gave an idealised picture of the 
composition and crystal structure of inorganic compounds. During the 19th century 
crystallographers concluded that the atoms or structural units in crystals were arranged 
in ideal structures where all the structural sites were occupied. Chemists, on their side, 
expressed the compositions in terms of the law of definite proportions and generally 
believed that inorganic compounds had definite, unvarying, stoichiometric 
compositions determined by the valence of the constituent atoms. However, there was 
still considerable discussion regarding these concepts and it was alternatively proposed 
that inorganic compounds can have variable compositions. This was clearly established 
in the beginning of the 20th century and the question was theoretically resolved in the 
1930's when Wagner and Schottky (1930) showed through statistical thermodynamic 
treatments of mixed phases that crystal structures are not ideal. Some lattice sites will 
be empty (vacant) and extra atoms may occupy the interstitial space between the atoms 
on the lattice sites. The empty lattice sites are termed vacancies and the extra atoms 
interstitial atoms. Following Wagner and Schottky all crystalline solids will at any 
temperature contain vacancies and extra atoms and will as such exhibit deviations from 
the ideal structure. Furthermore, all inorganic compounds may in principle have 
variable composition and thus be nonstoichiometric. In fact, the very exact 
stoichiometric composition is an exception rather than a rule and can under equilibrium 
conditions only be achieved at definite sets of temperature and activities of the 
components in a crystal. However, for many inorganic compounds the deviation from 
stoichiometry (the nonstoichiometry) is so small that it is difficult or impossible to 
measure directly with presently available experimental techniques. 

These deviations from the ideal structures are present at any temperature and 
occur naturally in all crystalline compounds. Even so these deviations or imperfections 
are called defects. The reason for this is that by convention the ideal structure is used as 

the reference state, and any deviation from this ideal state is termed a defect. 

Crystalline solids contain different types of structural defects. If the imperfection 
is limited to one structural or lattice site and its immediate vicinity, the imperfection is 
termed a point defect. Vacancies and interstitial atoms are point defects. An impurity 
atom present in a crystal and that either occupies a lattice site or an interstitial site is 
also termed a point defect. But in addition to the point defects the structural defects also 
comprise line and plane defects. The line defects are dislocations which are 
characterised by displacements in the structure in certain directions. The plane defects 
comprise stacking faults, grain boundaries, internal and external surfaces. 
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Figure 1-1.  Schematic representation of some defects in an elemental solid. From A. Almar-

Næss: Metalliske materialer. 

 

In addition to the structural defects, crystals also contain electronic defects, i.e. 
electrons and electron holes that are relatively free to move in the crystal. The 
electronic defects may either be formed through internal excitation of valence electrons 
or they may be formed in association with point defects. If these electronic defects are 
localised (trapped) at regular sites in the structure, the electronic defects are termed 
polarons or - from a chemical point of view - valence defects. Defect electrons or 
electron holes trapped at point defects often make otherwise transparent materials 
coloured, and composite defects involving point defects and trapped electronic defects 
are termed colour centres. 

A complete description of the point and electronic defects in a compound and 
their concentrations as a function of the activities (partial pressures) of the constituents 
and the temperature is often termed the defect structure of the compound. 

The reason for our interest in and concern with defects and imperfections is that 
they determine a number of properties of crystalline solids. Thus diffusion or ionic 
conductivity  in crystalline solids takes place because of the presence of defects. Point 
defects are responsible for lattice diffusion, dislocation diffusion takes place along line 
defects and grain boundary and surface diffusion along planar defects. Solid state 
diffusion, in turn, determines or strongly influences a number of properties or processes 
such as mass transport in solids, solid state reactions, sintering, high temperature creep, 
gas-metal reactions resulting in the formation of compact layers of reaction products, 
etc. Electronic defects determine properties such as electronic conductivity, electro-
optical properties, etc. Heterogeneous catalysis is closely related to the defect chemistry 
of catalysts. 
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Figure 1-2. Schematic representation of some defects in an ionic binary compound. 

 

As a basis for further considerations of defect structures and defect-dependent 
properties to be discussed later in the book, the remainder of this chapter briefly 
discusses some commonly occurring crystal structures in simple metal oxides, the 
notation of point defects, and qualitative descriptions of different types of defect 
structure situations. 
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Common crystal structures 
 

Close-packing and voids 

 

The crystal structures of many metals can be described by close-packing of 
spheres (atoms). Similarly, many simple oxides to be discussed later can conveniently 
be considered to consist of close-packing of oxygen ions while the metal ions occupy 
voids in the close-packed structures. Let us therefore briefly discuss close-packing of 
spheres (atoms or ions).  

Consider an atom as a small hard sphere and make a layer of identical atoms so 
that the empty space between the atoms is minimum (layer A). Let us now add a second 
layer (B) such that the atoms in this second layer sit in one set of the hollows of the first 
layer. When we add a third layer of spheres, the spheres can be placed in two different 
positions: the spheres in the third layer can be placed directly over the spheres in layer 
A, and if we continue this stacking, the stacking sequence becomes ABABAB... as 
illustrated in (a) of the figure below. This type of close-packed stacking is called 
hexagonal close packing (hcp) of the spheres because it gives crystal structures with 
hexagonal symmetry.  

 

Figure 1-3. ABABAB…(hcp) clos-packing (a) and ABCABC…(fcc) close-packing (b) of spheres. 

From Shriver and Atkins; Inorganic Chemistry. 

 

The third layer (layer C) could alternatively be placed such that the spheres in this 
layer will not be directly over either the atoms in the A or B layers, see (b) in the figure 
above. The stacking sequence is now ABCABC... and this close packing is known as 
cubic close packing (ccp) as this gives rise to a cubic (face-centred) crystal structure. 
The following figure shows how the two close-packed structures appear when their 
heaxonal and face-centred cubic unit cells are emphasized.  
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Figure 1-4. Schematic views of the hcp (a) and fcc (b) structure types. From Shriver and Atkins; 

Inorganic Chemistry. 

 

The close-packed structures contain two different types of empty space or voids 
between the spheres, cf. the figures below. One type of void is termed a tetrahedral void 
because each of these voids is surrounded by four spheres which centres are at the 
corners of a tetrahedron. The other type of void is called an octahedral void. In this case 
each void is surrounded by six spheres, three in one layer and three in the neighbouring 
layer, and the centres of these six spheres lie at the corners of an octahedron. In the 
close-packed structures there are two tetrahedral voids and one octahedral void per 
atom (sphere). It may be noted that an octahedral void will fit a sphere with radius 
0.414r where r is the radius of the bigger close-packed spheres. A tetrahedral void is 
smaller and may fit a sphere with radius 0.225r. In different crystal structures of simple 
metal oxides which can be considered to consist of a close-packing of oxygen atoms, 
the metal ions often occupy all or part of the tetrahedral and/or octahedral interstices in 
regular patterns. 

 

                                 

Figure 1-5. Octahedral and tetrahedral hole in close-packed layers of speheres. From Shriver and 

Atkins: Inorganic Chemistry.  
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Figure 1-6. Small spheres show locations of octahedral (left) and tetrahedral (right) voids in fcc 

structure. From Shriver and Atkins: Inorganic chemistry. 

 

Less close-packed arrangements 

 

Some metals and ionic compounds choose for various reasons to arrange 
themselves in less close-packed structures, as exemplified in the following two figures. 

 

Figure 1-7. Body-centered cubic (bcc) packing of spheres. From Shriver and Atkins: Inorganic 

Chemistry. 

 

 

Figure 1-8. Simple cubic (sc) packing of spheres. From Shriver and Atkins: Inorganic Chemistry. 

 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


1. Structure and defects    

 1—16 

Some simple structures for oxides and other ionic compounds 

 

As mentioned earlier, the structures of ionic compounds can often be seen as 
close-packing of the large anions, while the normally smaller cations occupy the 
interstitial voids. (Note that once the structure is established, the interstices occupied by 
cations are not any longer considered interstitial; they are part of the ideal (reference) 
structure.)  

In judging the packing of ions it is useful to recall some important principles of 
ionic radii; the size of the elements increase down a group of the periodic table 
(resulting from the larger orbital of the outermost shell). Further, the size of the 
elements as a rule of thumb decreases from left to right through a period of the periodic 
table (resulting from increased nuclear charge). Finally, and most importantly in this 
context: Negatively charged ions (anions) are much larger than their neutral atoms and 
positively charged ions (cations) are much smaller than their neutral atoms. One may 
also recall that the effective size increases with the coordination number. In the 
following we look at some example structures possessed by oxides.  

 

The NaCl (rock salt, halite) structure 

In the NaCl structure the anions are cubic close-packed, and the smaller metal ions 
occupy all the octahedral interstices. Each metal ion is thus surrounded by six anions 
and vice versa. The NaCl structure is illustrated below. Note the similarity with the 
illustration of the octahedral voids in the fcc structure shown previously. 

 

Figure 1-9. The NaCl structure. Note that the centre anion is six-coordinated, as are also all 

other ions. From Shriver and Atkins: Inorganic Chemistry. 

 

The oxides MgO, CaO, SrO, BaO, CdO, CoO, NiO, FeO, TiO, NbO, and VO 
possess this crystal structure. The last six of these oxides may be highly 
nonstoichiometric and as such their NaCl structures highly defective. 

In the sulfides FeS and NiS, the structure is similar, but the close-packing of 
anions is hexagonal rather than cubic. 
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The ZnS (zinc blende and wurtzite) structures 

These structures are named after two different mineral forms of zinc sulphide 
(ZnS). The zinc blende structure can be considered as a cubic close-packing of sulphide 
ions with the zinc ions occupying every other tetrahedral void. Each zinc ion is thus 
tetrahedrally coordinated by four sulphide ions and vice versa. 

The wurtzite structure is composed of hexagonal close-packed sulphide ions and 
where zinc ions occupy every other tetrahedral void. The metal oxides BeO and ZnO 
adopt the wurtzite structure. 

 

The CaF2 (fluorite) structure 

The fluorite structure is named after the mineral calcium fluoride (CaF2) and is 
illustrated below. This structure may geometrically be considered to constitute a close-
packing of the metal ions while the anions occupy all the tetrahedral sites. The calcium 
ions are smaller than the fluoride ions and the fluoride ions are thus not able to fit into 
the interstices of the calcium ion array, but the model describes the relative positions of 
the ions. It is nevertheless more correct to view the structure as a simple cubic packing 
of anions (not close-packed), with cations filling every second cubic void, as also 
depicted below; each cation is surrounded by eight anions. 

 

Figure 1-10. The CaF2 structure. (a) The cations form an fcc sublattice, while the anions form a 

simple cubic arrangement. Every second anion cube has a cation in its centre. (b) The anions can be 

taken to occupy tetrahedral voids in the cation sublattic. 

 

The fluorite structure is typical for AX2 compounds where A is a sufficiently 
large cation that it forces the anions apart and into a less than close-packed 
arrangement. The oxides ZrO2, HfO2, CeO2, ThO2, PuO2, etc. possess the fluorite 
structure. All the octahedral interstices are unoccupied for the stoichiometric 
compositions, but interstitial ions may be accommodated in these interstices and form 
oxides with excess oxygen (hyper-stoichiometric oxides), e.g. UO2+x. 

Pyrochlore (ABO3.5) and C-type rare earth sesquioxide (A2O3) structures can be 
viewed as fluorite-derived structures with, respectively, 1/8 or 1/4 of the oxygen ions 
missing (in an ordered fashion). 
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The alkali metal oxides Li2O, Na2O, K2O, and Rb2O possess the so-called anti-
fluorite structure. In this structure the oxygen ions can be considered to be cubic close-
packed (fcc) while the metal ions occupy all the tetrahedral voids. 

 

The rutile (TiO2) structure 

The rutile crystal structure has its name after the rutile modification of titanium 
dioxide, TiO2. It is based on a hcp packing of the oxygen ions, with Ti ions occupying 
every second octahedral void, so that the structure can be viewed as consisting of TiO6 
octahedra (slightly distorted) which share edges and corners in such a way that each 
oxygen atom belongs to three neighbouring octahedra. The structure is tetrahedral, and 
when the structure is viewed along the c-axis it may be seen that the structure contains 
channels in the c-direction, i.e. rows of octaedra not filled with cations. 

 

Figure 1-11. The rutile TiO2 structure. From Shriver and Atkins: Inorganic chemistry.  

 

In addition to rutile itself, the oxides SnO2, MnO2, VO2, MoO2, RuO2, GeO2 a.o. 
possess regular or distorted rutile structures. 

 

The corundum (α-Al2O3) and ilmenite (FeTiO3)  structures 

The corundum structure is named after the high temperature modification of 
alumina, α-Al2O3. This structure may be described as a hexagonal close-packing (hcp) 
of oxygen ions with the trivalent aluminium ions occupying 2/3 of the octahedral sites. 
As the metal ions occupy octahedral sites, each metal ion is octahedrally coordinated 
and surrounded by six oxygen atoms, while each oxygen atom is surrounded by four 
metal ions. Two and two metal ions occupy neighbouring interstitial octahedral sites, 
and the two corresponding AlO6 octahedra are linked by common faces. Other oxides 
possessing the corundum structure are α-Fe2O3, Cr2O3, Ti2O3, and V2O3.  

A number of oxides with the nominal formula ABO3 have the corundum 
structure when A and B have an average valence of 3 and are of approximately the 
same size. The ilmenite structure with the nominal formula ABO3 and named after the 
mineral FeIITiIVO3 is similar to the corundum structure in that the oxygen ions can be 
described as hexagonal close-packed, the valences of the two cations have an average 
valence of 3 and occupy 2/3 of the octahedral sites. However, in this case the two metal 
ions (Fe2+ and Ti4+) are arranged in alternate layers. 
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The spinel structures 

The spinel structure is named after the mineral spinel, MgAl2O4. The spinels 
have the general formula AB2O4, where A is most often a divalent ion, A2+, and B 
trivalent, B3+. The oxygen ions can be considered to be cubic close packed (fcc), and 
the metal ions occupy both tetrahedral and octahedral sites. The unit cell contains 32 
oxygen atoms, 8 AB2O4 units. It contains 32 octahedral and 64 tetrahedral voids. In the 
normal spinel structure one half of the octahedral voids are occupied by the B3+-ion 
while the A2+ ions occupy 1/8 of the tetrahedral voids. 

Other distributions of the cations occur. When the eight tetrahedral sites per unit 
cell are occupied by trivalent cations and the octahedral sites are shared by the divalent 
and trivalent ions, the structure is termed an inverse spinel. Magnetite, Fe3O4, is an 
example of an inverse spinel. An inverse spinel may be better written as B(AB)O4 as 
this indicates that half of the B3+ ions occupy tetrahedral sites and the other half 
together with the A2+ ions occupy the octahedral sites. Another example of an oxide 
with inverse spinel structure is Fe(MgFe)O4. 

If the general formula of the spinel is written AB2O4, the cations may have the 
valence A2+ and B3+ as discussed above. This is termed a 2-3 spinel. In addition one 
may have spinels with other cation valences, e.g. A4+ and B2+ (4-2) spinel) and with 
A6+ and B1+. In all cases the sum of the cation valences equals 8. 

 

The perovskite (CaTiO3) structure 

 

The perovskite structure has its name after the mineral perovskite, CaTiO3. The 
general formula may be written ABO3 in which A is a large cation (e.g. alkali, alkaline 
earth, rare earth ions) and B a small or medium sized metal ion often a transition metal 
ion. In this structure the large A atoms and the oxygen atoms together form a close-
packed lattice, such that each A-atom is coordinated to twelve oxygen atoms. The B-
atoms occupy octahedral sites surrounded by six oxygen ions. 

            

Figure 1-12. Perovskite ABX3 structure. Left: Shown as a fcc packing of A (corners) and X (faces) 

atoms, with the B in the center. Right: The A cation is 12-coordinated.( The A cation is depicted small, 

but is in reality much bigger than the B cation). From Shriver and Atkins: Inorganic chemistry. 
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The average valence of the A and B ions is +3. The perovskite structure is 
remarkable in being very tolerant to variations (as long as A is large and B is small). 
Thus, A+B valences can be 3+3 (e.g., LaAlO3), 2+4 (e.g. CaTiO3), 1+5 (e.g. KTaO3) 
and even 0+6 (where the A site is in fact empty, as in WO3). 

The perovskite structure tolerates relatively large nonstoichiometries and 
substitutions, while a number of perovskite-related structures (with perovskite building 
blocks) are formed when excesses, deficiencies or substitutions beyond the solubility 
limits lead to ordered defects and new phases. These comprise, for instance, oxygen 
deficiency (brownmillerite, ABO2.5), and A excess (K2NiF4-type structure, A2BO4) 
and ordered intermediate phases. 

 

Summary of relations between structures, radii and packing arrangements. 

In oxides with small cations only, the structure is dominated by close-packing of 
the oxygen ions and various occupancies of interstices by the small cations. The table 
below summarises relations between structures and close-packed arrangements of 
anions or cations in oxides (and some sulphides). 

 

Table 1-1. Some structures of oxides based on close-packed oxygen ion sublattices. 

Formula Cation:anion 
coordination 

Type and number of 
occupied interstices  

fcc of anions hcp of anions 

MO    6:6 1/1 of octahedral 
sites 

NaCl, MgO, CaO, 
CoO, NiO,  FeO 
a.o. 

FeS, NiS 

MO    4:4 1/2 of tetrahedral 
sites 

Zinc blende: ZnS Wurtzite: ZnS, 
BeO, ZnO 

M2O    8:4 1/1 of tetrahedral 
sites occupied 

Anti-fluorite: 
Li2O, Na2O a.o. 

 

M2O3, 

ABO3 
   6:4 2/3 of octahedral 

sites 
 Corundum: 

Al2O3, Fe2O3, 
Cr2O3 a.o. 
Ilmenite: 
FeTiO3  

MO2    6:3 ½ of octahedral sites  Rutile: TiO2, 
SnO2 

AB2O4  1/8 of tetrahedral and 
1/2 of octahedral 
sites 

Spinel: MgAl2O4 
Inverse spinel: 
Fe3O4 

 

 

When the cations get somewhat larger they force the anions apart, and we get 
non-close-packed structure types like the fluorite and its derivatives (pyrochlore, rare-
earth oxide structures, etc.) 

When we involve even larger cations, being of the same size as the anions, the 
large cations take part in the close-packing together with the anions. In this way we get 
the perovskite structure and its derivatives. 
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More detailed treatments on crystal structures of oxides are found in general texts 
on solid state chemistry (e.g. Smart and Moore (1992) or West (1984)) and in more 
specialised literature, such as Náray-Szabó (1969) and Rao and Raveau (1995). 

 

  

Point defects 
 

In order to understand and describe properties of inorganic compounds that are 
dependent on the presence of point defects, it is necessary to be able to express the 
concentrations of the defects under various conditions. This, first of all, requires a 
system of notation to describe the point defects and the constituent atoms of the 
inorganic compounds and their charges. 

 

Notation for description of point defects 

 

In the development of the field of defect chemistry of inorganic compounds 
various systems of notation have been proposed and used to describe point defects. 
However, the most widely adopted system is that due to Kröger and Vink (1956) (see 
also Kröger (1964)), and this will be used in this book. This system describes crystals in 
terms of structural elements, and an imperfection is indicated by a major symbol 
describing its chemical content and a subscript that indicates the site that it occupies. 

In an oxide the metal ions on the regular lattice positions are written MM, where 
the subscript thus describes the type of  lattice site which is occupied. Correspondingly, 
the oxygen ions on normal lattice sites are written OO. 

The native point defects in an oxide include M and O vacancies and M and O 
interstitial atoms or ions. Vacancies are denoted by v with a subscript M or O referring 
to vacant metal or oxygen sites, respectively. Interstitial ions or sites are described with 
a subscript "i". Vacancies and interstitials in an oxide are thus written 

 vO  oxygen vacancy, 

 vM  metal vacancy, 

 Oi  oxygen interstitial, 

 Mi  metal interstitial. 

Correspondingly, an unoccupied or vacant interstitial site can be written vi. 

While the notation traditionally has used V for vacancy, confusion with the 
element vanadium (V) can be avoided by using lower-case v or italic V. Here, we will 
use the lower case v. 

Component atoms of a crystal may find themselves on the wrong site; the A and 
B cations in perovskite, pyrochlore, spinel, etc. may thus swap sites so as to obtain AB 
and BA. An oxygen atom in a cation site is similarly written OM, but is an example of a 
very unstable defect.  
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Real crystals always contain impurities. When a foreign metal ion Mf occupies a 
regular M site, the foreign atom is denoted by MfM. If it occupies an interstitial site, it 
is described by Mfi. 

Notations for other or more complex defects will be introduced when needed. 

 

Notation for charged defects  

 

In an ionic compound the atoms are charged, and the cations and anions may be 
assigned a definite integer valence (formal oxidation number). This is in fact a fully 
valid model in defect chemistry, as will be argued in a discussion on the influence of 
the varying degree of ionicity, or distribution of valence electrons, in a later paragraph.  

In the following, oxygen ions on regular sites in an oxide will be considered to 
have a formal valence of -2. The cations have a positive charge so as to make the sum 
of all positive and negative charges in the compound equal to zero.  

The point defects may be neutral or charged. Their charges may be described in 
terms of their actual charge or valence. However, it is generally more convenient in 
writing defect reactions to use the ideal, perfect crystal as the reference state and 
consider the charge on the defects relative to this perfect crystal. This relative charge is 
termed the effective charge of the defect. With the perfect crystal as reference, the 
normal atoms on regular lattice sites have zero effective charge. To emphasise this zero 
effective charge, an "x" is often added as a superscript to the symbol. The normal 
cations and anions in an oxide are then written x

MM  and x

OO . 

When vacancies are present, part or all of the actual charge of the missing atom 
may be excited away from the vacant site. Let us, for instance, consider the formation 
of an oxygen vacancy by removing an oxygen atom from the crystal. If the two 
electrons of the oxygen ion are localised at or near the empty site, the vacancy and its 
immediate neighbourhood have two negative actual charges. The charge at this location 
is thus the same as in the perfect crystal and the oxygen vacancy then has zero effective 
charge. As such it is termed a neutral oxygen vacancy, which is written x

Ov .  

Now that the electronegative oxygen atom is no longer present to hold the extra 
electrons, one or both of the two electrons may be excited and transferred away from 
the oxygen vacancy, and the oxygen vacancy then becomes singly or doubly charged. 
Since electrons are removed, the ionised vacancy has an effective positive charge 
relative to the perfect crystal, compensated by the two electrons which are now 
negatively charged defects somewhere out in the crystal. 

To  distinguish effective from actual charges, different symbols are used. While 
the actual charges are written + or -, the effective positive charge is indicated by a 
supscript dot ( • ) and the effective negative charge by a superscript prime (/). Singly and 
doubly charged oxygen vacancies are, for instance, written •

Ov  and ••
Ov , respectively. 

Similarly, cation vacancies may be neutral or have negative effective charges. To 
illustrate this let us remove a metal atom from the oxide MO and create a vacant metal 
ion site. The M2+ ion picks up two electrons to leave as an atom, leaving behind two 
positive charges in the form of holes or valence defects. If these are localised at 
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neighbouring oxygen ions (as O-) or metal ions (as M3+) the actual charge at the 
vacancy and its immediate neighbourhood is then the same as in the perfect crystal, and 
the effective charge on the metal vacancy is considered to be zero, i.e. the metal 
vacancy is neutral, x

Mv . One or both of the positive charges may be excited and 
transferred away from the vacancy and distributed in the oxide, and the vacancy then 
has one or two negative effective charges and is written as /

Mv  or //
Mv , respectively. 

Similarly, interstitially dissolved atoms will have zero real and effective charge, 
but depending on their nature they can be ionised to cations with a real and effective 
positive charge or to anions with real and effective negative charge.  

Substitutionally dissolved foreign ions which tend to have a valence different 
from that of the normal ions (aliovalent foreign ions) are easily ionised to get an 
effective charge. For instance, if the valence of a substitutionally dissolved foreign 
cation is higher than that of the normal host cation, the foreign cation gets a positive 
effective charge. Conversely, if the valence of the substitutionally dissolved foreign ion 
is smaller than the host cation, the foreign cation gets a negative effective charge. 
Common examples are found in the semiconductor field. Boron dissolved in silicon is 
denoted x

SiB  in the unexcited state, where we have B0. But since boron has one valence 
electron less than the surrounding Si0 atoms it easily accepts one from the valence band 
of the Si lattice and becomes B- or, in Kröger-Vink notation, /

SiB . Boron is called an 
electron acceptor (acceptor dopant) and the lacking electron in the valence band is 
called a hole. In a similar way, phosphorous forms a donor in silicon; x

SiP  and the 

excited state is x

SiP . 

 

Figure 1-13. Schematic view of electronic structure of boron- and phosphorous-doped silicon. 

From http://acre.murdoch.edu.au/refiles/pv/text.html 

 

Defect electrons and electron holes that are free to move in the oxide have 
effective negative  and positive charges, respectively. They are written /e  and •h . If the 

electron, for instance, is associated with a cation on a regular site - and may as such be 
considered a valence defect - the defect may be written /

MM . 
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We have mentioned but a few types of defects to illustrate the principles of 
notation. Many other defects can be described in the same way; we will see more 
defects later on. 

In addition to the notation, the important thing to remember about charges is the 
following: The effective charge of a species is the real charge of the species minus the 

real charge the perfect reference lattice would have had in the same volume element. 

 

 

Electroneutrality 
 

Crystals that we will deal with are considered to be electrically neutral. Then the 
sum of all positive charges must equal the sum of all negative charges: 

Σ positive charges = Σ negative charges 

We may thus sum up the real charges of all cations and anions and defects. However, it 
is equivalent and more convenient to consider only the effective charges:  

Σ positive effective charges = Σ negative effective charges 

It is important to note that the number of positive and negative charges must be 
compared on equal bases, namely as concentrations (numbers or moles per volume). 
One may in general not use site fractions since the concentrations of different types of 
sites are not necessarily equal. Thus, the electroneutrality condition can be expressed as 

 

0]z[ =∑
S

zS           (1.1) 

 

where the brackets denote concentration and z is the number and sign of charges on the 
species Sz. For instance, in an oxide MO where the major defects are oxygen vacancies, 
metal interstitials, and defect electrons, the electroneutrality condition can be written 

 

 ][e]2[M]2[vor           0][e-]2[M]2[v /
iO

/
iO =+=+ ••••••••     (1.2) 

 

Despite its simplicity, and despite it’s being used in e.g. traditional aqueous 
chemistry, the electroneutrality condition tends to cause both conceptual difficulties and 
occasional errors (by misplacing the coefficients z). In order to help, we suggest that 
one learns it by heart and uses it accordingly. Secondly, that one realises that it is not a 
chemical reaction, but a mathematical relationship. It thus maintains no mass balance or 
charge balance, it simply counts positive and negative charges from whatever 
concentrations of charged species that are present and requires them to be equal.   
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Stoichiometry and nonstoichiometry 
 

The compositions and chemical formulae for metal oxides and other inorganic 
compounds are usually written with a definite ratio of cations to anions, e.g. MaOb 
where a and b are usually small integers determined by the valence of the constituent 
atoms. In crystalline compounds this also reflects that the structure contains different 
types of sites (e.g. close-packed sites and tetrahedral or octahedral interstices) in simple 
ratios and that these are selectively and systematically filled with cations or anions. 
When the oxide MaOb contains M and O atoms in the exact ratio a:b, it is said to have a 
stoichiometric composition. 

As mentioned above, an exact stoichiometric composition in inorganic 
compounds is in principle the exception rather than the rule. Oxides in equilibrium with 
their surroundings are generally nonstoichiometric, except under specific conditions of 
temperature and activities of the components. However, within our experimental ability 
to measure the ratio of the constituent atoms, many inorganic compounds may be 
considered to be so near stoichiometry over large temperature and activity ranges that 
minor deviations from stoichiometry may often be neglected in a discussion of defect 
concentrations and defect-controlled properties. 

Numerous oxides will exhibit marked deviations from stoichiometry. Some 
oxides are even unstable when stoichiometric. Wustite, for instance, which is nominally 
written FeO, has under all conditions a deficiency of iron which varies with 
temperature and oxygen activity, and its formula should correspondingly be written 
Fe1-yO. In many systems of the transition metal oxides there exist phases which show 
large variations from the apparent stoichiometric composition in that the average 
valences of the metal ions in these phases are intermediate between the integral 
valences of the metal ions. These arise due to the elimination of defects in the form of 
shear planes. One often finds homologous series of oxides of this kind, with small 
differences in average valence and composition. This will be further discussed below. 

In the following is given a qualitative description of different defect structure 
situations. The corresponding defect equilibria that express the concentration of the 
different point defects as a function of temperature and oxygen activity are treated in a 
later chapter. 

 

Defects in stoichiometric compounds.  

 

Let us consider a stoichiometric crystal with composition MX. If a charged point 
defect is formed in such a crystal, a complimentary point defect with opposite effective 
charge must be formed to conserve the electroneutrality of the stoichiometric crystal. 
Two types of defect structures have been found to be important in stoichiometric metal 
oxides and these are termed Schottky and Frenkel defects, respectively, honouring early 
contributions of two of the many German scientists who pioneered the development of 
defect chemistry (Schottky (1935), Frenkel (1926)).  
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Schottky disorder     

A stoichiometric crystal with Schottky disorder contains equivalent 
concentrations of cation and anion vacancies. A stoichiometric oxide MO contains 
equal concentrations of metal and oxygen ion vacancies. In a stoichiometric oxide MO2 
the concentration of oxygen vacancies is twice as large as that of the metal ion 
vacancies. It may be noted that the formation of Schottky defects can only occur at 
outer and inner surfaces or dislocations and will diffuse into the crystal until 
equilibrium is reached. 

 

Figure 1-14 Schottky defect pair in NaCl. From Shriver and Atkins: Inorganic Chemistry. 

 

Frenkel disorder 

A stoichiometric crystal with Frenkel disorder contains the same concentrations 
of metal vacancies and metal interstitial ions. Contrary to the Schottky defects, Frenkel 
defect pairs can be formed directly inside the crystal. 

 

Figure 1-15. Cation Frenkel defect pair in AgCl. From Shriver and Atkins: Inorganic Chemistry. 

 

Although Schottky and Frenkel disorder may be simultaneously present in 
stoichiometric compounds, one type of disorder usually predominates. As a rough rule 
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Schottky disorder is favoured in crystals where the cations and anions are of 
comparable size, while Frenkel disorder predominates when the sizes of the cations and 
anions are appreciably different. Another factor is that Schottky disorder tends to 
dominate when the structure is very effectively packed so that the interstitials that are 
part of Frenkel pairs are hard to form.  

Pairs of interstitials have not been found as a dominant defect structure. Anti-site 
disorder (swapping of sites) is common in intermetallics and between cations on 
different sites (or anions on different sites). However, swapping between cations and 
anions in ionic compounds is mostly prohibited by the very unfavourable effective 
charges that would arise. 

 

Figure 1-16. Anti-site defect pair in CuAu intermetallic. From Shriver and Atkins: Inorganic 

Chemistry. 

    

 

Defects in nonstoichiometric oxides. 

 

The deviation from the exact stoichiometric composition is directly related to the 
presence of point defects. While complimentary point defects are formed in 
stoichiometric crystals, the electrical neutrality of nonstoichiometric compounds is 
conserved through the formation of point defects and charge compensating electronic 
defects. 

Nonstoichiometric oxides may - depending on the oxide, temperature and 
activities of the components - have an excess or deficit of metal or oxygen. In view of 
this, nonstoichiometric oxides may be divided in four limiting groups: 

- metal deficient oxides, e.g. M1-yO, where y is usually a small fraction of 1. Metal 
vacancies or complex defects based on metal vacancies are the majority defects, and 
examples with oxides with metal deficit are Co1-yO, Ni1-yO, and Fe1-yO; 

- metal excess oxides, e.g. M1+yO, in which metal interstitials are the prevalent 
defects. Cd1+yO is an example of an oxide with this type of nonstoichiometry; 
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- oxygen deficient oxides, e.g. MO2-y. In these oxides oxygen vacancies prevail and 
examples of such oxides are CeO2-y and other oxides with the fluorite structure; 

- oxygen excess oxides, e.g. MO2+y such as, for instance UO2+y. Oxygen 
interstitials or complex defects based on these are the predominating defects. 

Although a particular type of defect predominates in an oxide and as such 
constitutes the majority defect in the crystal, it is important to emphasise that the 
crystal will contain all other defects in varying concentrations in the form of minority 
defects. Furthermore, the majority defects in the crystal may also change with 
temperature or activity of the components in the crystal. By way of example, in an 
oxide MO2 the predominant defects may in principle change from oxygen vacancies to 
interstitial metal ions on changing the oxygen activity, and under these conditions the 
nonstoichiometry may be written M1+xO2-x.  

 

 

Associations of point defects, point defect clusters, 
extended defects 

 

Point defects are often assumed to be present as single, unassociated point defects 
that are randomly distributed in the structure. However this is in principle only 
applicable for small defect concentrations, that is, typically when the fraction of defects 
(relative to the number of normal atoms in the crystal) is smaller than 0.001-0.01 (but 
depending a lot on temperature).  

For larger defect concentrations one expects that defects begin to interact. The 
interactions can be coulombic or mechanical and be attractive or repulsive. These 
interactions may change the activity coefficients and formation enthalpies of defects, 
and they may lead to associations between defects which attract each other. A simple 
example is the association of a native point defect and a dopant or impurity ion with 
opposite effective charges. Energy minimisation may for large defect concentrations 
lead to clusters of different defects or elimination of defects in lines or planes, so as to 
form a new structure (e.g. shear structures). 

Order or disorder of defects is a matter of a fine balance between the 
configurational entropy of the defects and the exothermic enthalpy gained in 
association of certain point defects to form various types of larger defect 
agglomerations. Systems with relatively small defect concentrations are entropy 
controlled and consist of randomly distributed point defects. As concentration increases 
the enthalpy takes control and leads successively to formation of larger defect entities; 
randomised associated defects or defect clusters, point defects assimilated into 
randomised structure elements of a new phase, superlattice ordering and extended 
defects, shear planes, and discrete intermediate phases. 
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Example cases of defect clusters 

 

Defect clusters in a metal-deficient oxide: Fe1-yO 

A well known example of an oxide where the point defects form defect clusters is 
wustite, Fe1-yO. As mentioned above, under normal equilibrium conditions the oxide is 
never stoichiometric; the value of y ranges from 0.05 to 0.15 depending on the 
temperature and oxygen activity. Following the composition of the oxide it was 
originally believed the point defects were iron vacancies. However, extensive structural 
investigations by x-ray, electron and neutron diffraction have over the years shown that 
the defects not only comprise Fe-vacancies but also Fe-interstitials. The earliest studies 
of complexes indicated that for each vacancy created as a result of nonstoichiometry, a 
Frenkel defect pair was also formed. The combination of these defects gave a complex 
defect consisting of an interstitial ion (on a tetrahedral site) adjoined by two vacancies 
(vacant octahedral sites). Further studies have shown that the complexes comprise 
combinations of larger number of vacancies and interstitials with ratios of vacancies to 
interstitials ranging from 3 to 4. The basic unit of such clusters consists of four 
vacancies and one interstitial as illustrated below. Such units may further combine to 
form more complex clusters through side-, edge-, and corner-sharing and for these the 
ratios of vacancies to interstitials are close to 3. It is noteworthy that the larger corner-
sharing clusters have the same local atomic arrangement as magnetite, Fe3O4, and 
these can be considered as nuclei of Fe3O4 to which Fe1-yO transforms when the defect 
concentrations exceed critical values. The defect cluster in question might be denoted 
(4vFeFei)

6/. 

 

Defect clusters in an oxide with excess oxygen: UO2+x  

Uranium dioxide has the fluorite structure and may have a deficit or excess of 
oxygen depending on the  temperature and oxygen activity. Under conditions when it 
has excess oxygen, UO2+x, the maximum value that x may have is 0.25. This 
composition may suggest that the predominant point defects are oxygen interstitials, 
however, as shown by Willis  through neutron diffraction studies the defects are not 
single unassociated oxygen interstitials, but comprise clusters of oxygen interstitials 
and vacancies. The real composition of the clusters and detailed location of the 
individual point defects in the clusters are still a matter of discussion, but the formation 
of clusters may qualitatively be visualised as follows: When an oxygen atom is 
dissolved interstitially an oxygen atom on a neighbouring normal site is simultaneously 
displaced to neighbouring interstitial site leaving behind a vacant normal oxygen site. 
This qualitative model suggests a defect cluster consisting of two oxygen interstitials 
and an oxygen vacancy. Later studies have shown that clusters consist of larger number 
of oxygen interstitials and vacancies.  

 

Extended defects, shear structures.  

 

Extended defects are planar defects and may be considered to be formed by 
ordering and elimination of point defects, e.g of oxygen vacancies, along specific 
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crystallographic planes. This process may be illustrated below. The predominant 
defects are in this case assumed to be oxygen vacancies and are considered to be 
aligned as illustrated. By shear of these crystals  the aligned vacancies are eliminated, 
and this produces a fault in the cation sublattice. The formation of shear phases gives 
rise to the homologous series  of oxide structures, e.g WnO3n-1 and TinO2n-1. In this 
way the crystals may be able to have variable composition and may as such be termed 
nonstoichiometric.  

The schematic depictions of defective lattices shown initially in this chapter 
contain some other extended defects, like dislocations, aggregates and precipitates. 
Contrary to point defects, extended defects can often be imaged directly in electron 
microscopy, as seen in the figure below. 

 

Figure 1-17. Real and simulated image of shear plane in WO3-x. From Shriver and Atkins: 

Inorganic Chemistry.  

  

 

Modulated structures/infinitely adaptive structures 

 

Some oxide systems may accommodate nonstoichiometry by continuous 
adjustment of a parent structure without forming point defects. Such structures are now 
called modulated nonstoichiometric compounds, but these have also in the literature 
been termed vernier structures or infinitely adaptive structures. An example of such an 
oxide is the low-temperature modification of tantalum pentoxide, L-Ta2O5. The oxide 
exchanges oxygen with the ambient atmosphere, but the monophasic structure is 
maintained through the creation or elimination of oxygen sites in the oxygen sublattice 
while the number of tantalum sites remains unchanged. 
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Summary 
 

Due mainly to the gain in enthalpy of electrostatic attractions and electron orbital 
overlap, solids usually organise their constituent ions, atoms, or molecules in a crystal 
lattice. In such lattices the species take specific positions relative to each other, and this 
pattern is repeated in 1, 2 or 3 dimensions. Different compounds take on different 
geometrical arrangements depending on the properties of the constituents. This is a 
complex function of the charge distribution of each atom or ion, in turn a function of 
nuclear charge, ionisation energies, electron affinity and shape of the valence electron 
orbitals. However, it is often useful to view the structures as close-packing or other 
packings of rigid spheres, with systematic filling by smaller spheres of voids so created. 
Because of the preferred occupation of specific sites in the lattice, together with the 
tendency of distinct preferences in valence for the various elements, most compounds 
are basically stoichiometric, that is, the ratio of the different atoms is a simple ratio of 
small integers. In competition with this minimisation of enthalpy with perfect, 
stoichiometric lattices, we have the tendency of increasing the entropy at T > 0 K and 
this is done by the creation of defects. At any temperature there is thus an equilibrium 
concentration of defects. The defects comprise point defects (vacancies, interstitials and 
substitution), electronic defects (conduction electrons, holes, valence defects), and 
associates, clusters, lines or planes of defects. The overall defect structure is a result of 
energy minimisation by the enthalpy and entropy of formation and mixing, the 
electroneutrality condition (charge balance), mass balance, and preservation of the 
structure (site ratio balance). A defect is denoted by its constituent (a chemical element 
symbol or a vacancy (v)), a subscript indicating lattice site or interstitial site (i) and a 
superscript indicating effective positive or negative charge (· or ').  
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Exercises 

 

1. Translate the defect names used in Fig. 1-1 and 1-2 into your first (or second) 
language. 

2. Calculate the number of atoms in the bcc and sc unit cells of Figs. 1-7 and 1-8. 
(If you are not familiar with the procedures: Count all atoms, but divide by 2, 4, 
or 8 for atoms that are shared with neighbouring cells by being in faces, edges 
or corners.) 

3. Calculate the number of atoms in the hcp and fcc unit cells of Figs. 1-4 (a) and 
(b). 

4. Calculate the number of ions of each kind in the NaCl and ABX3 cells in Figs. 
1-9 and 1-12. 

5. Calculate the number of atoms and voids in the cells in Fig. 1-6. 

6. Calculate the volume filling ratio of balls in the structures of Figs. 1-4 (b), 1-7, 
and 1-8. What would it be in 1-4 (a)? 

7. Why would you say are metals generally heavier (have higher densities) than 
ionic compounds (salts and ceramics)? 

8. Sketch the periodic table of the elements, but include where possible the typical 
binary oxides of the elements in their normal (most common) oxidation states, 
in terms of formulae (stoichiometry) and structure type. Indicate also, based on 
what you know about their tendency to take on neighbouring oxidation states, 
whether the oxide is expected to be stoichiometric, have oxygen-deficiency, or 
oxygen-excess. 

9. List the main types of 0-, 1-, 2-, and 3-dimensional defects in crystalline solids. 

10. Write the Kröger-Vink notation for the following fully charged species in MgO: 
Cation and anion on their normal sites, oxygen vacancy, magnesium vacancy, 
interstitial magnesium ion. 

11. Write the Kröger-Vink notation for the following species in ZrO2: Cation and 
anion on their normal sites, oxygen vacancy, zirconium vacancy, yttrium dopant 
substituting Zr, interstitial carbon atom, cluster of yttrium dopant and oxygen 
vacancy, nitrogen ion (N3-) substituting for oxygen ion. 

12. Write the Kröger-Vink notation for the following fully charged species in 
CaTiO3: Calcium vacancies, titanium vacancies, oxygen vacancies, Ti ions on 
Ca sites and vice versa, Ti interstitials.  

13. Write the Kröger-Vink notation and for the possible species and defects in a 
material of your choice – preferably a compound you are working with. 
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14. For the materials and list of defects in Exercises 10-13, write the 
electroneutrality condition. 

15. Write the electroneutrality condition for defects in boron-doped silicon. Write 
the electronuetrality condition for defects in phosphorous-doped silicon. Write 
the electroneutrality condition for pure (undoped) silicon. 

16. Suggest an electroneutrality condition for Y-doped ZrO2. 

17. Write an electroneutrality condition for MO1-x (hint: includes an oxygen defect 
type and an electronic defect type). 

18. Write an electroneutrality condition for MO1+x. 

19. Write an electroneutrality condition for M1-xO. 

20. Write an electroneutrality condition for M1+xO. 

 

Answers to selected exercises, Ch. 1 

 

1. - 

2. 2, 1 

3. 6, 4 

4. 4:4, 1:1:3 

5. 4:4, 4:8 

6. 1-4b: 
23

π
=0.74,    1-7: 

8
3π

=0.68,     1-8: ______,     1-4a: 
23

π
=0.74. 

7. - 

8. - 

9. - 

10. - 

11. - 

12. - 

13. - 

14. - 

15. - 

16. - 

17. - 

18. - 

19. - 

20. - 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2. Defect reactions    

 2—1 

2.2.2.2. Defect reactionsDefect reactionsDefect reactionsDefect reactions    
 

Introduction 
 

As discussed in the previous chapter several different types of point defects 
may be formed in metal oxides and other inorganic compounds. In principle, all 
types of defects will be present, but in general, only a small number of different 
defects will predominate. 

When defect-dependent properties are to be interpreted, it is important that 
the defect concentrations as a function of temperature and the activities of the 
crystal components are known. For this purpose it is necessary to formulate 
reactions and write equations for the formation (or annihilation) of the defects. 

The defect formation may either occur internally in the solid or through 
reactions with the environment. In the following, the rules for formulating defect 
reactions will be described and applied to different defect structure systems, while 
in the next chapter, conditions for equilibrium and equations relating equilibrium 
defect concentrations to temperature, activities (partial pressures) of the 
components in a compound, impurity concentrations, etc., will be discussed. 

 

 

The three rules for writing defect reactions 
 

From a thermodynamic point of view a solid containing point defects 
constitutes a solid solution where the point defects are dissolved in the solid. In 
analogy with liquid solutions, the solid may be considered to be the solvent and 
the point defects the solute. Similarly, the defect equilibria may be treated in terms 
of the thermodynamics of chemical reactions and solutions. 

In analogy with reactions in aqueous solutions, the rules for writing defect 
reactions include requirements of electroneutrality and mass balance. But for 
defect reactions in a crystalline compound it is also necessary to require that the 
ratio of regular lattice sites in the metal and oxygen sublattices must be 
maintained, even if the total number of sites may increae or decrease during the 
reaction. These rules may be summarised as follows: 

 

Mass balance 

 

The defect reaction must balance with respect to the mass, i.e. the number 
and types of atoms involved in the defect reaction must be the same before and 
after the defect formation or annihilation. Vacancies, which only represent empty 
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sites, have zero mass and do not count. Also electronic defects are considered not 
to count in the mass balance.1 

 

Electroneutrality  

 

The compounds are and should remain electrically neutral. With the perfect 
crystal as reference, this means that the total effective charge is the same before 
and after the formation of the defects. 

This means that the net charge on the left and right hand sides of a reaction 
equation must be the same. This charge may be counted in terms of effective or 
real charges. However, effective and real charges may in general not be balanced 
against each other, and one must therefore avoid using both effective and real 
charges in the same equation. 

 

Ratios of regular lattice sites.  

 

The ratio(s) of the number of regular cation and anion lattice sites in a 
crystalline compound is constant. For instance, in an oxide MO the ratio of regular 
M and O sites is 1:1 regardless of whether the actual composition is stoichiometric 
or nonstoichiometric. Correspondingly, in a compound M2O3 the ratio of regular 
cation to anion sites is 2:3, and if 3 oxygen sites are created in M2O3 through a 
defect reaction, two regular M-sites - vacant or filled - in the metal sublattice must 
also simultaneously be created. 

This rule is special to defect chemistry in crystalline solids, and requires 
special attention and some practice to avoid its pitfalls. As is discussed below, this 
rule does not apply to oxides with infinitely adaptive structures. 

Despite the requirement of the constancy in the ratio of regular sites, the 
total number of regular lattice sites may change in a defect reaction, and therefore, 
the defect equation may include the formation or annihilation of lattice sites as 
long as the proper ratios are maintained.  

It should be noted that no sites are created in the formation of electronic 
defects.2 

In the many defect equations and equilibria which will be discussed, surface 
atoms will not be considered separately. All atoms will be considered to be bulk 
atoms, and this means that  the treatment only applies to sufficiently large 

                                                
1 One may choose to count and balance also the mass of electrons, but then one must be 

sure to include also non-defect electrons (electrons in the valence band). 
2 One may choose to operate with sites – or energy levels - for electronic defects, and one 

must then take into account the emty levels of the conduction band and the occupied levels of the 
valence band.  
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crystallite sizes for which the number of surface atoms is insignificant to that of 
the bulk atoms. 

Defect reactions generally do not result in significant changes in the number 
of surface atoms. In the formation of a vacancy, for instance, a bulk atom is 
transferred to the surface, but in the same process a previous surface atom, in turn, 
becomes a bulk atom. (It is worth mentioning, however, that the creation of the 
new bulk atom has consequences for the energy involved, as we shall discuss in a 
later chapter.) 

 

 

Examples of reaction equations for defects 
 

In view of the many types of point defects that may be formed in inorganic 
compounds and that each type of defect may have varying effective charge, 
numerous defect reactions may in principle be formulated. In the following, a few 
simple cases will be treated as examples. First, we will consider defect structure 
situations in stoichiometric compounds (Schottky, Frenkel and intrinsic electronic 
disorders) and then defect structure situations in nonstoichiometric oxides will be 
illustrated. Finally, examples of defect reactions involving foreign elements will 
be considered.  

It should be noted that both the stoichiometric and nonstoichiometric defect 
structures may prevail in the same compound, depending on the activities (partial 
pressures) of the components in the compound.  

The treatment and examples of defect reactions will not only provide 
training in applying the rules of defect reactions, but also broaden the description 
of defect structures and of the individual point defects.  

 

Stoichiometric compounds – instrinsic disorders 

 

As described in the previous chapter, the defect structures in stoichiometric 
compounds contain equivalent concentrations of negatively and positively charged 
point defects. These are formed as a result of internal equilibria in the crystal and 
do not involve reactions with the surroundings. For this reason the defect 
structures in stoichiometric compounds are also termed internal disorder. 

 

Schottky disorder 

As described in the previous chapter, the Schottky disorder involves the 
presence of equivalent amounts of cation and anion vacancies. In an oxide MO 
this means that the crystal contains equal concentrations of metal and oxygen 
vacancies. The overall formation of such a defect pair within the crystal involves 
the transfer of a pair of cations and anions on regular lattice sites from the bulk to 
the surface. In reality the defects are formed at external and internal surfaces or 
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dislocations and subsequently diffuse into the crystal until they are randomly 
distributed. In writing the equation, one is only interested in the initial and final 
states, and one disregards the kinetics of the defect reaction. 

If one starts with a pair of cations and anions on regular lattice sites within 
the crystal, MM and OO, one must  also take into account that the formation of the 
Schottky pair results in the formation of two new lattice sites, and the overall 
equation may thus be written 

 

OMOMOM OMvvOM +++=+ ••//       (2.1) 

 

However, in this equation MM and OO on both sides may be cancelled, and the net 
equation therefore becomes 

 
••+= OM vv //0          (2.2) 

 

where 0 (nil) designates a perfect crystal. 

In Eqs. 2.1 and 2.2 it is assumed that doubly charged vacancies predominate 
and that neutral and singly  charged vacancies can be neglected. The equations 
could have been written in more detailed steps starting with the formation of 
neutral vacancies and the subsequent, consecutive ionisation of these to singly and 
doubly charged vacancies. 

 

Frenkel disorder 

For the Frenkel disorder the predominant defects are either limited to the 
cations and anions, and the disorder involves the presence of equal numbers of 
vacancies and interstitial ions in a sublattice in a crystal. In the formation of a 
Frenkel defect pair, a cation on a normal site is transferred to an interstitial site, 
and no new lattice sites are created in the process. If, for the sake of illustration, 
the interstitial ion and the resulting vacancy are assumed to be doubly charged, the 
formation of a Frenkel defect pair may be written 

 
••+= iMM MvM //         (2.3) 

 

A corresponding equation may be written for the formation of an anion Frenkel 
defect pair. This latter defect situation is also often termed an anti-Frenkel defect 
structure. 

 

Intrinsic ionisation of electrons 

The excitation of an electron from the valence band to the conduction band, 
thereby leaving an electron hole in the valence band, is written 
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•+= he /0          (2.4) 

 

As mentioned above we can choose to apply the mass balance to electrons in 
which case we might rewrite the equation as follows: 

 
•+= hee x /          (2.5) 

 

We can also choose to keep some kind of track of the sites – or energy levels – for 
electrons; 

 
•+=+ vc

x

c

x

v hehe /         (2.6) 

 

but both the two latter reactions represent levels of detail that we normally need 
not consider. 

 As mentioned earlier, the electronic defects may be localized (valence 
defects). In these cases the reactions are connected with individual atomic sites. 
For instance the intrinsic ionization (disproprtionation) of Fe3+ ions into Fe2+ and 
Fe4+ ions would be written 

 
•+= FeFe

x

Fe FeFeFe /2         (2.7) 

 

Similarly, intrinsic ionization may also take place by charge transfer. In ilmenite, 
FeTiO3, we may for instance observe the reaction Fe2+ + Ti4+ = Fe3+ + Ti3+, which 
in terms of defects is written:  

 
/
TiFe

x

Ti

x

Fe TiFeTiFe +=+ •        (2.8) 

 

Nonstoichiometry 

 

The ratio of cation to anion lattice sites is the same whether a compound is 
stoichiometric or nonstoichiometric. But as nonstoichiometry means that there is 
an excess or deficit of either cations or anions, nonstoichiometry also means that 
there is an excess of a certain type or types of defects relative to that in the 
stoichiometric condition. If the predominating type of defects are charged, 
complementary electronic defects are created in order to conserve electrical 
neutrality. The extent of nonstoichiometry and the defect concentrations in 
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inorganic compounds are functions of temperature and activities (partial 
pressures) of their components. 

First we consider, as an example the formation of oxygen deficiency in an 
oxide MO2. The overall reaction may be written 

 

)()()( 2222 gOsMOsMO x
x += −       (2.9) 

 

From this equation it is qualitatively seen using le Chatelier's principle that the 
oxygen deficit increases with decreasing oxygen pressure. Conversely, for oxides 
with excess oxygen the nonstoichiometry increases with increasing oxygen 
pressure. 

In the following various defect reactions which are encountered in oxides 
with oxygen or metal excess or deficit will be considered. As the activity of the 
metal component is usually negligibly small compared to that of the oxygen 
activity under most experimental conditions, the nonstoichiometry in metal oxides 
is correspondingly a result of the interaction and exchange of oxygen between the 
metal oxide and the surrounding gas atmosphere. In the following examples of 
formation of nonstoichiometric defects, only cases where the metal oxides interact 
with gaseous oxygen are illustrated. However, it should be borne in mind that the 
corresponding nonstoichiometry and defects may be formed by interaction with 
metal if it is experimentally feasible to control the activity of the metal component 
in the surroundings of the crystal. 

 

Oxygen-deficient oxides  

An oxygen vacancy is formed by the transfer of an oxygen atom on a 
normal site to the gaseous state. No change in the number of lattice sites takes 
place. This defect reaction may be written 

 

)(22
1 gOvO x

O

x

O +=         (2.10) 

 

In this equation it is assumed that the oxygen vacancy is neutral, i.e. the two 
electrons of the O2- ion are associated with the vacancy or its immediate 
neighbourhood and the vacancy has zero effective charge. As described in Chapter 
1, the two electrons trapped at or near the vacancy may, depending on the 
temperature and vacancy concentration, be excited and transferred away  from the 
vacancy. Correspondingly, the oxygen vacancy acts as a donor and becomes 
singly and doubly charged: 

 
/evv O

x

O += •          (2.11) 

 
/evv OO += •••          (2.12) 
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The formation of the doubly ionized oxygen vacancy can be written as the total 
reaction: 

 

)(2 22
1/ gOevO O

x

O ++= ••        (2.13) 

 

In these equations the free electrons are considered delocalised in the 
conduction band. If they are localised at a metal ion on a normal lattice site the 
last equation could be reformulated as follows:  

 

)(22 22
1/ gOMvMO MO

x

M

x

O ++=+ ••       (2.14) 

 

If this takes place in the oxide MO2 the valence of the M atoms then partly reduce 
from +4 to +3 when the oxide becomes non-stoichiometric (MO1-x).  

 

Oxides with excess metal 

The oxygen deficiency in an oxide may alternatively be equivalent to the 
presence of excess metal relative to stoichiometric composition, and in this case 
the predominant defects constitute interstitial atoms. Correspondingly the 
composition of the oxide MO2 should then be written M1+xO2. The formation of 
an interstitial M atom in this oxide involves the transfer of a regular MM atom to 
an interstitial site. As a metal lattice site is annihilated in this process, two oxygen 
lattice sites must simultaneously be annihilated in the oxygen sublattice and this is 
achieved by transferring two oxygen atoms to the gas phase. The defect equation 
then becomes 

 

)(2 2 gOMOM
x

i

x

O

x

M +=+        (2.15) 

 

The neutral interstitial Mi atoms may be successively ionised to singly, doubly, 
triply or quadruply charged interstitial ions, e.g. 

 
/

eMM i

x

i += • , etc.        (2.16) 

 

From this we can state that the metal interstitial, like the oxygen vacancy, is an 
electron donor. It may be noted that in both cases it is the effectively neutral or 
incompletely ionized defects that is a donor, not the fully ionized defects.   

We have until now written the formation of metal defects by exchange with 
oxygen in the surrounding atmosphere. We may in principle choose to write the 
same in terms of exchange with the metal component in the surroundings. For 
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instance, metal insterstitials in MO can be formed in equilibrium with the metal 
vapour: 

 
/2)( eMgM i += ••         (2.17) 

  

Metal-deficient oxides  

In metal-deficient compounds metal vacancies are the predominating point 
defects. In an oxide MO a metal vacancy is formed by reacting oxygen gas with 
the oxide. This creates new oxygen lattice sites and therefore an equivalent 
number of new metal lattice sites - which are vacant - is also formed: 

  
x

O

x

M OvgO +=)(22
1         (2.18) 

 

In this reaction it is assumed that the vacancy that is formed is effectively neutral, 
that is, two electrons are taken from the surroundings of the vacancy in order to 
form the O2- ion. The lacking electrons may be taken up from the valence band, 
forming electron holes here; 

 
•+= hvv M

x

M 2//         (2.19) 

 

The formation of electron holes may alternatively be expressed in terms of 
valence defects: 

 
•+=+ MM

x

M

x

M MvMv 22 //        (2.20) 

 

This correspondingly means that the valence for some M atoms changes from +2 
for to +3. 

The metal vacancy, whether it is effectively neutral (electrons missing from 
its neighbourhood) or ionized (electrons supplied from the rest of the crystal) it 
illustrates that the effective size of a point defect may extend beyond the site 
itself; the charge may be distributed over at least the closest neighbours of the 
defect. Accordingly, defect chemistry works fine under the ionic model and with 
the assumption of integer charges, even if the compound is far from ideally ionic – 
the point defect is just a little bigger than one site. It works because in defect 
chemical as in other chemical reactions, the electrons have to choose to go or stay 
– no half electrons are involved. It then does not matter how close that electron 
was of the point defect – as long as it was associated with it. For most defect 
chemical considerations, it then also suffices to consider the defect as a true point 
defect, and that the electrons are associated with the point defect itself.       
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Oxides with excess oxygen  

In metal oxides with excess oxygen the predominating point defects are 
interstitial oxygen atoms or ions. The formation of a neutral interstitial oxygen 
atom through reaction of oxygen with the oxide is written 

 
x

iOgO =)(22
1          (2.21) 

 

No new lattice sites are formed in this reaction. The neutral interstitial oxygen 
atoms may in principle be ionised to yield electron holes and interstitial oxygen 
ions with negative effective charges, so that the total reaction becomes, for 
instance,  

 
•+= hOgO i 2)( //

22
1         (2.22) 

 

 

Dissolution of foreign elements 

 

The presence of impurities or dopants may significantly affect or even 
control the concentrations of the native defects in a compound. The effects are to a 
large extent dependent upon the relative valences of the ions in the parent 
compound and those of the impurities or dopants and what sites the impurities and 
dopants occupy. When the principal valence is the same as that of the host site, we 
say that the foreign element is homovalent. When it is unequal to that of the host 
site, we say that the foreign element is heterovalent – or aliovalent. 

Foreign aliovalent elements may dissolve in the host structure with zero 
effective charge, However, their difference from the host atom makes them easily 
donate or accept one or more electrons – they are donors or acceptors. We will 
briefly analyse the reason for this and describe the processes in terms of defect 
reactions. 

When boron, B, or phosphorous, P, dissolve as dopants in elemental silicon, 
Si, they have, respectively one less or one too many valence electrons, compared 
to Si. However, they are in this state effectively neutral since the electron number 
in each case is compensated by the nuclear charge. Nevertheless, the missing or 
extra electrons form local states in the band  structure that easily accept or donate 
electrons:  

 
•+= hBB Si

x

Si

/          (2.23) 

 
/ePP Si

x

Si += •          (2.24) 
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The neutral defects, the acceptor and donor, were here formed by dissolving the 
foreign elements in the same oxidation state as the host, namely 0. It is the desire 
of the crystal to fulfil the octet rule around each atom – the covalent nature of the 
bond – that causes the ionization in this case. 

We may do something similar with ionic compounds such as oxides. For 
instance, hypothetical LiO, containing divalent lithium, Li2+, may be dissolved in 
NiO to form effectively neutral +2

NiLi  species; x

NiLi . Since Li is unstable in 
oxidation state +2, it easily accepts an electron from the valence band of the 
crystal:  

 
•+= hLiLi Ni

x

Ni

/         (2.25) 

Thus, in this case, it is the formal oxidation state according to an ionic model that 
is the argument for why the acceptor is ionised. Similar arguments hold for donors 
in ionic compounds. 

 When dealing with aliovalent foreign elements it is common to assume 
directly the ionisation of the donor or acceptor into an effectively charged state. 
We often refer to the cases as donor- or acceptor-doped systems, but keep in mind 
that it is the unionised species that constitutes the donor or the acceptor. 

 

Effects of dissolution of aliovalent oxides in the metal-deficient oxide M1-yO.  

Let us assume that the parent oxide is metal-deficient M1-yO and that the 

majority point defects in M1-yO are charged metal vacancies, e.g. //
Mv , 

compensated by electron holes, •
h . The oxide is thus a p-type electronic 

conductor. Assume now that a higher valent oxide Mh2O3 is added. (Mh is used 
as an arbitrary chemical symbol for a higher valent metal.) Some Mh2O3 dissolves 
in the M1-yO. The Mh-ions have in this case a valence of +3, and if it is assumed 
that the Mh-ions occupy normal M-sites in M1-yO, the dissolved Mh-ions will 

have one positive effective charge, •
MMh . These additional positive effective 

charges must for electroneutrality reasons be balanced by creation of an 
equivalent concentration of negative effective charges or annihilation of an 
equivalent concentration of positive effective charges. Let us consider these two 
alternatives. 

The dissolution of Mh2O3 may in the first case be compensated by the 
formation of additional M-vacancies with two negative effective charges. In this 
case the equation for the dissolution of Mh2O3 is written 

 
x

OMM OvMhOMh 32 //
32 ++= •        (2.26) 

 

and thus the dissolution of Mh2O3 in M1-yO increases the concentration of metal 
vacancies in the parent oxide. 
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But as will be discussed in detail in the next chapter an increased 
concentration of charged metal vacancies simultaneously results in a decrease in 
the concentration of electron holes. The dissolution of Mh2O3 may thus 
alternatively be written with a defect reaction involving annihilation of electronic 
holes: 

 

)(222 22
1

32 gOOMhhOMh x

OM ++=+ ••      (2.27) 

 

When the dissolution of Mh2O3 is written in this way, the equation emphasises 
that the concentration of electron holes is reduced. However, as the concentration 
of metal vacancies and electron holes are interrelated, it should be emphasised that 
both processes take place. Actually, the dissolution of the higher valent cation 
decreases the concentration of all effectively positive defects and increases the 
concentration of all negatively charged defects. Qualitatively, this may simply be 
seen as a consequence of the electroneutrality equation or, if one wishes, of Le 
Chatelier's principle. Details of these aspects will be further discussed using defect 
diagrams in Chapter 4. 

 If one has the choice of writing a doping reaction by creation or 
annihilation of defects, it is usually more meaningful to choose the creation of 
defects, since this can describe the doping reaction to levels beyond the defect 
concentrations that existed in the undoped oxide, and since this describes the 
defects that will dominate when the doping level gets high. 

 So far we have added a higher valent dopant oxide to M1-yO. Let us 
alternatively consider what takes place when a lower valent dopant oxide, Ml2O, 
is added to M1-yO. If the Ml+ ions dissolve substitutionally in M1-yO, the 

dissolved Ml+ ions have one negative effective charge, /
MMl . This will be 

compensated by the formation of positive effective charge or the annihilation of 
negative effective charge. In our example oxide this will mainly affect electron 
holes and metal vacancies, and the two defect reactions may thus be written 

 
x

OM OhMlgOOMl 222)( /
22

1
2 ++=+ •      (2.28) 

 
x

OMM OMlvOMl +=+ ///
2 2        (2.29) 

 

Thus, the addition of Ml2O to M1-yO has the opposite effect of addition of 
Mh2O3; it increases the concentration of electron holes and decreases the 
concentration of metal vacancies. One may note that the first of the two reactions 
is an oxidation and thus involves uptake of oxygen, while the latter is not. It is 
typical of such dissolutions of foreign aliovalent elements in oxides that they can 
be charge compensated by means of electronic defects – in which case we are 
dealing with reduction or oxidation and uptake or release of oxygen – or by means 
of point defects – in which case we have no change in oxidation states and no 
exchange of oxygen gas.  
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Effects of dissolution of aliovalent oxides on the oxygen-deficient oxide 

MO2-x  

The examples in the previous section show the effects of additions of higher 
and lower valent oxide to the p-conducting, metal-deficient M1-yO. Let us also 
briefly consider the effects of doping an oxygen-deficient oxide MO2-x with 
higher and lower valent oxides, respectively. The predominating defects in MO2-x 
are oxygen vacancies compensated by defect electrons. The oxide it thus an n-type 
electronic conductor. 

When the dopant oxide is higher valent, e.g. Mh2O5, and the dopant cation, 
Mh5+, dissolves substitutionally, the dopant ions get one effective positive charge, 

•
MMh . This charge must be compensated either by formation of negative effective 

charges in the form of electrons or by annihilation of positive effective charges, 
oxygen vacancies. These defect reactions may be written 

 

)(422 22
1/

52 gOOeMhOMh x

OM +++= •      (2.30) 

 
x

OMO OMhvOMh 5252 +=+ •••        (2.31) 

 

Thus when MO2-x is doped with a higher valent oxides Mh2O5 the 
concentration of electrons is increased and the concentration of oxygen vacancies 
is decreased. 

When the same oxide, MO2-x, is doped with a lower valent oxide, Ml2O3, 

the negative effective charge of the dissolved atoms /
MMl  is compensated by 

annihilation of electrons or formation of oxygen vacancies: 
 

x

OM OMlgOeOMl 42)(2 /
22

1/
32 +=++      (2.32) 

 
x

OOM OvMlOMl 32 /
32 ++= ••        (2.33) 

 

The latter is exemplified by yttria-stabilised zirconia where the acceptor doping is 
compensated by mobile oxygen vacancies that lay ground for this material as a 
solid electrolyte:  
 

x

OOZr OvYOY 32 /
32 ++= ••        (2.34) 

 

Numerous other examples may be formulated, depending on the defect 
structure of the parent oxide, the valence of the foreign ion and the site it 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


2. Defect reactions    

 2—13 

occupies. It may be noted that a foreign cation dissolving interstitially always will 
have a positive effective charge and thus affect the defect structure in a similar 
manner as a higher valent cation dissolved substitutionally. We shall return to this 
and other examples in subsequent chapters and in connection with the review and 
discussion of a few individual oxides systems. 

 

Foreign anions in oxides 

In oxides, homovalent foreign anions comprise S2-, while aliovalent foreign 
anions comprise F- and N3-. They can enter as impurities during synthesis, or 
dissolve from gaseous species under reducing atmospheres, e.g., 

 

)()( 22 gOHSgSHO
x

O

x

O +=+       (2.35) 

 

)(32)(23 2
/

3 gOHvNgNHO OO

x

O ++=+ ••      (2.36) 

 

Dissolution of hydrogen in metal oxides 

When metal oxides are exposed to gas atmospheres containing water vapour 
or other hydrogen containing gases, hydrogen will dissolve in the oxides. Under 
oxidizing or mildly reducing conditions, the hydrogen atoms ionise to protons and 
associate with oxygen atoms on normal lattice sites and thereby form hydroxide 
ions on normal oxygen sites, •

OOH . We may thus for instance write the dissolution 
reaction 

 
/

2 222 eOHOH O

x

O +=+ •        (2.37)  

 

or 

 

)(222)( 22
1/

2 gOeOHOgOH O

x

O ++=+ •      (2.38) 

 

in which case the protons dissolved are charge compensated by the formation of 
defect electrons. Of course, the electrons may interact with other defects in the 
oxide so that the protons in effect are compensated by formation of other negative 
defects or by the annihilation of positive defects. From the dissolution reaction 
and through the interaction with native defects in the oxide it is clear that the 
dissolution of hydrogen in metal oxides is dependent both on the partial pressure 
of the hydrogen source (e.g. water vapour or hydrogen) and of oxygen. These 
aspects will be described in more detail in a later chapter. 

The dissolution of hydrogen from its oxide, H2O, is in principle similar to 
dissolution of other foreign cations. However, the possibility of a controlled water 
vapour pressure and the fast diffusion of protons makes it much easier to attain 
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and vary (and more difficult to completely avoid) an equilibrium content of 
protons in the oxide. 

In terms of defect chemistry the dissolved proton, located on a normal 
oxygen ion as hydroxide, may also be considered to constitute an interstitial 
hydrogen ion, and as such it is also in the literature alternatively written •

iH . One 
just has to bear in mind that the protons do not occupy regular interstitial positions 
(voids). 

Under reducing conditions, where hydrogen is stable in oxidation state 0 (as 
H2 in the gas phase) it might be possible to foresee neutral hydrogen atoms 
dissolved in oxides, probably interstitially, as x

iH . Under even much more 
reducing conditions could also hydride ions be expected to become stable, e.g. as 
dissolved substitutionally for oxygen ions, as the defect •

OH . 

 

 

Ternary and higher compounds 
 

We have so far concentrated on binary compounds, mostly oxides, and only 
touched upon elemental solids. Ternary and higher compounds fall, however, 
under exactly the same rules of writing defect reactions. 

A typical ternary compound is a ternary oxide such as perovskite, CaTiO3. 
As an example of defect reactions for this case, we consider first the formation of 
Schottky defects. When we form new lattice sites in this reaction, we need to form 
vacancies on both Ca and Ti sites to maintain the ratio between them, in addition 
to the appropriate number of oxygen vacancies: 

 
••++= OTiCa vvv 30 //////         (2.39) 

 

If we further consider the uptake of oxygen by formation of cation vacancies and 
electron holes, we again have to balance the cation sites:  

 
•+++= hOvvgO x

OTiCa 63)( //////
22

3       (2.40) 

  

 Similar principles should be applied also in cases where one and the same 
element is distributed on different crystallographic sites. For instance, Y2O3 has a 
structure where all oxygen ions are not strictly equal. Similarly, distorted 
perovskites may have unequal oxygen sites. In the pyrochlore structure, A2B2O7, 
there are 6 oxygen sites of one type and 1 of slightly different coordination and 
energy (and one which is structurally empty and thus to be regarded as an 
interstitial site). In principle the fomation or annihilation of crystal units has to 
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maintain the ratio between those different sites in all such cases. However, this is 
so far hardly ever practiced in defect chemistry. 

 Contrary to binary oxides, ternary and higher oxides can have non-
stoichiometry not only in terms of the oxygen-to-metal ratio, but also internally 
between the various cations. This is in practice often a result of synthesis. For 
instance, it may be difficult to weigh in exactly equal numbers of moles of Ca and 
Ti precursors when synthesizing CaTiO3, so that the synthesized material has a 
permanent number of vacancies on one of the cation sites. Such non-stoichiometry 
may also be a result of equilibria. For instance, if A-site deficiency is energetically 
favourable over B-site deficiency in the compound ABO3, we may at very high 
temperatures (e.g., during sintering) see a preferential evaporation of the A 
component:  

 

)(//
gAOvvOA OA

x

O

x

A ++=+ ••        (2.41) 

  

During oxidation we might similarly see a preferential incorporation of A-site 
vacancies, resulting in a precipitation of an A-rich phase:  

 

)(2)( //
22

1 sAOhvgOA A

x

A ++=+ •       (2.42) 

 

It may be noted that these reaction equations do not violate the site ratio 
conservation requirement of the ternary oxide. 

 When we earlier doped elementary or binary compounds the reaction was 
fairly straightforward. When we dope a ternary or higher compound, however, the 
reaction may be less obvious – we have some choices. It is quite common, 
however, to do the synthesis and write the equation in such a way that one takes 
out a corresponding amount of the host element that is substituted. If we, for 
instance, want to dope LaScO3 with Ca substituting for La, we go for a 
composition La1-xCaxScO3. In order to see how we write the doping reaction in 
this case we first just look at the trivial normal synthesis:  

 
x

O

x

Sc

x

La OScLaOScOLa 3222
1

322
1 ++=+      (2.43) 

 

Accordingly, we then write the defect reaction for the doping in the way that we 
let there be Sc2O3 reserved for the CaO:  

 
••+++=+ O

x

O

x

ScLa vOScCaOScCaO 2
1

2
5/

322
1      (2.44) 
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Summary 
 

Defect reactions can be written in a similar manner as ordinary chemical 
reactions. They must confer with the requirements for conservation of mass, 
charge, and ratios of lattice sites, but are allowed to increase or decrease the total 
number of lattice units.  

We have treated defect reactions mostly in cases for binary ionic 
compounds, notably oxides. Reactions for elemental crystalline solids follow the 
same basic rules and principles, but without the site ratio conservation 
requirement. Also higher compounds, e.g. ternary oxides, follow the same rules, 
only often with slightly more complex site conservation considerations and more 
defects. 

Normally, one should seek to use reactions that create rather than annihilate 
defects, and one should avoid using reactions that form more defects than 
necessary (as such reactions are then a sum of simpler reactions). 

We have formulated defect reactions which describe intrinsic ionic and 
electronic disorder, nonstoichiometry, variable ionisation of point defects, and 
substitutional dissolution of aliovalent cations and ions and anions. Aliovalent 
elements may be compensated by electronic defects or by point defects, of which 
the former involve red-ox-reactions.  

We have treated hydrogen defects specially, as they arise from a special 
source and in its most stable form, the proton, take on a special size and type of 
defect. 

 

 

Exercises 

 

The excercises in this chapter mainly provide training in 1) formulating a 
reaction in terms of the appropriate reactants and products, and 2) balancing and 
checking them with respect to a) mass conservation, b) charge conservation, and 
c) site ratio conservation. 

 

1. Write a reaction for the formation of Schottky defects in NaCl. 

2. Write a reaction for the formation of Schottky defects in MO2. 

3. Write a reaction for the formation of Schottky defects in Cu2O. 

4. Write a reaction for the formation of anion Frenkel defects in MO. 

5. Write a reaction for the formation of anion Frenkel defects in CaF2. 

6. Write a reaction for a charge transfer between the cation and anion in 
CeO2, i.e. for reduction of the cerium ion and oxidation of the oxygen ion. 
Write the same process as an intrinsic ionisation assuming delocalised 
electronic defects. 
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7. Write a reaction for the formation of fully ionised oxygen vacancies and 
electrons when oxygen is lost in the reaction M2O3 = M2O3-x + x/2 O2(g). 

8. Write reactions for the direct formation of fully ionised metal interstitials 
in MO, M2O3, and MO2. 

9. Write reactions for the direct formation of fully ionised metal vacancies in 
MO, M2O3, and MO2. 

10. Write reactions for formation of sodium vacancies in NaCl by exchange 
with a) chlorine gas and b) sodium gas. 

11. We have in the text claimed that charges can be associated directly with 
ideal point defects, even if the compound is not ideally ionic, and that this 
normally does not affect the results of the calculations. Under what 
conditions will it start to matter that the charge of the defect actually 
extends outside the defect itself? 

12. Write reactions for dissolution of CaO into the oxide ZrO2-x 

13. Write reactions for dissolution of MfO into M2-xO3 when we assume that 
the foreign metal Mf is small and therefore dissolves interstitially. 

14. Write reactions for dissolution of CaO substitutionally into the anion-
Frenkel dominated Y2O3. 

15. Write reactions for dissolution of ZrO2 substitutionally into the anion-
Frenkel dominated Y2O3.  

16. Write reactions for dissolution of CaF2 into CaO, assuming that F- 
dissolves substitutionally and that CaO is dominated by Schottky defects 
in the pure, undoped state. 

17. Write a reaction for dissolution of protons in an oxide with water vapour 
as source and with oxygen interstitials as compensating defects. 

18. Write reactions for dissolution of protons in an oxide M1-xO with water 
vapour as source. 

19. Consider an oxide M2O3 which is acceptor-doped by dissolving the oxide 
MlO. The dopants are compensated by oxygen vacancies. Write a defect 
reaction for the dissolution of MlO. Write a reaction for the dissolution of 
protons from water vapour into this acceptor doped oxide, by annihilation 
of the oxygen vacancies. Finally, write a reaction for the dissolution of 
MlO in the presence of water vapour and without forming oxygen 
vacancies. Can the latter reaction be constructed as a sum of the two 
previous reactions? 

20. Hydride ions have been suggested to dissolve in oxides accompanied by 
protons by disproportionation of hydrogen gas. Write defect reactions for 
this in the case that the hydride dissolves a) interstitially, and b) 
substitutionally. (Assume in both cases that the oxide is perfectly 
stoichiometric and has no defects as a starting point). 

21. Write defect reactions for formation of A-site Frenkel, B-site Frenkel, and 
anion Frenkel disorders in a perovskite ABO3 (assuming both cations are 
trivalent). 
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22. Write a defect reaction for the formation of Schottky disorder in spinel 
MgAl2O4. 

23. Suggest a defect reaction for formation of Schottky-type disorder in 
LaMnO3 when it is assumed that cation vacancies are formed in the La 
sublattice only. 

24. Write a defect reaction for dissolution of  Sc2O3 in CaTiO3 during 
synthesis, assuming that Sc substitutes Ti forming acceptors compensated 
by oxygen vacancies. 
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3.3.3.3. Defect equilibriaDefect equilibriaDefect equilibriaDefect equilibria    
 

Introduction 
 

After formulating the correct defect reactions in a compound, we turn our 
interest towards the equilibrium relations for those reactions. These correlate the 
equilibrium concentrations of the different defects with temperature, activities 
(partial pressures) of the components in the compound, and other parameters 
which affect the defect structure. The defect equilibria will here generally be 
described by the law of mass action. 

The change in the Gibbs (free) energy of a chemical reaction in a closed 
system is given by3  
 

STHG ∆−∆=∆         (3.1) 

 
where ∆H is the change in enthalpy and ∆S the change in entropy of the reaction 
and T is the absolute temperature. 

The reaction will proceed spontaneously as long as ∆G < 0, until G has 
reached its minimum. Here, ∆G = 0, and this relation represents the condition for 
chemical equilibrium. 

The creation of single, unassociated point defects in an elemental, 
crystalline solid increases the internal energy of the system and the enthalpy of the 
defect formation is positive. But the configurational entropy of the system also 
increases, and the equilibrium concentration of the defects will be reached when 
the Gibbs energy of the system is at minimum. Thermodynamically, point defects 
will thus always be present in a crystal above 0 K. 

All types of defects will in principle be formed. However, the free energies 
of formation of the different types and systems of defects can have widely 
different values, and correspondingly it is often found that certain defects 
predominate in a particular solid. The relative concentrations of the different types 
of defects will be a function a temperature and other variables. Thus, defect 
equilibria with large positive enthalpy of formation, for instance, which are not 
favoured at low temperatures, may become important at high temperatures.  

From a thermodynamic point of view a solid containing point defects 
constitutes a solid solution where the point defects are dissolved in the solid. In 
analogy with liquid solutions the solid may be considered to be the solvent and the 
point defects the solute. Similarly the defect equilibria  may be treated in terms of 
the thermodynamics of chemical reactions and solutions. 
 

                                                
3 A closed system is one where the mass (chemical entities) of the system is confined, but 

where energy (heat) can be exchanged with the surroundings. The expression for the Gibbs energy 
arises as a result of the definition of entropy and of the first law of thermodynamics which 
preserves the total energy of the system and the surroundings.  
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Point defects and equilibrium in an elemental 
solid - a simple statistical thermodynamic approach 

 
Before considering the thermodynamics of defect formation and of defect 

reactions in metal oxides and the corresponding use of the law of mass action, the 
simpler case of formation of one type of defect in an elemental solid will be 
treated by means of statistical thermodynamics. 

Consider a perfect crystal of an elemental solid E with N atoms as starting 
material. Let nv vacancies be formed according to the defect-chemical reaction  

 
EE = vE + EE         (3.2) 
 
where EE is an E-atom on an E-site and vE is a vacant E-site. The vacancies are 
formed by moving an E-atom from an E-site in the bulk to the surface of the 
crystal. The total number of sites then becomes N+nv. The change in Gibbs energy 
can be expressed in terms of the enthalpy of formation of each vacancy, ∆H, and 
the entropy associated with the formation of the defects, ∆S. 
 The enthalpy change on forming nv vacancies is thus nv∆H. It expresses 
the energy cost associated with creating a new, empty site. Since we are dealing 
with small concentrations of defects, the enthalpy should be one that is valid for 
ideal dilute solutions of vacancies in the lattice. 

The entropy change can be divided into two parts: i) a vibrational entropy 
change, ∆Svib, reflecting the entropy created by vibrations associated with each 
new vacancy, and ii) a configurational entropy, ∆Sconf, arising from the 
distribution of n vacancies among N+nV sites. 

The vibrational entropy change is associated with the vibrations in the 
neighbourhood of each vacancy, and the total vibrational entropy change is 
proportional to the number of vacancies, nv∆Svib. This entropy change is, as was 
the enthalpy change, related to a dilute solution of vacancies.   

The enthalpy and vibrational entropy changes are, as we have discussed, to 
a first approximation proportional to the number of vacancies formed, while the 
configurational entropy is a more complex function. The change in Gibbs free 
energy associated with the formation of nv vacancies may accordingly first be 
written 
 

confvibv STSTHnG ∆−∆−∆=∆ )(       (3.3) 

 
According to statistical thermodynamics the configurational entropy 

(entropy of mixing) can be expressed in terms of the thermodynamic probability, 
W, by the relation  
 

WkSconf ln=          (3.4) 
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where k is Boltzmann's constant. The thermodynamic probability W represents in 
this case the number of different distinguishable ways whereby nv vacancies may 
be distributed on N+nv lattice sites and is given as  
 

!!

)!(

v

v

nN

nN
W

+
=         (3.5) 

 
For large numbers of N and nV, which is typical for real crystals, Stirling's 
approximation ( xxxx −= ln!ln  for x>>1) may be applied, whereby Eq. 3.4 takes 
the form 
 

)lnln(
v

v

v

v

conf
n

nN
n

N

nN
NkS

+
+

+
=       (3.6) 

 
This entropy scales with the size of the system (the number N) but is not 
proportional with the number of defects nv.  

Intuitively, and by insertion in the equation above, we have Sconf = 0 at nv 
= 0. Thus, ∆Sconf = Sconf and by insertion into the expression for the change in free 
energy we get 
 

)lnln()(
v

v

v

v

vibv
n

nN
n

N

nN
NkTSTHnG

+
+

+
−∆−∆=∆    (3.7) 

 
The changes in enthalpy, entropy and Gibbs energy are illustrated schematically in 
Fig.3.1. 
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Figure 3-1. Example of the variation in enthalpy, vibrational and configurational entropy, and 

Gibbs energy with the concentration of vacancies in an elemental solid. 

 

At equilibrium ∆G will be a minimum with respect to nv , i.e. ∂∆G/∂nv = 0. By 
taking the derivative, and letting it be zero, one obtains 

 

0lnSH 
n
G

 vib
V

=
+

+∆−∆=
∆

v

v

nN

n
kTT

∂

∂
     (3.8) 

 

The term  
nN

n
 

v

v

+
 represents the fraction of the total number of sites which are 

vacant and is through rearrangement of Eq.3.8 given by  
 

)
kT
H

exp()
k

S
exp(  

nN

n
 vib

v

v ∆
−

∆
=

+
       (3.9) 

 
Since the formation of the vacancies is written EE = vE + EE, the equilibrium 
constant may, following the law of mass action, be written  
 

)
kT

H
exp()

k

S
exp(  

nN

n
 XK vib

v

v
v

∆
−

∆
=

+
===

EE vva      (3.10) 
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Eva is the activity and  
nN

n
  X

v

v
vE +

=  represent the site fraction of vacancies in the 

crystal of the element E. 
∆Svib in the expressions above represents the vibrational entropy change 

and ∆H the enthalpy change per vacancy. If one wants to express the same 
properties per mole of vacancies, k must be substituted by the gas constant R = 
NAk where NA is Avogadro's number. Relations corresponding to Eq. 3.10 may 
be derived for other types of point defects. 

At any temperature T>0 all solids will following Eq. 3.10 contain point 
defects. In the example above we have shown that the equilibrium constant, 
containing defect activities as site fractions, is given by an enthalpy change and an 
entropy term which constitutes the vibrational entropy change and not the 
(configurational) entropy of mixing. This applies to chemical mass action law 
expressions in general. Furthermore, it illustrates that the vibrational entropy 
enters without other factors only if the equilibrium constant is expressed properly 
with concentrations given as site fractions in the case of defects. 

It is common to combine the enthalpy and entropy changes into a Gibbs 
energy change, in this case the standard Gibbs energy change:  
 

)
RT
G

exp()
RT

H
exp()

R

S
exp( K

0
vib

v

∆
−=

∆
−

∆
=       (3.11) 

 
We will see later that this standard Gibbs energy change is the one we have when 
the reaction proceeds with all reactants and products in their standard reference 
state (activity of unity). It is not the same as the general Gibbs energy change 
calculated for the progression of the defect formation reaction earlier.  
 
  

Thermodynamics of chemical reactions 
 

As a basis for the subsequent considerations of thermodynamics of defect 
equilibria the following section provides a brief review of some general aspects of 
thermodynamics of chemical reactions. 

In treating chemical reactions and systems consisting of two or more 
constituents, it is convenient to introduce the concept of partial molar 
thermodynamic quantities. As regards equilibria, the partial molar Gibbs energy is 
particularly important. The partial molar Gibbs energy is commonly termed the 
chemical potential and written µi. The physical significance of a partial molar 
property is the increase in that property resulting from the addition of 1 mole of 
the constituent to such a large quantity of the system that its composition remains 
essentially unchanged. If a system consists of n1 + n2 + ... + ni moles of 
constituents 1, 2, …and i, the partial molar free energy for the "i"th constituent is 
given by 
 

 )
n
G

(  ,...,np,T,
i

i 21 n
∂

∂
µ =         (3.12) 
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The Gibbs energy of a system is in terms of chemical potentials of the 

constituents given by  
 

 .... i2211 µµµ innnG ++=        (3.13) 
 
 
When a chemical reaction takes place, the numbers of various constituents change, 
and dG changes correspondingly. For an open system (i.e. where we may add or 
remove heat and volume) at constant temperature and pressure, dG is given by  
 

 .... i2211, ipT dndndndG µµµ ++=       (3.14) 

 
At equilibrium we have 
 

 0i, ==∑
i

ipT dndG µ         (3.15) 

 
It may also be shown that under equilibrium conditions  
 

0  .... i2211 =++ µµµ dndndn i        (3.16) 
 
This equation is one form of the Gibbs-Duhem equation.  

In a chemical reaction , e.g. 
 

dDcCbBaA +=+         (3.17) 
 
the change in Gibbs energy is given by the difference in the total free energy in 
the final and initial state 
 

)( BADC badcG µµµµ +−+=∆       (3.18) 
 
The chemical potential of the constituent "i" in the mixture can be written 
 

iii aRT ln0+= µµ         (3.19) 
 
where ai is the activity of constituent "i" in the mixture and 0

iµ  is the chemical 
potential of constituent "i" at a chosen standard state of unit activity. The activity 
of pure solids or liquids is usually taken as unity at atmospheric pressure (1 bar or 
105 Pa), while for gases the activity is unity when the partial pressure of the gas 
constituent is 1 bar.  
 In solutions the activity is not unity, but may be equated with the mole 
fraction, Xi, in ideal solutions: 
 

ii Xa =          (3.20) 
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In non-ideal solutions the activity is related to the mole fraction through the 
activity coefficient, γi,  

 
iii Xa γ=          (3.21) 

 
γi is thus equal to unity in ideal solutions. It may be noted that in a system 
consisting of several phases, the condition of equilibrium implies that the 
chemical potential of constituent "i" is the same in all phases. 

If one introduces the expression for the chemical potential in Eq. 3.19 into 
Eq. 3.18 it follows that ∆G is given by 
 

b

B

a

A

d

D

c

C

aa

aa
RTGG ln0 +∆=∆        (3.22) 

 
where )( 00000

BADC badcG µµµµ +−+=∆  represents the change in Gibbs energy in 

the standard state, i.e. at unit activities. ∆G° is a constant under specified standard 
states. At equilibrium 0=∆G  such that 
 

KRTG ln0 −=∆         (3.23) 
 
where K is a constant given by 
 

mequilibriu

b

B

a

A

d

D

c

C

aa

aa
K 








=         (3.24) 

 
K is termed the equilibrium constant and it relates the activities (or concentrations 
under ideal conditions) of products and reactants when equilibrium has been 
attained at a given temperature. ∆G° may as in Eq. 3.1 be expressed in terms of 
the standard enthalpy change, ∆H°, and entropy change, ∆S°: 
 

KRTSTHG ln000 −=∆−∆=∆       (3.25) 
 
This may be rewritten in the form  
 

)exp()exp()exp(
000

0

RT

H

R

S

RT

H
KK

∆
−

∆
=

∆
−=     (3.26) 

 
Thus, we have arrived at the same type of expression for the equilibrium constant 
as we did in our intitial example from statistical thermodynamics. From that, we 
know that the entropy term contained in K° = exp(∆S°/R) contains vibrational 
terms only, and not the configurational entropy. 

From the equation above we see that the temperature dependence of K is 
given by  
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R

H

Td

Kd
0

)/1(
ln ∆

−=         (3.27) 

 
and that a plot of lnK vs 1/T (van’t Hoff plot) will give ∆S°/R as the intercept and 
-∆H°/R as the slope.  

This general treatment is applicable to any ideal solutions whether these 
are gaseous, liquid, or solid, and it applies also to defect chemistry as we have 
examplified initially. 
 
 

Thermodynamics and point defects 
 

Equilibrium thermodynamics may as stated above be applied to defect 
reactions. However, before so doing it is of interest to consider the 
thermodynamic properties of the individual point defects. 
 

Virtual chemical potentials of point defects     

 
The regular atoms on their normal sites and the point defects occupy 

particular sites in the crystal structure and these have been termed structural 
elements by Kröger, Stieltjes, and Vink (1959) (see also Kröger (1964)). As 
discussed in Chapter 2, the rules for writing defect reactions require that a definite 
ratio of sites is maintained due to the restraint of the crystal structure of the 
compounds. Thus if a normal site of one of the constituents in a binary compound 
MO is created or annihilated, a normal site of the other constituent must 
simultaneously be created or annihilated. 

As discussed above the chemical potential of a constituent represents the 
differential of the Gibbs energy with respect to the amount of the constituent when 
the pressure, temperature and the amounts of all other constituents are kept 
constant. When a structure element is created, the number of complementary 
structure elements can not be kept constant due to the requirement of a definite 
site ratio, and it is therefore not possible to assign a true chemical potential to a 
structure element. However, Kröger et al. have shown that one may get around 
this difficulty by assigning a virtual chemical potential ζ  (zeta) to each separate 
structure element and that the virtual chemical potential behaves like a true 
chemical potential and may be related in a in a similar way to activity: 
 

iii aRT ln0+= ζζ         (3.28) 
 
The virtual potential differs from the true chemical potential by an undefined 
constant which is incorporated in ζ°. For this reason the absolute value of the 
virtual chemical potential can not be determined experimentally. 

In real changes in crystals where the site ratio is maintained and 
complementary structure elements  (or building units) are created or annihilated, 
the undefined constants in the virtual chemical potential of each separate structure 
element cancel out, and the overall change is characterised by real changes in 
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Gibbs free energies. Real changes may thereby be described in terms of virtual 
potentials. Kröger et al. pointed out that a similar situation occurs in aqueous 
electrolytes. In this case, arbitrary thermodynamic potentials are assigned to 
separate ions, although it is impossible to determine experimentally the separate 
potentials. 
 
 

Ideal and non-ideal models 

 
As described in the preceding section the defect reactions and equilibria can 

be described as chemical reactions and treated in terms of the law of mass action. 
It is emphasised that the equilibrium constants relate activities of the structure 
elements involved in the defect reaction, but under ideal conditions and when the 
structure elements can be assumed to be randomly distributed over the available 
sites, the activities equal the concentrations of the structure elements. This is a 
valid assumption for very dilute solutions. However, for larger defect 
concentrations interactions take place between the defects, etc. and in principle 
activities should be used instead of concentrations. 

The interactions between charged defects may be accounted for by using the 
Debye-Hückel theory in analogy with the interactions of ions in aqueous 
solutions. This requires knowledge of the relative dielectric constant, the smallest 
distance between charged defects, and other parameters for the solid. Debye-
Hückel corrections have, for instance, been worked out and tested for cation 
vacancy defects in metal-deficient Co1-yO and Ni1-yO. At infinite dilution the 

metal vacancies can be considered to have two negative charges, //
Cov , and the 

equivalent number of electron holes is assumed to be randomly distributed in the 
oxide. With an increasing concentration of point defects and electron holes, there 
will be an increasing association of the metal vacancies (with two effective 
negative charges) and the positively charged electron holes. In these terms, the 
metal vacancies can be considered surrounded by a cloud of electron holes. This 
results in a deviation from a random distribution of electron holes and a 
corresponding deviation from the ideal solution model. For the case of Co1-yO the 
Debye-Hückel correction can explain the increasing deviation from ideality with 
increasing defect concentration. However, this model in its present form does not 
satisfactorily explain various electrical conductivity results for Co1-yO and so far 
apparently fails to give a full description of the defect structure and defect-
dependent properties of the oxide. 

An alternative approach is to consider that the association of defects leads to 
the formation of new "associated" defect species. These "new" defects are, in turn, 
treated in terms of the ideal solution models. Specifically, in the case of metal 
vacancies in, for instance, Co1-yO and Ni1-yO it is assumed that the metal 
vacancies with two effective charges become associated with one electron hole to 
give a metal vacancy with one negative effective charge, /

Cov , as has already been 
described in Chapter 2. At this stage this simple approach appears to give an 
equally consistent description of the defect structure and defect-dependent 
properties of Co1-yO as the much more complicated Debye-Hückel model. 
However, it is to be expected that future developments will provide a more 
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detailed understanding of defect interactions and how they influence defect-
dependent properties of inorganic compounds. 

Despite its shortcomings the ideal solution approach will be used in this 
book in treating defect equilibria. Defect interactions will generally be treated by 
assuming the formation of associated defects as is, for instance, exemplified above 
for the formation of singly charged metal vacancies through the association of an 
electron hole with a doubly charged metal vacancy. Furthermore, the defect 
equilibria will be treated using the law of mass action. 

Concentrations of the structure elements may be expressed in many units. In 
semiconductor physics it is common to express the concentrations in number per 
cm3. This has the disadvantage, however, that when two compounds with different 
molecular (packing) densities contain the same number of defects per cm3, the 
number of defects per molecular unit is different in the two compounds, and vice 

versa. Furthermore, the molecular unit size (packing density, or unit cell 
parameters) of a compound changes as a function of its nonstoichiometry and 
temperature, and in this case the unit of defects per cm3 does not unequivocally 
reflect the relative defect concentration per molecular unit or atom site under 
different conditions. 

In the following, concentration will in most cases be expressed as the 
number of defects or atoms per molecule or site, i.e. in molar or site fractions, 
while we for some purposes need to use the number of defects per cm3. As 
mentioned before, the value of the equilibrium constant depends on the units of 
concentration that are employed, but it is a simple matter to convert the values of 
the equilibrium constant from one system to another. 
 
 

Examples of defect equilibria in pure, 
stoichiometric metal oxides 

 

In this section we will see how we write defect reactions for selected simple 
cases of combinations of defects, express the equilibrium constants, and combine 
this with an electronutreality condition to express the concentration of dominating 
defects as a function of temperature and activities. We will stay strictly with 
statistical thermodynamics, such that entropy changes in the defect reaction can be 
interpreted strictly as a change in the vibrational entropy. Approximations will be 
implemented in order to visualise the simplicity f the method.  

 

Schottky defects  

 
As illustration let us consider the defect equilibrium for Schottky defects in 

the oxide MO and where the metal and oxygen vacancies are doubly charged. The 
defect equation for their formation is given in Chapter 2 as  
 

//0 MO vv += ••          (3.29) 
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The corresponding defect equilibrium may at low defect concentrations be written 
 

[M]

][

[O]

][
XX

//

//
MO

vvS

vv
K

MO

••

== ••        (3.30) 

 
where KS is the equilibrium constant for a Schottky defect pair, X represent site 
fractions, and square brackets express concentrations of species. [O] and [M] 
represent the concentration of oxygen and metal sites, respectively.  

If we let square brackets express concentration in mole fraction (i.e. the 
number of the species per mole of MO), then [O] = [M] = 1, and then 
 

]][[ //
MOS vvK ••=         (3.31) 

 
When the concentrations of the defects are expressed in site fractions, or 

properly converted to mole fractions as here, KS is related to the Gibbs molar 
energy, ∆GS, enthalpy change, ∆HS, and entropy change, ∆SS, of formation of 
pairs of doubly charged Schottky defects through the relation above: 
 

)
H

-exp()
S

exp()
G

exp(-  ]][[ SSS//

RTRRT
vvK MOS

∆∆
=

∆
== ••    (3.32) 

 
It may be useful to repeat that the entropy change , ∆SS, does not include the 
configurational entropy changes associated with the formation of the defects, but 
mainly involves the change in vibrational entropy. 

When the Schottky pair dominates the defect structure, we may see from 
the reaction equation or from the electroneutrality condition that in MO the 
concentrations of the metal and oxygen vacancies are equal: 

 
 ][][ //

MO vv =••          (3.33) 
 

Insertion into the preceding equation yields 
 

)
2

H
-exp()

2

S
exp( ][][ SS2/1

S
//

RTR
Kvv MO

∆∆
===••      (3.34) 

 
Under these conditions the defect concentrations are only dependent on the 
temperature; they are independent of the activities of the components M and O2. 
The slope in a van’t Hoff plot of lnK vs 1/T would be -∆HS/2R. The factor 2 
results from the square root of the equilibrium constant, in turn resulting from the 
fact that there are two defects created, in comparison with the one we got in the 
element used as example earlier.  

It may be useful to note that the procedure we have applied is to write 
down the defect reaction and the mass action law expression for its equilibrium 
constant, and the prevailing electronuetrality condition. Thus, we have two 
independent equations for the two unknowns (provided that either KS or all of 
∆SS, ∆HS, and T are known). 
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Frenkel defect pairs 

 
In our next example we consider Frenkel defect pairs in MO. If, for the sake 

of illustration, the Frenkel defects in MO are assumed to be doubly charged, the 
defect equation for their formation is given as 
 

//
Mi

x

i

x

M vMvM +=+ ••         (3.35) 
 
It may be noted that a vacant interstitial site has been included to keep track of the 
sites where the interstitials are going. The corresponding defect equilibrium is 
written as 
 

]][[

]][[

][

][

][

][

][

][

[i]

][
X //

//

//

x

i

x

M

Mi

x

i

x

M

Mi

vM

vM

F
vM

vM

i

v

M

M

M

vM

XX

X
K

x
i

x
M

Mi

••

••

===
••

     (3.36) 

 
If there is one interstitial site per MO, and if the defect concentrations are small 
such that 1 ][][ == x

i

x

M vM , we obtain the simpler 

 
]][[K //

F Mi vM ••=         (3.37) 
  
If Frenkel defects predominate in the pure stoichiometric compound, the 
concentrations of interstitial cation and vacancies are then equal, and we obtain: 
 

)
2

H
-exp()

2

S
exp( ][][ FF2/1

F
//

RTR
KvM Mi

∆∆
===••      (3.38) 

 
where ∆HF is the enthalpy of formation of Frenkel defect pairs. Under these 
conditions the concentration of the Frenkel defect pairs is independent of the 
activities of the metal and oxygen. 
 

Intrinsic ionisation of electrons. 

 
For many oxides, and particularly when considering defect structure 

situations close to stoichiometry, it is essential to take into account the intrinsic 
ionisation of electrons. This can include localised defects (valence defects) or 
delocalised defects (valence band and conduction band).  

In the case of valence defects, the ionisation of a pure binary metal oxide 
MOa may typically be assigned to mixed valency of the metal and thus be written 
as 
 

•+= MM

x

M MMM /2         (3.39) 
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The equilibrium constant may then be expressed as site fractions, which in our 
case immediately simplifies into an expression containing only volume or molar 
concentrations:   

 

 
][

]][[
K

2

/

i x

M

MM

M

MM •

=         (3.40) 

 

If the intrinsic ionisation dominates the defect structure, we have  
 

][][ /
MM MM =•         (3.41) 

 
Insertion into the equilibrium constant yields 
 

)
2RT

exp()
2R

]exp([]K[][][ 1/2
i

/ iix

M

x

MMM

HS
MMMM

∆
−

∆
===•    (3.42) 

 
In the case of delocalised electrons we write the ionisation reaction 
 

•+= he0 /          (3.43) 
 
In this model, classical statistical thermodynamics cannot be applied, and we 
abandon the accounting of sites and configurational entropy. Instead we enter 
simply the volume concentrations of defects in the widespread definition of the 
intrinsic ionisation constant:  
 

pn ]][[K //
i == •he         (3.44) 

 
where /

iK  is the equilibrium constant. The temperature dependency of the product 
np is mainly given by the ionisation energy, most often referred to as the band 
gap, Eg. This has a slight temperature dependency that may be expressed the same 
way as we usually do for Gibbs energies and equilibrium constants: 

 

)exp(K)exp(K /
i0,

/
i

RT

H

RT

E
ig ∆

−=−=       (3.45) 

 
If the concentrations of electrons and electron holes predominate, then the 
electroneutrality condition may be approximated by 
 

)
2

exp()K()
2

exp()K(pn 2/1/
i0,

2/1/
i

RT

H

RT

E
ig ∆

−=−===    (3.46) 

 
Intrinsic ionization of electrons and holes is, for instance, concluded to 

apply to Fe2O3 and Cr2O3 at high temperatures. 
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Defect equilibria in nonstoichiometric oxides 
 

Here, we will employ mainly the same methodology as in the preceding 
section, but when delocalised defect electrons and holes are introduced we cannot 
stay strictly with statistical thermodynamics and the equilibrium thermodynamics 
cannot be related in the same simple manner to the change in vibrational entropy 
any longer.  

 

Oxygen deficient oxides 

 
In oxides with oxygen deficit, the predominant defects are oxygen 

vacancies. If these are fully ionised (doubly charged), and if the electronic defects 
are localised as valency defects, their formation reaction and the corresponding 
equilibrium can be written: 
 

)(22 22
1/ gOMvMO MO

x

M

x

O ++=+ ••       (3.47) 
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2
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2

2

22

/
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O
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vO p
MO

Mv
p

XX

XX
K

x
M

x
O

MO

••

==
••

     (3.48) 

 
If these oxygen vacancies and the compensating electronic valence defects are the 
predominating defects in the oxygen deficient oxide, the principle of 
electroneutrality requires that 
 

]2[  ][ / ••= OM vM          (3.49) 
 
By insertion, and assuming the oxide is MO and that 1][][ == x

O

x

M OM  (small 
defect concentrations) we then obtain: 
 

6/13/16/13/1/

22
)

3

H
-exp()

3

S
exp(2)2( ]2[v][M −−•• ∆∆

=== O

vOvO

OvOOM p
RTR

pK   (3.50) 

 
This shows that the concentrations of the dominating defects (defect electrons and 
oxygen vacancies) increase with decreasing oxygen partial pressure. It 
furthermore shows the relation between defect concentrations and entropy and 
enthalpy changes of the defect reaction. The factor 3 that enters results from the 
formation of 3 defects in the defect reaction. 

Now, let us do the same treatment, but for an oxide where defect electrons 
are delocalised in the conduction band. The formation of oxygen vacancies is then 
written: 
 

)(2 22
1/

gOevO O

x

O ++= ••        (3.51) 
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Since delocalised electrons in a band cannot be treated by classical statistics, we 
abandon the site fraction principle, and express all activities simply as 
concentrations, and denote the new equilibrium constant with a prime4: 
 

2/12/

2
n

][

][
Ox

O

O

vO p
O

v
K

••

=         (3.52) 

 
If these oxygen vacancies and the compensating electrons are the predominating 
defects in the oxygen deficient oxide, the principle of electroneutrality requires 
that 
 

]2[ n ••= Ov          (3.53) 
 
By insertion, and assuming that 1][ =x

OO  (small defect concentrations) we then 
obtain: 
 

6/1vO3/1/
vO0,

6/13/1/

22
)

3

H
-exp()(2K)2( ]2[vn −−•• ∆

=== OOvOO p
RT

pK    (3.54) 

 
and deliberately use a pre-exponential K0 instead of an entropy change. Otherwise, 
the solution is the same as in the case with localised valence defects for the 
electrons. 

A plot of log n or ][ log ••
Ov  vs 

2Op log  (at constant temperature) will give 

straight lines with a slope of –1/6. Such plots are called Brouwer diagrams, and 
they are commonly used to illustrate schematically the behaviour of defect 
concentrations under simplified limiting cases of dominating defects.  

 

Figure 3-2. Brouwer diagram for ]2[ n ••= Ov  as the electroneutrality condition.  

  

                                                
4 This text introduces the use of a prime in the equilibrium constant to denote cases where 

statistical thermodynamics has not been used throughout, and where the entropy of the reaction 
thus is not well defined. This notation is new and not in common use, as is neither the distinction it 
notifies. One may therefore expect also that this text relaxes its stringency in this respect in later 
chapters, where the distinction is less in focus. 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


3. Defect equilibria 

 3.16

If we want to investigate the more complex situation of involving neutral 
and partially ionised oxygen vacancies and the excitation of the trapped electrons 
(described in Chapter 2) we start by writing down the stepwise reactions and their 
corresponding equilibria: 
 

)(22
1 gOvO x

O

x

O +=         (3.55) 
 

2/1

2][

][
Ox

O

x

O

vOx p
O

v
K =         (3.56) 

 
/

evv O

x

O += •          (3.57) 
 

n
][

][/
1 x

O

O

vO
v

v
K

•

=          (3.58) 

 
/evv OO += •••          (3.59) 

 

n
][

][/
2 •

••

=
O

O

vO
v

v
K          (3.60) 

 
where /

2
/

1  and ,, vOvOvOx KKK  are the respective equilibrium constants. Now the 

principle of electroneutrality requires that 
 

]2[ ][n ••• += OO vv         (3.61) 
 
The concentrations of the electrons and the neutral, singly, and doubly charged 
oxygen vacancies are related through the equations above, and by combination 
expressions for each of the defects may be obtained. The electron concentration is 
given by 
 

2/1/
2

/
1

3

2
)2( −+= OvOvOvOx pnKKKn       (3.62) 

 
This equation has two limiting conditions.  

If /

2
2

vO
Kn << , then  

 
6/13/1/

2
/

1 2
)2(][2 −•• == OvOvOvOxO pKKKvn      (3.63) 

 
Under these conditions the concentrations of electrons and oxygen vacancies are 
relatively small, and under these conditions the doubly charged vacancies are the 
predominating oxygen vacancies, and the concentrations of electrons and oxygen 
vacancies are proportional to 6/1

2

−
Op . Of course, this situation corresponds to the 

simple case presented initially for the doubly charged vacancies, and obviously 
//

2
/

2 vOvOvOvOx KKKK = . 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


3. Defect equilibria 

 3.17

If, on the other hand, /

2
2

vO
Kn >> , then  

 
4/12/1/

1 2
)(][ −• == OvOvOxO pKKvn       (3.64) 

 
Under these conditions the concentration of electrons is relatively large,  and the 
predominant oxygen vacancies are then singly charged. Furthermore, the 
concentrations of electrons and oxygen vacancies are then proportional to 4/1

2

−
Op . 

A general tendency similar to that of oxygen deficient oxides applies to 
metal deficient oxides; in the oxide M1-yO the metal vacancies are doubly charged 
at very small deviations from stoichiometry and tend to become singly charged 
with increasing nonstoichiometry. 

It may be noted that the neutral oxygen vacancies are not affected by 
charged defects, nor do they affect the electroneutrality.  
 

Oxide with excess metal 

 

We will as an example consider the formation of fully ionised interstitial 
metal ions and complementary electrons in an oxide with excess metal M2+yO3. 
The equation for the formation of interstitial metal ions with three effective 
positive charges and three complementary electrons is given by  
 

)(3 24
3/

2
3 gOeMMO i

x

M

x

O ++=+ •••       (3.65) 
 
The corresponding defect equilibrium is given by  
 

-1-3/24/33/ ][][]n[
2

x

M

x

OOiMi MOpMK •••=       (3.66) 

 
where KMi is the equilibrium constant. If these defects are the predominating 
ones, and we as before assume small defect concentrations, the electroneutrality 
condition and the oxygen pressure dependence of the interstitial metal ions and the 
electrons is 
 

16/34/1/

2
)3(n]3[ −••• == OMii pKM       (3.67) 

 
Thus, also in this case the concentration of the defects increases with decreasing 
oxygen activity and is proportional to -3/16

O2
p . This oxygen pressure dependence is 

different from that for formation of singly as well as doubly charged oxygen 
vacancies. In such a case it would thus in principle be possible to decide from 
measurements of electron concentration (e.g. via electrical conductivity) or of 
nonstoichiometry as a function of oxygen activity whether the predominating 
defects are triply charged interstitial metal ions or oxygen vacancies with one or 
two charges.  

However, had the metal interstitials predominantly been doubly charged in 
the oxide M2+yO3, a -1/4

O2
p  dependence would have been the result, and additional 
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studies of defect-dependent properties (e.g. self-diffusion of metal or oxygen) 
would be needed to distinguish this situation from that of singly charged oxygen 
vacancies. 

It may be noted that it is not only the absolute number of charges on a 
defect that determines the 

2Op  dependence, but also the difference between the 

actual charge and the charge given by the nominal valence of the atoms involved. 
Thus, in the oxide MO (or M1+yO) doubly charged metal interstitials will give a 

-1/6
O2

p  dependence of the defect concentrations (as opposed to the case above) and 

in this case be indistinguishable from doubly charged oxygen vacancies. 
 

Simultaneous presence of oxygen vacancies and 
interstitial metal ions 

 
In an oxide MaOb where the ratio of metal to oxygen is larger than the 

stoichiometric ratio a:b it is a priori difficult to predict whether interstitial metal 
ions or oxygen vacancies predominate. In principle both types of defects may be 
important, at least in certain regions of nonstoichiometry. In the following, let us 
consider a case where it may be necessary to take into account the simultaneous 
presence of interstitial metal ions and oxygen vacancies. 

Consider an oxide with a stoichiometric composition MO2. Let us further 
assume for the sake of illustration that when the oxide is nonstoichiometric the 
important point defects are doubly charged oxygen vacancies and doubly charged 
interstitial metal ions. (It mat be noted that the metal interstitials are not fully 
ionised in this case.) The composition of the nonstoichiometric oxide may 
accordingly be written M1+yO2-x. 

The defect equations for the formation of these two types of defects may be 
written 
 

)(2 22
1/

gOevO O

x

O ++= ••        (3.68) 
 

)(22 2
/ gOeMMO i

x

M

x

O ++=+ ••       (3.69) 
 
The corresponding defect equilibria (assuming [MM] and [OO] to be equal to 
unity) then become  
 

-12/12/ ][]n[
2

x

OOOvO OpvK ••=        (3.70) 

 
-1-22/

2 ][][]n[
2

x

M

x

OOiMi MOpMK ••=       (3.71) 

 
The electroneutrality condition is given by 
 

]2[][2 •••• += iO Mvn         (3.72) 
  

Two limiting conditions may be considered: 
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When ][][ •••• >> iO Mv  then 
 

6/13/1/

2
)2(][2 −•• == OvOO pKvn        (3.73) 

 
as obtained also earlier for the same conditions. By inserting this relationship for n 
into the equilibrium constant for formation of the minority defects, metal 
interstitials, we obtain 
 

3/23/2//
2 2

)2(][ −−•• = OvOMii pKKM        (3.74) 

 
Under these conditions the minority concentration of metal interstitials, ][ ••

iM , 
increases rapidly with decreasing oxygen partial pressure, more rapidly than the 
two dominating defects, and may eventually catch up with them and become 
dominating at the expense of oxygen vacancies, as illustrated in the figure below. 
 

 
Figure 3-3. Schematic presentation defect concentrations as a function of oxygen pressure 

in an oxide MO2 containing both doubly charged oxygen vacancies and doubly charged interstitial 

metal ions, compensated by electrons. 

 
When, as the other limiting case, ][][ •••• >> Oi vM  then 

 
3/13/1/

2
)2(][2 −•• == OMii pKMn        (3.75) 

 
By inserting this relationship for n into the equilibrium constant for formation of 
the minority defect, oxygen vacancies, we obtain  
 

6/13/2/
2

/

2
)2(][ OMivOO pKKv −•• =        (3.76) 
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It may be noted that under these conditions the concentration of oxygen 
vacancies increases with the oxygen pressure, as shown in the figure. 

The overall situation may be illustrated schematically as shown in Fig.3.3, 
in which the concentrations of the three defects are plotted as a function of the 
partial pressure of oxygen. In this diagram it is assumed that ][ ••

Ov  is 105 times 

larger than ][ ••
iM  at 1 atm O2, and with this assumption it is seen that the 

interstitial cations will predominate at a partial pressure below about 10-17 atm. 
Many of the high melting oxides are stable over large oxygen pressure ranges and 
it is not improbable that this hypothetical situation, with oxygen vacancies 
predominating at high partial pressures of oxygen (and small deviations from 
stoichiometry) and interstitial cations predominating at low partial pressures 
(relatively large deviations from stoichiometry) may generally apply to oxygen 
deficient oxides at elevated temperatures. In actual cases more than one ionisation 
state of the defects may of course also have to be considered. 

In this section we have employed and illustrated a very important sequence 
of actions often used to solve ideal situations in defect chemistry, but also 
implicitly used in traditional aqueous and other chemistry. We write the list down 
in a numbered list for clarity: 

1. Write down the full electroneutrality condition containing all 
charged defects. 

2. Write down a number of independent chemical reactions and 
corresponding equilibrium constant expressions – if you have n 
defects you need normally n-1 such equilibria. (The n’th 
expression is the electroneutrality itself.)  

3. Decide a pair of dominating charged defects, and simplify the 
electroneutrality condition to this limiting situation. 

4. Insert this limiting condition into an appropriately chosen defect 
equilibrium to obtain the expression for the concentration of the 
two dominating defects. (Normally, simplifications such as 
assuming small defect concentrations are made here.) 

5. Insert the obtained expression into another equilibrium expression 
and solve to obtain an expression of the concentration of a 
minority defect. 

6. Extrapolate to see what minority defect comes up to become 
dominating as conditions change. Then repeat from step 3 until all 
defects are exhausted. 

On the basis of such an exercise one may construct schematic diagrams of 
how defect pairs dominate defect structures and how minority defects behave and 
eventually take over. Transition zones are not solved explicitly in this way and are 
thus often drawn sharp and schematically. Logarithmic depictions are common, 
and  such plots are then called Brouwer diagrams. 

 

Metal-deficient oxide 
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The reactions and defect equilibria for the formation of single, unassociated 
neutral metal vacancies and the subsequent excitation of electron holes in MO 
may for small defect concentrations be written  
 

x

O

x

M OvgO +=)(22
1         (3.77) 

 
2/1

2
]][[ −= O

x

O

x

MvMx pOvK        (3.78) 

 
•+= hvv M

x

M

/          (3.79) 

 

p
][

][ /
/

1 x

M

M

vM
v

v
K =          (3.80) 

 
•+= hvv MM

///          (3.81) 

 

p
][

][
/

//
/

2
M

M

vM
v

v
K =         (3.82) 

 
where 

vMxK , /
1vMK , and /

2vMK  are the equilibrium constants for the respective 

defect equilibria. 
When the metal vacancies and their complementary electron holes are the 

predominating defects, the electroneutrality condition reads 
 

]2[ ][ p ///
MM vv +=         (3.83) 

 
Through combinations of the equilibrium constant expressions and 
electroneutrality above, the concentration of the separate point defects and 
electronic defects can be evaluated. In an oxide M1-yO this leads to relationships 
similar to that for oxygen vacancies with the exception that the concentrations of 
electron holes and metal vacancies always increase with increasing oxygen 
pressure. The concentration of electron holes is, for instance, determined by the 
expreession 
 

2/1/
2

/
1

3

2
)2( OvMvMvMx ppKKKp +=       (3.84) 

 
As regards the electron holes two limiting conditions may be considered: 
At low concentrations of electron holes (small deviations from 

stoichiometry; /
2vMKp << ) we have 

 
6/13/1/

2
/

1 2
)2( OvMvMvMx pKKKp =        (3.85) 

 
At high concentrations of electron holes ( /

2vMKp >> ) we obtain 
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4/12/1/

1 2
)( OvMvMx pKKp =        (3.86) 

 
The oxygen pressure dependence of the concentration of electron holes and 

the total concentration of the charged metal vacancies (deviation from 
stoichiometry) correspondingly changes from 1/6

O2
p  to 1/4

O2
p  with increasing 

deviation from stoichiometry. 
 

Metal oxides with excess oxygen. 

 
The defect equilibria involving the formation of interstitial oxygen atoms or 

ions in oxides with excess oxygen may be set up following the same treatment as 
applied to the other defects which have been dealt with above. The concentration 
of interstitial oxygen species increases with 

2Op , and the formation of charged 

oxygen interstitials is accompanied by the formation of electron holes. 
 
 

Examples of defect structures involving both 
oxygen deficiency and excess 
 

In the preceding examples of defect structures in non-stoichiometric oxides 
it has been assumed that the oxides either have an oxygen deficit (or excess metal) 
or excess oxygen (or metal deficit). In many oxides the predominating defect may 
change from one type to another depending on the oxygen activity. As an 
illustration of such a defect structure situation a hypothetical case will be 
considered where an oxide predominantly contains oxygen vacancies at reduced 
oxygen activities and interstitial oxygen ions at high oxygen activities. In an 
intermediate region the oxide will be stoichiometric or close to stoichiometric. 
Some oxides with the fluorite structure exhibit such a defect structure, e.g. UO2±x. 

For the sake of simplicity in illustrating such a defect structure situation it 
will be assumed that both the interstitial oxygen ions and the oxygen vacancies are 
doubly charged. In this case it will then be necessary to consider the following 
equilibria, for the formation of oxygen vacancies, oxygen interstitials, electrons 
and holes, and for anion Frenkel pairs: 
 

2/12/

2
]n[ OOvO pvK ••=         (3.87) 

 
2/12///

2
]p[ −= OiOi pOK         (3.88) 

 
npK i =/          (3.89) 

 
]][[ // ••= OiAF vOK         (3.90) 
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In these equilibria we have assumed small defect concentrations such that the 
concentrations of normal lattice sites and empty interstitial sites have been 
assumed constant and equal to unity and thus omitted from the expressions.  

It should be noted that the defect equilibria are interrelated, and through a 
combination of the equations it may be shown that //2/

OivOAFi KKKK = . Thus, only 
three out of the four equilibria are sufficient to describe the defect structure of the 
oxide.  

The full electroneutrality condition is given by  
 

n][2p]2[ // +=+••
iO Ov        (3.91) 

 
We will explore the defect structure of the oxide by considering limiting 
conditions and follow the procedure listed before to construct Brouwer diagrams. 
 

Oxygen deficit.  

 
At large oxygen deficit the following approximation may be made 

 
p ],[2][2 //

iO Ovn >>= ••        (3.92) 
 
We first insert this into the appropriate equilibrium to find the concentrations of 
the dominating defects in the usual manner: 
 

6/13/1/

2
)2(][2 −•• == OvOO pKvn        (3.93) 

 
 and then insert this into other equilibria to find the concentrations of the minority 
defects. By inserting the expression for the concentration of vacancies into the 
anion Frenkel equilibrium, we obtain for the concentration of interstitials: 
 

6/13/1/3/2

2
)(2][ OvOAFi pKKO −•• =       (3.94) 

 
By inserting the expression for the concentration of electrons into the intrinsic 
electronic equilibrium, we obtain for the concentration of holes:  
 

6/13/1//

2
)2( OvOi pKKp −=        (3.95) 

 
 

Oxygen excess 

 
For relatively large excess oxygen, that is, when 

 
n ],[2][2 // ••>>= Oi vOp        (3.96) 
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we may in a manner analogous to the preceding case, derive the following 
relations: 
 

6/13/1///

2
)2(][2 OOii pKOp ==        (3.97) 

 
6/13/1/3/2

2
)(2][ −−•• = OOiAFO pKKv       (3.98) 

 
6/13/1//

2
)2( −−= OOii pKKn        (3.99) 

 

Stoichiometric condition 

 
At or close to stoichiometry two alternative limiting conditions must be 

considered, namely dominance by intrinsic electronic ionisation or by anion 
Frenkel disorder. 

If intrinsic ionisation of electrons predominates, and thus 
 

][2],[2)( //2/1/ ••>>== Oii vOKnp       (3.100) 
 
The concentrations of electrons and electron holes (n and p) are then independent 
of oxygen pressure. The point defect concentrations are obtained by insertion of 
the expression for the concentrations of the electronic defects into the appropriate 
equilibria, and we obtain: 
 

2/1
/
i

/

2K
][ −•• = O

vO

O p
K

v         (3.101) 

 
2/1/

i
///

2
K][ OOii pKO =         (3.102) 

 

A Brouwer diagram illustrating this case of stoichiometric condition, along with 
oxygen deficit and excess, is shown below. 
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Figure 3-4. Schematic presentation of oxygen point defects and electronic defects as a 

function of oxygen pressure in an oxide which depending on the partial pressure of oxygen may 

have an excess or deficit of oxygen. Intrinsic electronic equilibrium is assumed to predominate at 

stoichiometric composition. 

  
If, on the other hand, anion Frenkel disorder predominates under 

stoichiometric conditions, and thus 
 

2

)(

2
,

2
K][][

2/1/
1/2
AF

// i

Oi

Knp
vO =>>== ••      (3.103) 

 
then ][ //

iO  and ][ ••
Ov  are independent of the partial pressure of oxygen, while the 

concentrations of electronic defects are given by  
 

4/14/12/1/

2
)(n −−= OAFvO pKK        (3.104) 

 
4/14/12/1/

2
)(p OAFOi pKK −=        (3.105) 

 
A Brouwer diagram illustrating this case of stoichiometric condition, along with 
oxygen deficit and excess, is shown below. 
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Figure 3-5. Schematic presentation of the concentration of oxygen point defects and 

electronic defects as a function of oxygen pressure. Oxygen defects are assumed to predominate at 

stoichiometric composition 

 

From the diagrams we can conclude that at low oxygen activities the oxide 
has oxygen deficiency and will be an electronic n-type conductor, because the 
mobility of the electrons is always much higher than that of oxygen vacancies. At 
high oxygen partial pressures the oxide will correspondingly have oxygen excess 
and be a p-type electronic conductor. At intermediate oxygen activities it may be 
be a mixed n- and p-type electronic conductor in the case of intrinsic electronic 
disorder, while it may exhibit ionic or mixed ionic/electronic conduction in the 
case of anion Frenkel disorder. 

Similar diagrams and analyses may be made for many other combinations of 
non-stoichiometric and stoichiometric defect situations of pure (undoped) oxides 
and other ionic compounds.  

  

Summary 
 

Chemical reactions for defects can be formulated and treated using the 
mass-action law. As for other chemical reactions, equilibrium constants can be 
defined in terms of the activities of the defects and other species. Under the 
normal constrictions we can approximate activities with concentrations of defects 
and partial pressures of gases. The equilibrium constants can also be expressed in 
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terms of the Gibbs free energy change of the reaction, which in turn is expressed 
by the entropy and enthalpy changes.  

We have seen that the standard entropy change of the standard Gibbs energy 
change contains only vibrational terms provided that the configurational terms are 
properly handled in expressing the equilibrium conditions. This is often possible 
in defect idealised defect chemistry since we can apply classical statistical 
thermodynamics. However, for non-classical defects such as delocalised electrons 
and holes this approach is less meaningful, and the entropy change may then be 
interpreted in a less straightforward manner. We have introduced the use of a 
prime (as in K/) to denote equilibrium constants that are not expressed according 
to statistical thermodynamics and where the entropy change in the Gibbs energy 
change may have other than vibrationan contributions.      

The mass action expressions can be combined with the full or limited cases 
of the electroneutrality condition to obtain exact or approximate (limiting case) 
expressions for the concentration of defects. Such concentrations are typically a 
function of the oxygen partial pressure, temperature, and doping. It is common to 
illustrate defect structures for oxides by plotting log defect concentrations vs log 

2Op  (Brouwer diagrams) or ln or log defect concentrations vs 1/T. We have 

shown these principles and techniques through examples of intrinsic ionic and 
electronic disorder, various types of nonstoichiometry and variable ionisation of 
point defects. 

We have restricted our treatment to simple cases and made simplifications 
where possible. Assumption of small defect concentrations have allowed the 
assumptions that the concentrations of normal lattice atoms and empty interstitials 
sites are constant, with activities equal to unity. Larger defect concentrations can 
to a first approximation be taken into account by including mass and site balances 
into the expressions used to solve the defect structure.) 
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Exercises 

1. Do the insertion of Stirling’s approximation and the derivation that leads 
up to the relation between equilibrium constant and entropy and enthalpy 
changes for the elemental reaction EE = vE + EE (Eqs. 3.3 and onwards).  

2. Write the reaction for formation of Schottky defects in MO2 and find an 
expression for the defect concentrations as a function of the equilibrium 
constant and thermodynamic parameters and temperature. Note in 
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particular how the solution deviates from the one obtained for the oxide 
MO treated in the text.  

3. In the case of cation Frenkel defects in MO we assumed in the text that we 
had one interstitial site per MO. Derive the expression for the defect 
concentrations if the structure consists of fcc close-packed O ions, with M 
ions on each octahedral hole, and with interstitial sites on all tetrahedral 
holes (Hint: consult Chapter 1). 

4. For a defect situation in an oxide dominated by doubly charged oxygen 
vacancies and electrons, sketch the van’t Hoff plot (Logarithm of defect 
concentration vs 1/T) and a double-logarithmic plot of defect 
concentrations vs pO2 (Brouwer diagram). 

5. Consider a metal oxide MO1-x dominated by singly and doubly charged 
oxygen vacancies. Suggest a condition that expresses the changeover from 
dominance of one to dominance of the other. Next, find an expression for 
the pO2 (as a function of equilibrium constants) of this transition point. 

6. Consider a metal oxide M2-xO3 dominated by doubly and triply charged 
metal vacancies. Suggest a condition that expresses the changeover from 
dominance of the doubly charged to dominance of the triply charged. 
Next, find an expression for the pO2 (as a function of equilibrium 
constants) of this transition point. 

7. Find a general expression for m in the [e/] ∝ pO2
1/m relationship for oxides 

MOb with non-stoichiometry dominated by fully ionised metal interstitials. 
(Hint: Find m as a function of b). Use this to find m in the case of M2O, 
MO, M2O3, MO2, M2O5 and MO3. 

8. Find a general expression for m (as a function of the valency z of the 
cation) in the [h.] ∝ pO2

1/m relationship for binary oxides with non-
stoichiometry dominated by fully ionised metal vacancies. Use this to find 
m in the case of M2O3. 

9. Sketch a full Brouwer diagram (log defect concentrations vs log pO2) for 
an oxide M2O3 dominated by fully ionised oxygen and metal vacancies at 
under- and overstoichiometry, respectively. Assume that Schottky defects 
predominate close to stoichiometric conditions. (Hint: the main goal is to 
obtain and illustrate the pO2-dependencies. Use the rules we listed for such 
constructions of Brouwer diagrams.) 

10. For the defect situation derived in the preceding exercise for M2O3 do the 
following analyses: 

i. find a condition and the expression for the pO2 when the oxide is 
fully stoichiometric.  

ii. Assume that you are able to determine this pO2 at various 
temperatures and plot ln pO2, stoichiometric vs 1/T. What information 
may you obtain from this plot? 

iii. Assume that you are able to determine n (the concentration of 
electrons) at the pO2 of exact stoichiometry at various temperatures 
and plot ln nstoichiometric vs 1/T. What information may you obtain 
from this plot? 
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iv. Assume that you are able to determine n (the concentration of 
electrons) at a fixed pO2 at various temperatures in the region of 
near stoichiometry and plot ln n vs 1/T. What information may you 
obtain from this plot? 

11. Sketch a full Brouwer diagram (log defect concentrations vs log pO2) for 
an oxide MO2 dominated by fully ionised oxygen and metal vacancies at 
under- and overstoichiometry, respectively. Assume that intrinsic 
electronic equilibrium predominates close to stoichiometric conditions. 
(Hint: the main goal is to obtain and illustrate the pO2-dependencies. Use 
the rules we listed for such constructions of Brouwer diagrams.) 

12. For the defect situation derived in the preceding exercise for MO2 do the 
following analyses: 

i. find a condition and the expression for the pO2 when the oxide is 
fully stoichiometric.  

ii. Assume that you are able to determine this pO2 at various 
temperatures and plot ln pO2, stoichiometric vs 1/T. What information 
may you obtain from this plot? 

iii. Assume that you are able to determine n (the concentration of 
electrons) at various temperatures in the region of near 
stoichiometry and plot ln n vs 1/T. What information may you 
obtain from this plot? 

13. Sketch a full Brouwer diagram (log defect concentrations vs log pO2) for 
an oxide ABO3 dominated by fully ionised oxygen and metal vacancies at 
under- and overstoichiometry, respectively. Assume that Schottky defects 
predominate close to stoichiometric conditions. You may assume that both 
cations are trivalent, but discuss also the effect it would have if A was 
divalent and B tetravalent. (Hint: the main goal is in any case to obtain and 
illustrate the pO2-dependencies. Use the rules we listed for such 
constructions of Brouwer diagrams.) 

14. Sketch a full Brouwer diagram (log defect concentrations vs log pO2) for 
an oxide AB2O4 dominated by fully ionised metal interstitials and 
vacancies at under- and overstoichiometry, respectively. Assume that 
Frenkel defects predominate close to stoichiometric conditions. You may 
assume that A is divalent and B trivalent. (Hint: the main goal is to obtain 
and illustrate the pO2-dependencies. Use the rules we listed for such 
constructions of Brouwer diagrams.) 

15. In the text we considered an oxide MO2 that had oxygen deficiency by 
both fully charged oxygen vacancies and doubly charged metal 
interstitials. The figure illustrating the case was drawn assuming that the 
ratio between the concentrations of the two defects was 105 at 1 atm. pO2. 
Calculate the exact pO2 at which the concentrations are equal.  

16. In the text we considered an oxide MO2 that had oxygen deficiency by 
both fully charged oxygen vacancies and doubly charged metal 
interstitials. The figure illustrating the case is not strictly a Brouwer 
diagram, but rather a diagram showing the exact solution of the defect 
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structure, thus also correctly describing the transition region. The full 
solution can be reached in several ways: 

i. By analytical solutions. Find and plot n (the concentration of 
electrons) and the concentrations of the other defects as a function 
of pO2 (double-logarithmically, over a reasonable range) using an 
analytical solution. Also, find and plot instead pO2 vs the 
concentration of one of the defects (again double-logarithmically, 
and over a reasonable and physical range). Were both approaches 
viable? Was one simpler? 

ii. By a sequential calculation of an organised set of expressions. This 
may take any of the two analytical approaches mentioned above as 
starting point, but avoids finding the full analytical solution and 
instead lets a computer do all the calculations once the expressions 
are programmed5. 

iii. By a semi-analytical approach: In the full electroneutrality 
condition, replace each concentration by expressions such that only 
one defect is left. Then select pO2 and find the one defect 
concentration by minimising the error numerically6. 

iv. Numerically: Here one needs to adjust the parameters to fit a 
number of independent equations corresponding to the number of 
unknowns. Which equations would you include in the present case? 
Do you know a common method to fit them?7 

                                                
5 This approach can be implemented in Excel spreadsheets, as done for a number of 

complex defect structures of ternary oxides by F.W. Poulsen and others. 
6 This approach is implemented in software written by J. Abrantes. 
7 A program that solves the mixture of different types of equations numerically has been 

written by T. Norby. Compared to the other computerized approaches it executes very slowly. 
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4.4.4.4. Impurities and dopantsImpurities and dopantsImpurities and dopantsImpurities and dopants    
 

Introduction 
 

 In the preceding chapter we have only dealt with pure, crystalline metal 
oxides, and no account was taken of impurities and dopants and their effects on 
defect equilibria. Under real conditions it is impossible to produce truly pure 
crystals and for many oxides impurities may, depending on their concentration 
and the temperature, significantly affect or fully control defect concentrations in 
crystals. In the same terms dopants are purposely added to obtain or tailor defect-
dependent properties of metal oxides and other materials. 

The term dopant is from semiconductor science traditionally used for 
amounts of foreign atoms in the parts per million (ppm) range. However, many 
use it, as we shall here, also for foreign atoms in any concentration, up to several 
or even tens of percent. When one type of atoms is deliberately replaced to any 
degree by another type of atom, we may also use the term substituent instead of 
dopant. 

Impurities and dopants may have various effects on crystals. Interstitially 
dissolved foreign atoms will normally affect the strain in the lattice. When ionised 
their charge affect the electroneutrality condition. Substitutionally dissolved 
impurities or dopants will also affect the properties of the host compound if they 
exhibit a difference in size or charge compared with the host atoms they replace.  

In the following we will mainly consider cases where there is a difference in 
the valence between the foreign atom and the native atom it replaces. Such foreign 
atoms are termed aliovalent. Their effective charge will affect the electroneutrality 
condition and thereby the defect equilibria.  

Larger dopant concentrations are generally expected to change also 
enthalpies of defect formation. This is, for instance, well demonstrated for oxides 
that have the same crystal structures and type of defects and that form solid 
solutions, e.g. solid solutions of NiO-CoO, MgO-NiO, a.o. However, we shall 
neglect such effects here and, as a first approximation, treat all cases as ideal 
dilute solutions, as we have done for defect equilibria earlier. 

By the solubility of foreign atoms we mean the amount that can be held by 
the structure without precipitation of a second phase. This is thus the amount 
dissolved in equilibrium with that second phase. The solubility of foreign atoms 
obviously changes with temperature. Less recognised is the fact that the solubility 
under some defect structure situations also may vary with component (oxygen or 
metal) activities, as we shall see later.  

On account of this it is important to distinguish between the following cases:  
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1) The concentration of impurity or dopant (solute) is frozen in. This is the 
case at relatively low temperatures; too low to allow transport to and 
from sinks and sources of the foreign atoms (a solute-rich phase). In this 
case the concentration of solute is constant. We may list some subcases 
of this situation: 

a) If the frozen concentration of solute is below the solubility limit, and 
no second phase is present, the system is then stable. 

b) If the concentration of solute is below the solubility limit, but a second 
solute-rich phase is present, the system is metastable.   

c) If the frozen concentration of solute exceeds the solubility limit, the 
system is metastable – a common case. 

2) The concentration of impurity or dopant (solute) is in equilibrium. This is 
the case at relatively high temperatures; high enough to allow transport 
to and from sinks and sources of the foreign atoms. This case can be 
divided into two subcases: 

a) The concentration of solute is below the solubility limit. In this case 
there is no solute-rich phase present, and the concentration of solute is 
therefore again constant, as in all the cases 1). 

b) The concentration of solute is above the solubility limit. In this case 
there is a solute-rich second phase present, and the concentration of 
solute is variable by exchange of solute between the bulk and the 
sink/source of second phase. 

 

In science and technology employing solid solutions (alloys or doped 
systems) it is often assumed that a constant concentration of solute is present. 
Furthermore, this is often assumed to be constant because it is fully soluble (case 
2a), while it may in reality be constant because it is frozen in (cases 1).  

During synthesis, sintering, equilibration, and use at high temperatures the 
concentration may change (case 2b) and this of course is also the basis for binary 
and higher phase diagrams. Defect chemistry offers a tool for understanding these 
changes, not only as a function of temperature, but especially as a function of 
component activities.   

Despite this possibility, also defect-chemical treatments most commonly 
assume that the concentration of dopants and impurities is constant, often (tacitly) 
because they are assumed to be fully soluble (case 2a)). In reality, this may have 
been true at the high temperatures used during synthesis and fabrication, while 
during characterisation or use at lower temperatures the concentrations remain 
constant rather because they are frozen in (cases 1)). We shall start our treatment 
with cases of invariable concentrations of aliovalent foreign substituents, 
disregarding whether this is a result of full solubility or freezing-in. 
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Constant concentration of impurity/dopant 
 

Schottky equilibria 

 

As the predominance of Schottky defect situations have primarily been 
demonstrated in detail for ionic halides, e.g. alkali halides (NaCl, KBr, LiI a.o.), 
let us consider the effects of impurities/dopants on Schottky equilibria in a 
compound MX where the cations and anions have a valence of 1 and the cation 
and anion vacancies are singly charged, i.e. •

Xv  and /
Mv . If divalent foreign 

cations, Mf2+, are dissolved substitutionally in the lattice and occupy the normal 
M-sites, the Mf2+ ions will have one effective positive charge, •

MMf . (It has 
donated an electron, and Mf is called a donor dopant). If we disregard other native 
defects than the Schottky defects, the electroneutrality condition becomes 

 

][][][ /
MXM vvMf =+ ••         (4.1) 

 

The defect structure accordingly has two domains given by the limiting cases of 
this expression:  

 If the foreign cation is a minority species, i.e., ][][ •• << XM vMf  then 

][][ /
MX vv =• , and from the Schottky equilibrium 

 

]][[K /
S MX vv•=         (4.2) 

 

we obtain 

 
1/2
S

/ K][][ ==•
MX vv         (4.3) 

 

If, on the other hand, ][][ •• >> XM vMf  then  

 

constant][][ / ≡= •
MM Mfv         (4.4) 

,i.e., the metal vacancy concentration is fixed by the concentration of the foreign 
cation. The concentration of the minority species, ][ •

Xv , can be found by insertion 
into KS: 

 

][

K
][ S

•

• =
M

X
Mf

v          (4.5) 
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We observe that this concentration decreases with increasing concentration of 
dopant, as expected also from direct inspection of the electroneutrality condition. 

 The two regions and their transition is illustrated in the figure below. We 
often call the region dominated by intrinsic disorder for intrinsic, while the one 
dominated by foreign species such as dopants or impurities is called extrinsic.  

 
Figure 4-1. Effect of higher valent cation impurities on the defect 

concentrations in MX predominantly containing Schottky defect pairs, with Ks = 
25. 

 

Frenkel equilibria 

 

The effects of higher valent cation impurities on Frenkel equilibria are 
analogous to those described for the Schottky equilibria. When divalent •

MMf  
impurities/dopants are dissolved in MX with predominating cation Frenkel defect 
pairs ( /

Mv  and •
iM ) the electroneutrality condition is given by  

 

][][][ /
MiM vMMf =+ ••         (4.6) 
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The addition of •
MMf  decreases ][ •

iM  and increases ][ /
Mv  in a manner analogous 

to that described for the Schottky-dominated material. 

 

Oxygen-deficient oxides doped with lower valent cations 

 

A situation which is frequently encountered in applications of several oxide 
systems is that doubly charged oxygen vacancies are the predominating native 
point defects and that the cation impurities/dopants have a valence lower than that 
of the parent cation (impurities/dopants with negative effective charge are also 
called acceptors). An example is zirconia (ZrO2) doped with lower valent cations 
such as for instance yttrium ( /

ZrY ) and calcium ( //
ZrCa ). For the sake of illustration 

let us assume that the impurity/dopant ions have one effective negative charge, 
/

MMf . The actual valence of the host cation will not matter. The defect 
equilibrium between vacancies and electrons is as before given by 

 

)(2 22
1/

gOevO O

x

O ++= ••        (4.7) 

 
 

2/12/

2
n

][

][
Ox

O

O

vO p
O

v
K

••

=         (4.8) 

 

The electroneutrality condition will be given by 

 

nMfv MO +=•• ][]2[ /         (4.9) 

 

For such a system two limiting  conditions can be considered: 

If ][]2[ /
MO Mfnv >>≈•• , the foreign cations do not affect the native defect 

equilibrium, and the electron and oxygen vacancy concentrations are given by 
their own equilibrium, and they are proportional to 6/1

2

−
Op  as we have shown in the 

preceding chapter. This will occur at relatively low oxygen activities, where these 
concentrations are relatively large. 

If nMfv MO >>≈•• ][]2[ / , the oxygen vacancy concentration is determined and 
fixed by the dopant content (extrinsic region). The concentration of minority 
electrons, n, is in this case given by 

 
4/1-1/2/2/1/

2
][)2( −= OMvO pMfKn        (4.10) 
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and thus decreases with a different dependency on 
2Op  than in the former case. As 

the concentration of electrons and electron holes are related through the 
equilibrium Ki = np, the electron hole concentration in this extrinsic region 
correspondingly increases with increasing oxygen activity. Depending on the 
impurity content, oxygen activity and temperature, p may become larger than n.  

The variations in ][ ••
Ov , n and p as a function of the partial pressure of 

oxygen, are schematically illustrated for such a case in the figure below. In a 
situation like this the oxide will typically be an n-type electronic conductor at low 
oxygen partial pressure and an essentially ionic conductor at higher oxygen partial 
pressure. Zirconia doped with a lower valent cation such as Y, Ca, a.o., confers 
largely with the situation depicted in the figure. 

 

Figure 4-2. Brouwer plot of the concentrations of defects as a function of oxygen partial 

pressure in an oxygen deficient oxide predominantly containing doubly charged oxygen vacancies, 

showing the effects of a constant concentration of lower valent cation dopants, ][ /
MMf . 

 

Oxygen deficient oxides doped with higher valent cations 

 

Addition of higher valent cations which dissolve substitutionally in the 
oxide will in the extrinsic region result in an increase in the concentration of 
electrons and a decrease in the concentration of oxygen vacancies. This may be 
shown by setting up the appropriate electroneutrality condition combined with the 
defect equilibria in the same manner as shown above. 

 

Oxides with excess metal  

 

Nonstoichiometric oxides with excess metal in the form of predominating 
interstitial metal ions exhibit the same qualitative effects of aliovalent foreign 
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cations. By additions of lower valent cations, the concentration of interstitial 
cations will in the extrinsic region be determined by the concentration of the 
impurities/dopants. Addition of higher valent cations will bring about an increase 
in the electron concentration and a decrease in the concentration of metal 
interstitials. 

 

Metal-deficient oxides doped with lower valent cations 

 

When a metal-deficient oxide MO with singly charged metal vacancies as 
the prevalent native point defects is doped with singly valent foreign cations, 

/
MMf , the electroneutrality condition is given by 

 

pMfv MM =+ ][][ //         (4.11) 

 

The effects of the foreign cations are evaluated by combining this with the 
equations for the defect equilibria for the singly charged metal ion vacancies. As a 
result we find that the lower valent cations will increase p and decrease ][ /

Mv . The 

variations in p and ][ /
Mv  as a function of the partial pressure of oxygen in such a 

case are illustrated schematically in the Brouwer diagram below. At low oxygen 
activities interstitial metal ions or oxygen vacancies may become important, 
depending on the equilibrium constants for the Frenkel and Schottky defect 
equilibria. In the figure it is assumed that singly charged metal interstitials become 
the important native point defects at low oxygen activities. 

 

Figure 4-3. Effect of a constant concentration of foreign lower valent cations on the 

concentration of point and electronic defects as a function of oxygen pressure in a metal deficient 

oxide predominantly containing singly charged cation vacancies. 
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Metal deficient oxides doped with higher valent cations   

 

If the foreign cation impurities/dopants are higher valent, e.g. •
MMf , the 

electroneutrality condition of an oxide MO with predominantly singly charged 
metal vacancies becomes  

 

pMfv MM += • ][][ /         (4.12) 
 

In this case ][ /
Mv  will increase and p will decrease with increasing concentration 

of •
MMf . The variations in p and ][ /

Mv  as a function of the oxygen partial pressure 
is illustrated schematically in the following figure, and the variation in the 
concentration of electrons (n) as minority defects is also included. 

 

Figure 4-4. Brouwer diagram of the effects of a higher valent cation impurity/dopant on the 

concentration of point and electronic defects as a function of oxygen pressure in a metal deficient 

oxide predominantly containing singly charged metal vacancies. 

 

 

Doping of oxides which may have regions with both 
oxygen and metal deficit    

 

In the previous examples of the effects of lower valent oxides we have 
separately considered oxides which are either oxygen or metal deficient. We have 
seen that the doping is compensated by increased concentrations of either 
electronic defects or point defects, depending on the type of non-stoichiometry 
originally present. In principle it is straightforward to combine these treatments 
and consider the effects of aliovalent foreign atoms over the entire range of 
stoichiometry, from the oxygen-deficient to the metal-deficient side. Depending 
on oxygen partial pressure, the doping will be compensated by an electronic 
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defect or a point defect of the opposite effective charge of the dopant. As we shall 
see it may be necessary to consider both possibilities when we deal with oxides 
near stoichiometry. 

Let us therefore start with an example oxide M2O3 dominated by intrinsic 
electronic disorder when stoichiometric, and oxygen vacancies and metal 
vacancies giving oxygen and metal deficiency at, respectively, low and high 
oxygen activities. We acceptor-dope this oxide with the lower-valent Ml2+ 
cations, such that the electroneutrality condition reads: 

 

][2]3[][n //// ••+=++ OMM vpvMl       (4.13) 
 

We assume that the amount of MlO added is well below the solubility so 
that ][ /

MMl  = constant. Fig. 4.5 shows a Brouwer diagram of the defect situation 
as a function of oxygen partial pressure when the level of aliovalent dopant is 
higher than the level of intrinsic disorder. At the lowest 

2Op  the oxide is oxygen-

deficient and oxygen vacancies and electrons predominate. As these defects 
decrease with increasing 

2Op  we hit the level of the acceptor dopant. From here 

on the acceptor will be compensated by a constant concentration of the positive 
defect, i.e., the oxygen vacancies. This is analogous to the situation we obtained 
when we earlier considered this case in particular.  

In this situation the concentration of defect electrons decreases and that of 
holes increases with increasing p . The two terms cross at 2/1

iKpn == , and 

assuming that Ki is independent of the doping, this is necessarily the same level as 
that of the intrinsic electronic disorder in the pure, undoped material. At this point 
also the doped material may be said to be stoichiometric; it contains oxygen 
vacancies exactly matching the presence of the lower-valent cation (acceptor): If 
we consider the doped material to consist of M2O3 and MlO, both these 
constituents are stoichiometric, and the additional presence of reduced and 
oxidised states (n and p) is effectively zero at this point. The doped oxide can be 
said to be stoichiometric with respect to the valence of its constituents. 

By further increasing 
2Op  the concentration of holes will eventually become 

dominating, taking over the dominance from the oxygen vacancies in terms of 
compensating the charge of the acceptors. We hereby create higher oxidation 
states (holes) and fill up the oxygen sublattice (removing oxygen vacancies). 
During the increase in 

2Op  the concentration of metal vacancies increases and 

eventually balances the concentration of oxygen vacancies. This level is given by 
the Schottky equilibrium constant (KS) and represents another stoichiometric 
point, this time with respect to the crystal structure of the host oxide (M2O3). 

The situation encountered in this region is analogous to that depicted in Fig. 
4.3, and with further increase in 

2Op  the charge due to the increasing 

concentration of metal vacancies will become more important than that of the 
acceptor level, and the oxide enters into a situation of dominance by metal 
deficiency.  
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Fig. 4.5. is constructed by combination of limiting cases of the 
electroneutrality condition (Eq. 4.13) and defect equilibria in a similar manner as 
we have practised earlier.  

It turns out by inspection of several cases that acceptor doping always leads 
to a region at relatively low 

2Op  where we have compensation by a positively 

charged point defect and a region at relatively high 
2Op  where we have 

compensation by electron holes. This is true independent of type of intrinsic 
disorder. However, the relative magnitudes of the equilibrium constants for 
intrinsic disorder (e.g. Ki vs Ks) determine the relative width of dominance for the 
two regions. 

 

Figure 4-5. Brouwer diagram of the effects of lower valent dopant on the defect structure of 

M2O3±δ..  

 

In a manner equivalent to the above case we may construct a diagram 
showing the situation in the same host oxide M2O3 now donor-doped with a 

higher valent cation Mh4+ see Fig. 4.6. In this case and in all cases of donor-
doping, there will be a region of charge compensating the dominating donors with 
defect electrons at relatively low 

2Op  and with a negatively charged point defect 

at higher 
2Op  
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Figure 4-6. Brouwer diagram of the effects of higher valent dopant on the defect structure 

of M2O3±δ. 

 

We have here concentrated on changes in charge compensation as a function 
of oxygen activity, but the same may take place as a function of temperature and 
concentration of dopant (at constant 

2Op ).  

Aliovalent doping affects defects with higher number of charges more than 
those with fewer. Thus, with increasing doping, doubly and higher charged point 
defects may become dominating at the expense of the singly charged electronic 
defects, but not vice versa. 

 

 

Variable concentration of impurity/dopant 
 

In many cases an impurity or dopant may be present in amounts larger than 
the solubility limit. The excess of the oxide of the impurity or dopant is then 
presumably present in precipitates, often found at grain boundaries or surfaces of 
the parent oxide. When one considers the effects of impurities/dopants on defect 
equilibria in such cases, it is important to recognise that the solubility of the 
impurity or dopant will not only vary with temperature but in many cases also 
with the oxygen pressure. Let us illustrate these aspects by respectively 
considering the effects of the lower valent oxide MlO and the higher valent oxide 
MhO2 on M2O3. 
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Doping M2O3 with excess MlO  

 

When Ml dissolves substitutionally in M2O3, the dissolved Ml2+ has one 

negative effective charge, /
MMl . Let us further assume that these ions constitute 

the important negative effective charges in the oxide. These must then be 
compensated by positive defects, and let us assume that these are electron holes 
and doubly charged oxygen vacancies, depending on the properties of the oxide, 
the temperature,  and the oxygen activity. 

If the compensating defects are electron holes when MlO dissolves in 
M2O3, the defect equation for the dissolution may be written 

 
x

OM OhMl 322 (g)O2MlO(s) /
22

1 ++=+ •      (4.14) 
 

By taking the activity of the excess MlO(s) phase as well as that of oxygen ions as 
unity, the equilibrium expression can be written 

 

2/1
O

22/
2/1

O
2
MlO(s)

322/

p 2

2

pp][
pa

][p][
K −== M

x

OM Ml
OMl

     (4.15) 

 

The important difference from the previous treatments is that now we treat this 
dissolution as an equilibrium. When the compensating defects are electron holes, 
the simplified electroneutrality condition can be expressed by p][ / =MMl , and by 
insertion into the equilibrium expression we obtain  

 
8/1

O
1/4
p

/

2
pKp][ ==MMl         (4.16) 

 

Thus, the solubility, i.e., ][ /
MMl , increases with 

2Op  until all MlO is eventually 

dissolved. Thereafter the behaviour will become as with constant acceptor 
concentrations (all dissolved or frozen-in), described in Fig. 4.5. 

When taking into account the defect equilibrium for the formation of oxygen 
vacancies and the intrinsic electronic equilibrium (np = Ki), the concentration of 

oxygen vacancies is under this situation seen to be proportional to 4/1
O2

p− . At lower 

oxygen activities the doubly charged oxygen vacancies will thus eventually 
become the charge compensating defects at the expense of electron holes. In this 
case it may be more relevant to describe the dissolution of MlO by the following 
defect reaction and equilibrium expression: 

 
x

OOM OvMl 222MlO(s) / ++= ••       (4.17) 
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][][K 2/
v

••= OM vMl         (4.18) 

 

The electroneutrality condition and its combination with the equilibrium then 
yield: 

 
3/1

v
/ )K2(]2[][ == ••

OM vMl        (4.19) 

 

Thus under these conditions ][ /
MMl  is independent of the oxygen activity at 

equilibrium with the excess MlO(s) phase. Thus, when the dopants are 
compensated by fully ionised point defects as in this case, the system would 
behave as if it had no excess or frozen-in dopant concentrations. However, the 
solubility would change with temperature (through the enthalpy involved in Kv) 
contrary to the cases without any excess or with frozen-in concentrations. 

The overall defect structure situation is illustrated in the Brouwer diagram in 
Fig. 4.7; the important compensating defects are electron holes at comparatively 
high oxygen activities and oxygen vacancies at low oxygen activities. Both 
situations will eventually be overtaken by native non-stoichiometry at sufficiently 
low viz. high oxygen activities. 

 

Figure 4-7. Brouwer plot of the effect of lower valent cations, /
MMl  in M2O3 when the 

oxide MlO is present in amounts exceeding the solubility limit. 

 

Doping M2O3 with excess of MhO2 

 

Let us then dope M2O3 with an excess of MhO2. The substitutionally 

dissolved Mh4+ ions have one positive effective charge, •
MMh . They are 
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compensated by defect electrons or point defects with negative effective charge, 
such as triply charged metal vacancies; ///

Mv .  

If the compensating defects are electrons, the reaction equation for the 
dissolution and the corresponding defect equilibrium are (under certain 
assumptions, as before) given by  

 

(g)O322 (s)2MhO 22
1/

2 +++= • x

OM OeMh      (4.20) 
 

2/1
O

22

(s)MlO

2/1
O

322

e 2

2

2 pn][
a

p][n][
K •

•

== M

x

OM
Mh

OMh
     (4.21) 

 

Thus, when MhO2 is dissolved by compensation of electrons, the solubility of 
MhO2 increases with decreasing partial pressure of oxygen. If donor dopants and 
electrons dominate, the electroneutrality condition and resulting 

2Op  dependency 

become 8/1
O2

p][n −• ∝= MMh . Under these conditions it may be shown that 
8/3

O
///

2
p][ ∝Mv . 

When the compensating defects at higher 
2Op  become ///

Mv  the reaction 

equation for the dissolution of MhO2 can be written 

 
x

OMM OvMh 63 (s)3MhO ///
2 ++= •       (4.22) 

 

Thus, when the dissolution of MhO2 is compensated by the formation of point 
defects the solubility of MhO2 is independent of the oxygen activity. Under these 
conditions it may be shown that the concentration of electrons decreases with 
increasing oxygen activity and is proportional to 4/1

O2
p− . The overall defect 

structure situation is illustrated by the Brouwer diagram below. 
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Figure 4-8. Brouwer plot of the effect of the dopant MhO2 in M2O3 in amounts exceeding 

the solubility limit. 

 

All in all, as a general rule the solubility of lower or higher valent oxides in 
a parent oxide will be dependent on the oxygen activity when the compensating 
defects are electronic defects, while they will be independent of the oxygen 
activity when the compensating defects are fully ionised point defects. It may also 
be noted that the temperature dependencies of the solubility will also be different 
in the two cases. 

Partially ionised point defects act as combinations of point and electronic 
defects and generally gives oxygen activity dependent solubilities of aliovalent 
dopants. 

In real cases it may be difficult to reach equilibrium if the diffusion of the 
cations to and from defect sinks (dislocations, grain boundaries a.o.) is slow. 
Another point worth mentioning is that the excess second phase may well be a 
compound of the parent and dopant oxide. For instance, MgO is normally present 
in excess of the solubility in so-called high-purity alumina (Al2O3) and the 
second phase in that case is spinel MgAl2O4. However, this does not alter the 
oxygen activity dependencies; the ternary compound serves as a source/sink for 
the dopant, with constant activity, and the defect chemical treatment remains 
essentially the same. 

 

 

Hydrogen defects in metal oxides 
 

When a metal oxide is equilibrated in gas mixtures with hydrogen-
containing gases, e.g. H2O, hydrogen will dissolve in the metal oxide. The extent 
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of the dissolution of hydrogen will depend on the defect structure of the oxide and 
the ambient oxygen and hydrogen activities. In studies of the dissolved hydrogen 
it is then necessary to control both the oxygen and hydrogen (or water vapour) 
activities. 

Hydrogen may in principle dissolve in the form of different species: as 
neutral atoms (H), hydride ions (H-), and protons (H+). In oxides the commonly 
observed dissolved hydrogen species are the protons, often termed interstitial 
protons, •

iH , but in reality always associated with oxygen ions as hydroxide 
groups. If that oxygen sits on a normal lattice site we thus get substitutional 
hydroxide defects, •

OOH .  

A proper treatment of the dissolution of water and defect chemistry of 
protons in oxides was first given by Stotz and Wagner (1967). Later on, Norby 
(1987) and others have given extended treatments of hydrogen defect equilibria, 
and Kreuer (1996) has reviewed protons in materials in general. 

The dissolution of protons from hydrogen gas (e.g. in a gas mixture of 
H2+H2O) may in these terms be written 

 
/

2 22OH2O(g)H eO

x

O +=+ •        (4.23) 

 

Assuming that water and hydrogen are in equilibrium through H2 + 1/2 O2 = 
H2O, the defect reaction may equally well be written with water as the source of 
the protons: 

 

)(22OH2OO(g)H 22
1/

2 gOeO

x

O ++=+ •      (4.24) 

 

and the corresponding defect equilibrium by 

 

O

x

O

O

2

2

H
2

2/1
O

22

p][O

pn][OH
K

•

=         (4.25) 

 

Thus the concentration of protons in metal oxides is dependent on the partial 
pressures of both the ambient oxygen and water vapour as well as the 
concentration of electronic defects.  

 

It may be useful to remind ourselves that water in this context is an oxide 
present as a second phase in excess and, if we wish, at constant activity 
(controlled partial pressure). It is thus analogous to the case of an excess of metal 
oxide. The proton dissolves interstitially forming a positive defect ( •

iH  or •
OOH ) 

and thus behaves like a donor: When they are the dominating positive defects in 
an otherwise undoped oxide they may be compensated by electrons or negative 
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point defects. In analogy with the higher-valent oxide dopant the first case would 
lead to a proton concentration dependent on the oxygen activity while it in the 
latter case would be independent. 

As an additional possibility protons may also be compensated by a lower-
valent dopant  (acceptor). This may, in turn, be present at constant concentration 
(below the solubility or frozen-in) or itself in equilibrium with its own second 
phase. In the following examples we will consider some of these relations. 

 

Effect of water vapour on oxygen-deficient M2O3.  

 

Let us first examine the effects of water vapour on the properties of an 
undoped, oxygen-deficient oxide. We will use M2O3 in the example, but most of 
the treatment applies to any oxide. The predominant defects are electrons and 
oxygen vacancies and the electroneutrality condition in dry environments is then 
(from the preceding chapter) 

 
6/13/1/

2
)2( ]2[vn −•• == OvOO pK        (4.26) 

 

Let us keep the partial pressure of oxygen constant and vary the partial pressure of 
the water vapour. Protons are then dissolved in the oxide following Eq. 4.24. 
However, the concentration of electrons is given by Eq. 4.26 and is independent of 

O2Hp . Insertion into Eq. 4.25 gives that the proton concentration is proportional to 
2/1

H2
p O  (at constant 

2Op ). This is illustrated in the Brouwer diagram in the figure 

below.  

 

Figure 4-9. Brouwer plot of effects of water vapour on defect concentrations in oxygen 

deficient M2O3-d. 
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At sufficiently high partial pressure of the water vapour, the dissolved protons 
become the predominating point defects with positive effective charge and the 
electroneutrality condition becomes 

 

 ][OHn •= O
         (4.27) 

  

By combination with Eq. 4.25 we obtain that the concentrations of protons and 
electrons are then proportional to 4/1

H2
p O : 

 
8/14/1

OH
4/1

22
p ][OHn −• == OO pK         (4.28) 

 

This situation is part of the figure above. The figure also shows that the 
concentration of oxygen vacancies decreases with the water vapour pressure, 
illustrating that in general all charged native minority defects becoming dependent 
on water vapour pressure when protons are dominating defects. 

 

Effect of water vapour on acceptor-doped M2O3    

 

Let us next consider the effect of water vapour in the oxide M2O3 doped 
with the oxide MlO. Let us further assume that the concentration of the dopant ion 

 ][Ml /
M  is sufficiently large that this is the predominant defect with negative 

effective charge but that the amount of dissolved MlO is smaller than the 
solubility limit of MlO in M2O3.  

In dry atmospheres the dopant ions are assumed to be predominantly 
compensated by the formation of doubly charged oxygen vacancies 
( constant][Ml ]2[v / ==••

MO ) and under these conditions the concentration of 

electrons is proportional to 4/1

2
p−

O  and the electron holes to 4/1

2
p+

O , as derived earlier 

for this case. 

Let us then consider the effect of water vapour on the defect concentrations. 
For the sake of simplicity let us keep the partial pressure of oxygen constant while 
the partial pressure of water vapour is increased. Protons then dissolve in M2O3 
following Eq. 4.24, and from Eq. 4.25 it can be derived that the concentration of 
protons dissolved as hydroxide defects, ][OH•

O , is proportional to 2/1

2
p OH . This is 

illustrated in the following figure. 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


4. Impurities and dopants 

 4.19

 

Figure 4-10. Brouwer plot of the effect of water vapour (at constant oxygen pressure) on 

defect concentrations in acceptor-doped, oxygen deficient  M2O3. 

 

Under these conditions the electroneutrality includes the concentration of 
dissolved protons: 

 

constant][Ml][OH ]2[v / ==+ •••
MOO       (4.29) 

 

When we plot the concentration of the defects as a function of the partial 
pressure of water vapour (at constant oxygen pressure) as shown in the Brouwer 
diagram in Fig.4.10, it is seen that at sufficiently high water vapour pressures the 
dissolved protons become the important positively charged point defects and the 
electroneutrality condition is then approximated by  

 

constant][Ml][OH / ==•
MO

       (4.30) 

 

Under these conditions the concentration of oxygen vacancies decreases with 
increasing partial pressure of water vapour; combining the equilibrium for 
formation of oxygen vacancies (Eq. 4.8) and the equlibrium for dissolution of 
protons, Eq. 4.25, and the dominating electroneutrality, Eq. 4.30, it is found that 
the concentration of oxygen vacancies is proportional to 1

2
p−

OH . The concentration 

of electron holes is correspondingly proportional to 2/1

2
p−

OH . These aspects are also 

illustrated in Fig. 4.10. 

It is also of interest to consider any effects of the partial pressure of water 
vapour on the concentration of other minority defects. If so, the ambient partial 
pressure of water vapour may affect the sintering and creep of metal oxides at 
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high temperatures. Let us continue to examine the acceptor-doped M2O3. For the 
sake of illustration let us assume that the important defects in the metal sub-lattice 
are metal vacancies and that these are triply charged, ///vM . The concentration of 
oxygen vacancies and metal vacancies in M2O3 may be related through the 
Schottky equilibrium. 

In the region where the electroneutrality condition is given by  
constant][Ml ]2[v / ==••

MO
, the concentration of the metal vacancies is also 

independent of the partial pressure of water vapour, cf. Fig.4.10. However, in the 
region where the electroneutrality condition is constant][Ml][OH / ==•

MO , the 
concentration of the metal vacancies increases sharply with increasing partial 
pressure of water vapour and is proportional to 2/3

2
p OH , cf. Fig. 4.10. Thus, under 

these latter conditions the properties which are controlled by the concentration of 
the minority defects, i.e. sintering, creep, may be greatly affected by variations in 
the partial pressure of the ambient water vapour pressure. The direction of the 
change will depend on the effective charge of the rate-limiting defect; whether it 
is oxygen or metal defects, and whether it is vacancies or interstitials. 

When, as in the last example, protons are dissolved at the cost of oxygen 
vacancies, the reaction may be written 

 
••• =++ O

x

OO 2OH2OvO(g)H 2        (4.31) 
 

i.e. water vapour dissolves to fill the oxygen vacancies and replace their positive 
charge with protons. Reaction 4.31 has been studied for a number of oxides, and it 
is found that it always involves a negative enthalpy change such that oxygen 
vacancies and protons are dominant at high and low temperatures, respectively. 
For some oxides, the enthalpy is sufficiently negative that protons remain the 
dominant defects up above 1000˚C in practically dry atmospheres and to even 
higher temperatures under wet conditions. Other oxides have only small negative 
enthalpies and have dominant protons up to only moderately high temperatures, 
sometimes sufficiently low to kinetically prevent the reaction with water (Eq. 
4.31) to reach equilibrium  

The relative dominance of protons vs oxygen vacancies also varies with the 
acceptor doping level: The higher charge of the vacancy relative to the proton 
makes the former relatively more dominant at higher acceptor levels, while 
protons are relatively more dominant at moderate acceptor levels. 

Let us also briefly recollect the variable solubility of aliovalent dopants 
treated previously in this chapter. While the acceptors are compensated by oxygen 
vacancies, their solubility does not  vary with anything else than the temperature, 
as shown before. However, the dissolution of acceptors by simultaneous 
dissolution of protons,  

 
x

OOMMl O2OH2O(g)H 2MlO(s) /
2 ++=+ •      (4.32) 
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will, when in equilibrium (MlO(s) present and diffusion enabled) give solubility 
of acceptors which increases with the water vapour pressure: 

 
1/4
H

/

2
p][Ml][OH OMO ∝=•        (4.33) 

 

Thus, water vapour may in some cases play a role in the synthesis of solid 
solutions containing acceptors.  

By inspection of Fig. 4.10 it is evident that at sufficiently high water vapour 
levels, the concentration of metal vacancies will become significant and 
eventually dominant; the oxide attains a metal deficiency (or, in other cases, 
oxygen excess), compensated by protons. Such defect structures can be considered 
to be the first step towards the phase limit of the oxyhydroxide or hydroxide. 

 

 

Association between impurities/dopants and 
other point defects 

 

As described in Chapter 1 impurities/dopants and native point defects may 
associate to form complex defects. An important driving force may be the 
coulombic attraction between impurities and point defects having opposite 
effective charges, but also relaxation of the lattice around the associate may play a 
role. 

As an illustration, it will be assumed that the predominating defects are 
doubly charged oxygen vacancies and that the cation dopants have one effective 
negative charge, e.g. /MlM . The associated complex between ••

Ov  and /MlM  can be 

written •)(v MO Ml , and compared to the relatively mobile oxygen vacancy, this 
defect can be considered as immobile as the dopant ions themselves. 

The complex defect will be in equilibrium with the single defects according 
to the reaction  

 
••• =+ )(vMlv /

M MOO Ml         (4.34) 

 

If all the species are randomly distributed, the equilibrium can be written 

 

]][Ml[v

])Ml[(v
K

/a
MO

MO

••

•

=         (4.35) 
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where Ka is the equilibrium constant for the association reaction. If the acceptor is 
relatively immobile, the associated oxygen vacancy can be considered trapped; it 
is no longer able to contribute in charge or diffusional transport of oxygen, unless 
an extra activation energy is supplied to break up the association. 

Many other alternative examples of the effects of impurities/dopants on 
defect equilibria may be cited, including association between acceptors and 
protons, acceptors and holes, donors and point defects, and donors and electrons.  

 

Summary 
 

Impurities or dopants may dissolve interstitially or substitutionally, and the 
defects formed are often easily ionised. Depending on whether they accept or 
donate electrons they become acceptors and donors. In sufficient quantities these 
may dominate the defect structure of the oxide. Thus, aliovalent cations 
substituting host cations are often introduced in large quantities in oxides in order 
to give high concentrations of ionic defects (for solid electrolytes) or electronic 
defects (for electrodes etc.) Foreign species may be treated like other defects, but 
are often assumed to be present in a fixed concentration due to the limited 
availability of the species (full solubility) or because the concentration is frozen-
in. However, we have shown that the concentration of foreign species under 
certain conditions may change as a function of temperature and for some defect 
structures as a function also of 

2Op . Protons dissolved from water vapour is a 

special case which often has a large influence on the properties of oxides. They 
form hydroxide groups with the oxygen ions of the oxide. These are effectively 
positively charged and through them the defect structure may become a function 
of the water vapour partial pressure. 

 

Literature (protonic defects only) 
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Exercises 

1. Write the doping reaction for the doping of the Schottky-dominated metal 
halide MX by the higher valent metal halide MhX2. Find the analytical 
solution expressing the concentration of metal vacancies as a funtion of 
doping concentration. Sketch also the temperature-dependency of all the 
defects involved. (Hint: This is the initial illustrative case in the text – use 
the equilibria from that treatment. Remember that the doping reaction may 
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not be in equilibrium – the dopant concentration is invariable as a function 
of outer parameters.) 

2. Sketch a Brouwer diagram (double logarithmic diagram of defect 
concentrations vs pO2) for an oxygen deficient oxide doped with a 
substitutional higher-valent dopant. 

3. Sketch a Brouwer diagram (double logarithmic diagram of defect 
concentrations vs pO2) for an oxide M1+xO doped with a substitutional 
lower-valent dopant. 

4. Sketch a Brouwer diagram (double logarithmic diagram of defect 
concentrations vs pO2) for an oxide M1+xO doped with a substitutional 
higher-valent dopant. 

5. Sketch another Brouwer diagram, this time the double logarithmic diagram 
of defect concentrations vs dopant concentration, for the oxide M1+xO 
doped with a substitutional lower-valent dopant. 

6. An oxide M2O3 is dominated by intrinsic electronic disorder in the 
stoichiometric state, while Schottky disorder is the next largest contributor 
to defects. Draw a Brouwer diagram showing log defect concentrations as 
a function of the concentration of lower-valent acceptor dopants. Do the 
same for the case of higher-valent donor dopants. In both cases cover the 
range from insignificant doping levels to the level where all possible 
defect domains are exhausted. 

7. An oxide M2O3 is dominated by Schottky disorder in the stoichiometric 
state, while intrinsic electronic disorder is the next largest contributor to 
defects. Draw a Brouwer diagram showing log defect concentrations as a 
function of the concentration of lower-valent acceptor dopants. Do the 
same for the case of higher-valent donor dopants. In both cases cover the 
range from insignificant doping levels to the level where all possible 
defect domains are exhausted. 

8. An oxide M2O3-d is doped substitutionally with MlO, and dominated by 
oxygen vacancies and protons as compensating defects. Derive the full 
expression for the concentration of protons (and oxygen vacancies) as a 
function of a fixed dopant concentration and the equilibrium constant for 
the equilibrium between oxygen vacanciens and protons. Make 
assumptions and simplifications as necessary, but assume that both 
vacancies and protons are significant compensating defects. 

9. Derive equilibria, electroneutrality, and behaviour for an oxide M2O3 
dominated by metal vacancies and protons dissolved from surrounding 
water vapour. 

10. Choose an acceptor-doped oxide compensated by oxygen vacancies. Write 
the reaction equation for the association reaction and the equilibrium 
constant. Derive the temperature-dependency of the concentration of free, 
unassociated vacancies. Assume that the entropy change of the reaction is 
zero, and that the enthalpy change is 50 kJ/mol. What is the fraction of free 
vacancies at 723 K? 
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5.5.5.5. DiffusionDiffusionDiffusionDiffusion    
 

Introduction 

 

Numerous chemical reactions or micro-structural changes in solids take 
place through solid state diffusion, i.e. the movement and transport of atoms in 
solid phases. In crystalline solids, the diffusion takes place because of the 
presence of defects. Point defects, e.g. vacancies and interstitial ions, are 
responsible for lattice diffusion. Diffusion also takes place along line and surface 
defects which include grain boundaries, dislocations, inner and outer surfaces, etc. 
As diffusion along linear, planar and surface defects is generally faster than in the 
lattice, they are also termed high diffusivity or easy diffusion paths. Another 
frequently used term is short circuit diffusion. 

The relative contribution of the different types of diffusion in oxides and 
other inorganic compounds are functions of the temperature, partial pressures or 
activities of the constituents of the compounds, the microstructure, grain size, 
porosity etc. Grain boundary and dislocation diffusion generally have smaller 
activation energies than lattice diffusion and as a result become increasingly 
important the lower the temperature in solids with a given microstructure. 

In the literature on diffusion and diffusion-controlled reactions or processes 
one encounters many different terms that describe the diffusional behaviour under 
different experimental conditions: tracer and self-diffusion of atoms and ions, 
diffusion of defects, chemical diffusion, ambipolar diffusion, a.o. Many of these 
are used for treating diffusion in compounds, and in the following chapters these 
phenomena and terms will be described in more detail. Here we will start out with 
a few simple phenomenological descriptions, and for simplicity we look only at 
diffusion of neutral, independent particles. 

 

Models of diffusion 

 

It is a well known phenomenon that heat flows from hot to cold regions. 
Such a flow of heat in a one-dimensional temperature gradient is described by 
Fourier's law 

 

dx

dT
jq κ−=         (5.1) 
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where jq is the heat flux density, i.e., the flow of heat per unit area of the plane 

through which the heat traverses per second, 
dx

dT
 is the temperature gradient, and 

κ (kappa) is the thermal conductivity. It may be noted that the minus sign reflects 
that the heat flows from high to low temperatures (downhill).  

 

Fick's first law 

The expression for the flow of particles from high to low concentrations is 
analogous to that for the flow of heat and is given by Fick’s first law: 

 

 
dx

dc
Dj particles −=        (5.2) 

 

Here, jparticles is the particle flux density, 
dx

dc
 the concentration gradient of the 

particles and D the diffusion coefficient. As in the equation for the heat flux, the 
minus sign reflects that the particles flow from high to low concentration of 
particles (downhill). This relation is named after A. Fick who first formulated this 
relation. The particle flux and gradient is illustrated schematically in Fig.5.1. 

 

Figure 5-1. Schematic illustration of Fick's first law. The negative of the particle 

concentration gradient is the "driving force" of the diffusion. 

 

jparticles represents the number of particles (or moles) crossing a unit area 
(cm2 or m2) per unit time (seconds). If the concentration of particles is expressed 
in number of particles (or moles) per cm3 and the distance x in cm, the diffusion 
coefficient has the dimension cm2s-1. In SI units the concentration is expressed in 
number per m3 and the diffusion coefficient has the dimension m2s-1. 

In Fick's first law in Eq. (5.2) the negative particle gradient, 
dx

dc
− , may be 

considered to be an expression of the "driving force" for the particle flux (Eq.5.2). 
The larger the concentration gradient, the larger the particle flux. When Fick’s 
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first law is applied to uncharged (neutral) and independently diffusing particles, it 
is valid in the sense that the coefficient is a constant (independent of concentration 
and gradient). This may apply e.g. to dilute solutions of neutral defects in solids. 
Such defects may be vacancies, interstitials, and impurities in metals. In ionic 
solids they may comprise neutral interstitial impurities, homovalent substituents, 
or isotopic species. The applicability or inapplicability of Fick’s first law will 
become clearer later in this chapter and in the forthcoming chapters. 

 

Potential gradients as the driving force 

More generally, the driving force for the diffusion constitutes the chemical 
potential gradient of the particles that diffuse (provided that no other forces act on 
the particles). Correspondingly, the driving force for the transport of electrical 
charges is the electrical potential gradient. In the following is given a brief 
derivation of Fick's first law using a potential gradient as the driving force, in 
detail in the case of a chemical potential gradient. 

Let us consider the transport of particles of type "i" across a plane under a 
driving force F. The particle flux density through a plane is given by the product 
of the volume concentration ci of the particles at the plane and the average 
migration or drift velocity vi of the particles 

 

ji (moles or particles/(cm2sec)) = ci (moles or particles/cm3) .vi (cm/sec) (5.3) 

 

For uncorrelated movements the drift velocity v of a particle is proportional 
to the driving force Fi exerted on the particle: 

 

 vi = BiFi        (5.4)  

 

The proportionality factor Bi is termed the mobility ("Beweglichkeit") of the 
particles and is defined as the average drift velocity per unit driving force. It is 
often referred to as mechanical mobility to differentiate it from other types of 
mobility. 

The driving force is, in turn, given by the negative value of the potential 
gradient normal to the cross-sectional area in the plane 

 

 
dx

dP
F i

i −=         (5.5) 

 

where P is a potential. The negative sign is, as above, due to the fact that the 
transport takes place from higher to lower values of P, see Fig.5.2. 

 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


5 Diffusion 

 5.4

 

Figure 5-2. Schematic illustration of Fick's first law for transport in a potential gradient. 

  

When one combines Eqs. 5.3 - 5.5, the particle flux becomes 

 

 
dx

dP
Bcvcj i

iiiii −==         (5.6) 

 

 

Example of chemical potential gradient acting on neutral 
particles 

If the particle moves in a chemical potential gradient, the potential P equals 
the chemical potential of particles of type i: Pi = µ i. Equation 5.6 then takes the 
form  

 

 
dx

d
Bcvcj i

iiiii

µ
−==        (5.7) 

 

The chemical potential µ i is related to the chemical activity ai of species i through 

 

 µi = µ
o

i   + kT lnai       (5.8) 

 

If ideal conditions can be assumed, the activity can be expressed by the 
concentration divided by the concentration in the reference (standard) state:  

 

0
i

i

i
c

c
a =         (5.9) 

 

and the chemical potential gradient is then given by 
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dx

dc

c

kT

dx

cd
kT

dx

d i

i

ii ==
lnµ

      (5.10) 

 

When one substitutes the expression for the chemical potential gradient in Eq.5.7, 
the particle flux becomes 

 

 
dx

dc
kTB

dx

d
Bcj i

i

i

iii −=−=
µ

      (5.11) 

 

BikT is termed the diffusion coefficient Di of particles i: 

 

 Di = BikT        (5.12) 

 

By combination with Eq.5.12, Eq.5.11 takes the form of Fick's first law as given 
in Eq.5.2: 

 

 
dx

dc
Dj i

ii −=         (5.2) 

 

It is thus important to realise that Eq. 5.2 is fully valid only for ideal cases of 
diffusion of neutral particles in chemical potential gradients only. If the particles 
are charged, we need to take into account both the electrical potential gradent and 
requirements to the combination of fluxes to maintain a given total current and 
electroneutrality. These cases will be treated later on. 

In the following, ideal conditions will be assumed and concentrations will 
be used for activities of atoms, ions and various types of defects. But it should be 
recalled that this always represents an approximation. 

 

Simplified model for one-dimensional diffusion 

Following Eq.5.2 the diffusion coefficient represents the proportionality 
constant between the particle flux and the concentration gradient. In order to 
describe the process of diffusion of particles or atoms in solids we need to realise 
that the diffusion represents the sum of a large number of particles or atoms that 
each makes a large number of jumps. We will therefore attempt to describe the 
diffusion coefficient in terms of the number of jumps per unit time (the jump 
frequency) and the distance that each particle or atom moves in each jump. 

For this purpose let us consider a simplified one-dimensional model where 
particles jump between parallel planes separated by a distance s as illustrated in 
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Fig.5.3. The two neighbouring planes under consideration are termed plane 1 and 
2. The number of particles per unit area in plane 1 and 2 is termed n1 and n2, 
respectively, and let us further assume that n1>n2. Consider further that the 
particles in plane 1 and 2 may jump from one plane to a neighbouring plane at a 
jump frequency Γ. The particles in plane 1 have an equal probability of jumping to 
plane 2 and to the neighbouring plane in the opposite direction. The total number 
of particles jumping out of a unit area of plane 1 per unit time is equal to the 
product of number of particles per unit area times the jump frequency: n1Γ. As the 
particles may jump in opposite directions, the number of particles jumping from 
plane 1 to 2 is given by ½ n1Γ. Correspondingly, the number of particles jumping 
from unit area of plane 2 to plane 1 is given by ½ n2Γ. The difference in the jump 
rates is equal to the net flux density of particles: 

 

 Γ−= )( 212
1 nnj particles        (5.13) 

 

As all particles have the same jump frequency, there is a net flow of 
particles from plane 1 to 2 because there are more atoms per unit area in plane 1 
than in plane 2. 

 

 

Figure 5-3. Schematic illustration of simplified model for one-dimensional diffusion 

 

The number of particles n1 belonging to unit area of plane 1 is given by the 
volume concentration at plane 1, c1, times the extension in the x direction, i.e., the 
plane separation s: 

 

 n1 = c1s    and    n2 = c2s      (5.14) 

 

By combining Eqs.5.13 and 5.14 the particle flux density becomes 

 

 Γ−= sccj particles )( 212
1        (5.15) 
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The concentration gradient normal to the planes is termed 
dx

dc
. The relation 

between c1 and c2 can then be expressed by seeing that a difference is equal to the 
gradient times the length; 

 

dx

dc
scc =− 12         (5.16) 

 

By insertion of this into Eq. 5.15 we obtain 

 

 
dx

dc
sj particles Γ−= 2

2
1         (5.17) 

 

This expression applies to one-dimensional diffusion of particles, and the factor ½ 
reflects that only ½ of all jumps occur in the direction we consider as the flux 
direction.  

If the diffusion can take place in the three orthogonal directions, only one 
third of the particles jump in one direction, and in the three-dimensional case the 
net flux in one direction is 1/3 of the flux of that when all atoms jump in one 
direction only: 

 

 
dx

dc
sj particles Γ−= 2

6
1        (5.18) 

 

By comparing with Fick's first law, Eq. 5.2, it is seen that the diffusion coefficient 
D in the three-dimensional case is given by  

 

 Γ= 2
6
1 sD         (5.19) 

 

If we consider a large number of jumps, n, which occurs during the time t, then 

 

 
t

n
=Γ          (5.20) 

 

and inserting this in Eq.5.19, one obtains 

 

 ns2 = 6Dt        (5.21) 
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The expression for the diffusion coefficient in Eqs.5.19 and 5.21 provides an 
interesting qualitative description of what is going on during the diffusion. By 
way of example, the diffusion coefficient for interstitial diffusion of oxygen atoms 
in niobium metal at 800 °C is approximately D = 7.10-8 cm2s-1. The jump distance 
can be assumed to be 1.65 Å (1.65.10-8 cm), and then from Eq. (5.19) the jump 
frequency Γ is about 1.54.109 s-1. Thus, each oxygen atom makes a tremendously 
large number of jumps per second. But it should then also be recalled that the 
atoms vibrate with a (Debye) frequency of 1012-1013 s-1, and thus only a small 
fraction - about 1 in 103 or 104 - of the vibrations leads to a jump of the atoms. 
We shall consider this in more detail when the different atomistic mechanisms are 
treated below. 

Although the number of jumps is tremendously large, the mean 
displacement of each atom is relatively small – most of the time it moves back and 
forth. In the diffusion process it is not possible to observe the individual jumps of 
the atoms, and it is necessary to find a relation between the individual atom jumps 
for large number of atoms and the diffusion phenomena which may be observed 
on a macroscopic scale. The problem is to find how far a large number of atoms 
will move from their original sites after having made a large number of jumps. 
Such relations may be derived statistically by means of the so-called random walk 
method. 

 

Random diffusion 

Let us consider that the jumps of the atoms are random, i.e. that the jumps of 
the atoms are independent of all the previous jumps and can occur in all 
directions. In that case the displacement of a diffusing atom from the starting point 
after n number of jumps, Rn, is given by the algebraic sum of the individual jump 
vectors: 

 

 ∑
=

=++=
n

j

jnn ssssR
1

21 ...       (5.22) 

 

If the individual jumps take place with equal probability in all directions and 
the individual jump distances are equal, this algebraic sum equals zero. This does 
not mean that the diffusing atom remains at its starting point after n jumps, but 
only that jumps in "positive " and "negative" directions are equally probable. In 
fact the total displacement may have any value between zero and ±ns. 

 

In order to obtain a value for the magnitude (length) of the sum vector, one 
squares Eq. 5.22: 
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 ∑ ∑∑
−

= +==

+==
1

1 11

22
2 2

n

j

n

jk

kj

n

j

jnn sssRR      (5.23) 

 

If, as above, the individual jump vectors are equal, i.e., |s1| = |s2| ... |sj| = s, 
as, for instance, in crystals with cubic symmetry, and if they are random and 
uncorrelated, then the second term on the right hand side of the equality sign in 
Eq. 5.23 will approach zero for large numbers of jumps, as on an average sj and sk 
have an equal chance of being positive and negative. The first term on the righ 
hand side, on the other hand, is always non-zero and positive, and thus represents 
the average displacement length for a large number of jumps:  

 

 2

1

2
2

nssR
n

j

jn ==∑
=

       (5.24) 

 

The mean displacement is given by the square root of Rn
2 and is termed the root 

mean square displacement: 

 

 snRR nn  2 ==        (5.25) 

 

From this it is seen that the mean displacement is proportional to the square root 
of the number of jumps times the individual jump distance. 

By combining Eqs. 5.21 and 5.24 we may express the random diffusion in 
terms of the diffusion coefficient we dealt with in diffusion down a concentration 
gradient in the 3-dimensional cubic case: 

 

 tDnsR rn 622 ==          (5.26a) 

 

 tDR rn 6=         (5.26b) 

 

where t is the time during which the mean-square-displacement takes place. 
One may note that we have now started terming the diffusion coefficient Dr (r for 
random walk). 

Rn is the radius of the sphere that a diffusing atom on average will distance 
itself by from the starting point after time t.  

 

Let us now consider the displacement in a single dimension (e.g. the x-
direction) as a result of this three-dimensional displacement in the cubic case. 
From simple geometry we have Rn

2  = 3x2 where x2 is the mean square 
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displacement in each orthogonal direction. Thus, the mean diffusion length in one 
direction in a three-dimensional cubic crystal is: 

 

 tDx r2=         (5.27) 

 

This length is thus shorter than the displacement radius, since displacements in the 
y and z directions are “wasted” for x dimension displacement. 

As described above and using oxygen diffusion in niobium as an example, 
the oxygen atoms on an average exchange positions approximately 1.54.109 times 
per second at 800 °C. From the same considerations one may also estimate that an 
oxygen atom has randomly covered total jump distances of 25.4 cm and 914.7 m 
after 1 second and 1 hour, respectively. But what is the mean displacement? From 
Eq 5.27 one may estimate that the one-dimensional root-mean-square 
displacement after 1 hour only amounts to 0.022 cm. Thus, the mean displacement 
is very small and on an average the oxygen atoms spend most of their time 
jumping "back and forth". 

What we did above was to consider random jumps, and then we related 
jumps, times and distances to a term we recognised from earlier, namely the 
diffusion coefficient, and we named it the random diffusion coefficient Dr. The 
diffusion coefficient was in turn something we recognised – while considering 
diffusion down a one-dimensional concentration gradient – from Fick’s first law. 
One should note, however, that random diffusion and the random diffusion 
coefficient can be considered and expressed and quantified also in the absence of 
a concentration gradient and also for charged particles. 

As will be described below, diffusion is often measured by using tracer 
atoms and one then obtains values of the diffusion coefficient of the tracer atoms. 
Depending on the diffusion mechanism the tracer diffusion is in most cases not 
completely random, but is to some extent correlated with previous jumps. This 
will be further discussed later on. 

 

Fick's second law 

 

As described above Fick's 1st law assumes a fixed concentration gradient 
across the plane through which the flux of particles take place. But in numerous 
practical cases the concentration and concentration gradient changes with time. 
Such cases are covered by Fick's 2nd law. This is shown schematically in Fig.5.4 
which illustrates the change in the concentration gradient through the solid. As 
shown in the figure let us consider a region within a solid, enclosed between 
planes separated by the distance dx. The net particle flux from the region of higher 
concentration into dx is j1 and the net particle flux out of dx towards lower 
concentration is j2. When j1 is greater than j2 the particle concentration in dx 
increases with time. This requires that the concentration gradient in plane 1 is 
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larger than in plane 2, since Fick's first law applies in both planes (and at any 
position) at any time. 

The change in concentration per unit time at any position is proportional to 
the gradient in flux at that position  

 

 
x

-
t ∂

∂

∂

∂ jc
=         (5.28) 

 

Although the concentration and concentration gradient change with time, Fick's 1. 
law is valid at any one time and position and thus 

 

 )
x

c
(D

xx
-

t ∂

∂

∂

∂

∂

∂

∂

∂
==

jc
      (5.29) 

 

If D can be considered to be independent of concentration then  

 

 
2

2

x

c
x

-
t ∂

∂

∂

∂

∂

∂
D

jc
==        (5.30) 

 

The intuition of the qualitative arguments as well as the double derivative of the 
concentration in Eq.5.30 tell us that particles will flow from convex to concave 
regions in terms of distribution of particles. 

 

Figure 5-4. Schematic illustration of Fick’s 2
nd

 law; the concentration gradient changes 

with time. 

 

Equations 5.29 and 5.30 are representations of Fick's 2nd law. It may be 
solved explicitly under certain boundary conditions that may be closely 
approximated experimentally (e.g. Crank (1975)). A couple of examples of this 
are given in the following. 
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Measurements of the diffusion coefficients by tracer 
techniques 

The use of isotopes or tracers is a common means of studying diffusion. 
Tracer methods permit measurements of self-diffusion, that is, the diffusion of the 
crystal components in a crystal. Furthermore, they allow measurements of 
diffusion in homogenous materials, that is, without imposing chemical gradients 
(when one disregards the difference in atomic weight between atoms in the crystal 
and of the tracer). 

A common technique is to deposit a very thin film of radioactive isotopes on 
a plane surface of a sample, and, after subsequent diffusion anneal, determine the 
activity of diffusion species as a function of distance from the plane surface. If the 
thickness of the sample is very much larger than the penetration depth of the 
tracers, the solid can be considered semi-infinite. Furthermore, if the diffusion is 
homogenous (e.g. taking place by lattice diffusion), the concentration of the 
diffusing tracers normal to the plane is through solution of Fick's second law with 
appropriate boundary conditions given by  

 

 )
4

exp(
(2

2

tD

x

tD

c
c

tt

o −
)

=
1/2π

      (5.31) 

 

c is the activity (or concentration) of the tracer at a distance x from the surface, co 
is the activity originally present on the surface, and t is time of the diffusion 
anneal. Dt is the tracer diffusion coefficient. Following Eq.5.31 it is determined by 

plotting lnc vs x2, in which case the resultant straight line has the slope - 
tDt4

1
. 

Plots of c vs x and of lnc vs x2 according to Eq.5.31 is illustrated in Fig.5.5a and 
b, respectively. At the point where the activity is half of the activity at the surface, 

then x = tDt77.2 . This distance corresponds approximately to the root-mean-

square penetration distance (Eq. 5.26b). 

 

Figure 5-5. Graphical presentation of relationship between activity, c, and penetration 

distance, x, (Eq.5.31) for homogeneous diffusion of tracer initially deposited as a thin film on the 

surface the solid. a) c vs. x; b) lnc vs. x2. 
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An alternative way of performing the experiment is to have a constant 
surface composition of the diffusing species. By solving Fick's second law under 
proper boundary conditions the penetration of the diffusing species is then 
described by the relationship 

 

 
2/1

0

0

)(2
1

tD

x
erf

cc

cc

ts

−=
−

−
      (5.32) 

 

where c is the concentration of the diffusing species at penetration distance x at 
time t, cs is the constant surface concentration, and co is the original concentration 
in the solid. Ds is the diffusion coefficient of the diffusing species. Figure 5.6 
shows a graphical penetration of the diffusion profile according to Eq.5.32 in a 

case where c0=0. It may be noted that at the point where 
0

0

cc

cc

s −

−
= ½, that is, at 

the point where the concentration of the diffusing species is midway between the 

surface composition and the original composition, then x/ tDt = 0.954. Thus at 

this point x ~ tDt . 

It may be noted that Eqs.5.31 and 5.32 involve the dimensionless parameter 

x/(2 tDt ), and accordingly the penetration and the amount of the diffusing 

species dissolving in the solid are proportional to the square root of time. 

 

Figure 5-6. Graphical presentation of diffusion profile when the surface concentration of 

the diffusing species remains constant with time. It is assumed that co=0 (Eq.5.32). 

 

The penetration by the diffusing species may be measured by means of the so-
called sectioning method, that is cutting, grinding or etching off thin sections of 
layers of the sample parallel to the plane surface and subsequently determining the 
concentration of the diffusing species in each section. By cutting the specimen 
normal to or at an angle to the plane surface, the penetration of radioactive tracers 
may also be measured by means of so-called autoradiography. 
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Electron microprobe analysis and secondary ion mass spectroscopy (SIMS) 
combined with sputtering techniques also provide excellent tools for studying 
penetration and diffusion of foreign ions. As oxygen does not have a radioactive 
isotope suitable for tracer studies, SIMS is particularly useful for studying oxygen 
diffusion employing the stable 18O isotope. 

In the isotope exchange method the vapour of the diffusing component 
surrounding the sample is enriched with either a radioactive or an inactive isotope, 
and the diffusion is measured by following the exchange of the isotope with the 
sample. The diffusion coefficient may be evaluated if diffusion is the slower 
process and processes at the surface are rapid. Alternatively, the sample itself may 
be isotopically enriched, and the increase in concentration of the isotope in the 
vapour phase may be measured. 

Diffusion rates may, in principle, also be determined from any property or 
reaction which depends on atomic mobility. By way of illustration, ionic 
conductivity of the anion is directly proportional to the anion diffusion coefficient 
(see Electrical conductivity). From high temperature solid state reactions, 
sintering, oxidation of metals etc. diffusion coefficients may be evaluated 
provided the detailed mechanism of the processes are known. Examples of this 
will be given in Chapter 7. 

 

Diffusion mechanisms 

 

Lattice diffusion takes place through the movement of point defects. The 
presence of different types of defects gives rise to different mechanisms of 
diffusion. These are illustrated schematically for elemental solids in the following 
descriptions. But they also apply to metal oxides and other inorganic compounds 
when the diffusion is considered to take place in the sublattices of the cations or 
anions. 

 

Vacancy mechanism 

The diffusion is said to take place by the vacancy mechanism if an atom on 
a normal site jumps into an adjacent unoccupied lattice site (vacancy). This is 
illustrated schematically in Fig.5.7. It should be noted that the atoms move in the 
direction opposite the vacancies. 
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Figure 5-7. Schematic illustration of vacancy diffusion in solids. 

 

Interstitial mechanism 

If an atom on an interstitial site moves to one of the neighbouring interstitial 
sites, the diffusion occurs by an interstitial mechanism. This is schematically 
shown in Fig.5.8. Such a movement or jump of the interstitial atom involves a 
considerable distortion of the lattice, and this mechanism is probable when the 
interstitial atom is smaller than the atoms on the normal lattice positions. 
Diffusion of interstitially dissolved light atoms, e.g. H, C, N, and O in metals 
provides the best known examples of this mechanism. 

 

Figure 5-8. Schematic illustration of interstitial diffusion in solids. 

 

Oxides with close-packed oxygen lattices and only partially filled 
tetrahedral and octahedral sites may also facilitate diffusion of metal ions in the 
unoccupied, interstitial positions. Finally, even large anions may diffuse 
interstitially if the anion sublattice contains structurally empty sites in lines or 
planes which may serve as pathways for interstitial defects. Examples are rare 
earth sesquioxides (e.g. Y2O3) and pyrochlore-type oxides (e.g. La2Zr2O7) with 
fluorite-derived structures and brownmillerite-type oxides (e.g. Ca2Fe2O5) with 
perovskite-derived structure. 

 

Interstitialcy mechanism 

If the distortion becomes too large to make the interstitial mechanism 
probable, interstitial atoms may move by another type of mechanism. In the 
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interstitialcy mechanism an interstitial atom pushes one of its nearest neighbours 
on a normal lattice site into another interstitial position and itself occupies the 
lattice site of the displaced atom. This mechanism is illustrated schematically in 
Fig.5.9 

In the interstitialcy mechanism one may distinguish between two types of 
movements. If the atom on the normal lattice site  is pushed in the same direction 
as that of the interstitial atom, the jump is termed collinear (Fig.5.9). If the atom is 
pushed to one of the other neighbouring sites so that the jump direction is different 
from that of the interstitial atom, the jump is termed non-collinear. 

 
Figure 5-9. Schematic illustration of interstitialcy diffusion in solids. Collinear jump. 

 

 

Other mechanisms.     

In elemental solids also other mechanisms have been proposed. The 
crowdion is a variant of the interstitialcy mechanism. In this case it is assumed 
that an extra atom is crowded into a line of atoms, and that it thereby displaces 
several atoms along the line from their equilibrium positions. The energy to move 
such a defect may be small, but it can only move along the line or along 
equivalent directions.  

For metals it has also been proposed that diffusion may take place through a 
so-called ring mechanism, but this mechanism is improbable in oxides or other 
inorganic compounds. 

 

Diffusion of complex defects.  

As defects in oxides with large deviations from stoichiometry constitute 
complex defects, there has been considerable discussion and speculation about the 
diffusion mechanism in such oxides. It has, for instance, been suggested that 
complex defects coexist in a dynamic equilibrium with single defects, and that the 
diffusion processes also under these conditions really involve diffusion of single 
defects. In the case of defect clusters it has alternatively been proposed that the 
smaller clusters may move as a unit. A translational mechanism that has been 
proposed for a 4:1 cluster in wustite is illustrated in Fig.5.10. The jump processes 
in the motion of a 4:1 complex is quite complex, and the mechanism requires two 
distinct, sequential jumps. Atom 1 jumps to fill a vacancy in the complex defect 
and thereby creates a new vacancy. In the process the interstitial ion in the cluster 
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is displaced to the neighbouring vacancy. The movement of the cluster is 
completed when atom 2 is displaced from a normal site to the interstitial site of 
the new location of the cluster. 

 
Figure 5-10. Proposed mechanism for the translational movement for a 4:1 cluster. Open 

circles represent oxygen ions, closed circles iron atoms, open circles with an "x" iron interstitials, 

and cubes iron vacancies. 

 

Diffusion of protons in metal oxides. 

Protons that dissolve in metal oxides associate with the oxide ions and form 
hydroxide ions. As the proton has no electron shell, it interacts strongly with the 
electron cloud of the oxide ion and in its equilibrium position in the hydroxide ion 
it is embedded in the valence electron cloud. The O-H bond that is formed has a 
bond length less than 100 pm; this may be compared with the ionic radius of 140 
pm of the oxide ion. 

In principle the protons may move by two different mechanisms: i) the free 
transport mechanism, which is also alternatively termed the Grotthuss mechanism 
or ii) the vehicle mechanism.  

The free transport is the principal mode of transport of protons in oxides, 
and in this mechanism protons jump from one oxygen ion to a neighbouring one. 
After each jump the proton in the hydroxide rotates such that the proton reorients 
in the electron cloud and becomes aligned for the next jump. This is illustrated 
schematically in Fig.5.11. The rotation and reorientation is believed to involve a 
small activation energy and the jump itself is considered to be the rate-
determining step. 

In the vehicle mechanism the proton is transported as a passenger on an 
oxide ion. Thus this mechanism may be considered to constitute transport of 
hydroxide ions. The hydroxide ion may in principle move by an oxygen vacancy 
mechanism or as an interstitial hydroxide ion. It may be noted that the hydroxide 
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ion has a smaller radius and charge than the oxide ion and may as such be 
expected to have a smaller activation energy for diffusion than the oxygen ion. 
Also other species such as water molecules and hydronium ions, H3O+, may serve 
as vehicles for protonic diffusion, notably in relatively open structures. 

 

Figure 5-11. Schematic illustration of free transport of protons in metal oxides (Grotthuss 

mechanism). 

 

 

Further considerations of factors that affect the 
diffusion coefficient in crystalline solids 

 

In Eq. 5.19 the random diffusion coefficient has been expressed in terms of 
the jump distance and the number of jumps per unit time: 

 

 
t

n
ssDr

2
6
12

6
1 =Γ=        (5.19) 

 

But it is necessary to further characterise D in different crystal structures 
(lattices or sub-lattices) and subsequently to derive expressions for the 
temperature and oxygen pressure dependence of diffusion in metal oxides.  

 

Vacancy diffusion.  

Let us consider vacancy diffusion in an elemental solid or a cation or an 
anion sub-lattice. The number of jumps per unit time, Γ, depends on several 
factors. First, it depends on the jump frequency ω towards an adjacent site. 
Furthermore, it is also proportional to the number of sites to which the atom may 
jump, i.e., the number of nearest neighbour positions of the atom, Z. Finally, the 
atom may only jump if a vacancy is located on an adjacent site, and this 
probability is given by the fraction (concentration) of vacancies in the crystal, Nd. 
Thus, Γ is in this case given by 
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dZNω=Γ         (5.33) 

 

In crystalline solids the jump distance is a function of the crystal structure 
and may be expressed as a function of the lattice parameter. 

In a bcc crystal of an elemental solid, for instance, each atom has 8 nearest-
neighbour positions or atoms, and thus in this case Z = 8. From simple 
geometrical considerations of the crystal structure it may further be shown that the 

jump distance is given by 
2
3

0as = , where ao is the lattice parameter. When 

inserting these values of Z and s in Eq. 5.33 one obtains 

 

 dr NaD ω2
0=         (5.34) 

 

In general, Dr for a cubic structure is written 

 

 dr NaD ωα 2
0=         (5.35) 

 

where α is a geometrical factor involving the factor 1/6 (from Eq.5.21, the factor 
Z from Eq.5.33 and the relation between the jump distance and the lattice 
parameter. For vacancy diffusion in a bcc lattice α is thus equal to unity, From the 
same considerations it may also be shown that α = 1 for vacancy diffusion in fcc 
lattices. 

 

Interstitialcy diffusion 

Consider an atom on a normal lattice site of a cation or anion sub-lattice. If 
this atom is to move by the interstitialcy mechanism, an atom on a nearest 
neighbour interstitial site has to push the atom on the normal site to a 
neighbouring interstitial site. Thus for this diffusion mechanism an atom may only 
diffuse when it has an interstitial atom on a neighbouring site, and as for vacancy 
diffusion the diffusion coefficient of the atoms is proportional to the fraction 
(concentration) of interstitial atoms or ions in the sub-lattice. 

 

Interstitial diffusion   

When one considers interstitial diffusion of an interstitially dissolved 
species in dilute solid solution, essentially all the nearest neighbour interstitial 
sites of the same type are unoccupied and available for occupancy by the diffusing 
interstitial atoms. Thus the interstitial atom may jump to any of the nearest 
neighbour interstitial sites and in this case Nd is equal to unity. The interstitial 
diffusion coefficient is then given by  
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 ωZsDr

2
6
1=         (5.36) 

 

As mentioned above the best known examples of this mechanism is diffusion of 
O, N, C, and H atoms interstitially dissolved in metals. By way of example 
oxygen and nitrogen atoms in bcc metals, e.g. in the group 5 metals V, Nb, and 
Ta, occupy octahedral sites, and in this case each interstitial atom has 4 nearest 
neighbour octahedral sites to which they may jump, thus  

Z= 4. Furthermore, the jump distance s is equal to 
ao
2  . Inserting these values 

in Eq.5.36 the diffusion coefficient for interstitial diffusion between octahedral 
sites in a bcc lattice becomes  

 

 ω2
6
1 sDr =         (5.37) 

 

Thus in this case α =1/6. 

 

Free proton transport 

Similar considerations may be applied to free transport of protons (cf. 
Fig.5.11). For dilute solutions of protons in an oxide essentially all nearest 
neighbour oxygen ions are available, and thus in this case Nd is unity. However, 
the specification of Z, s and ω is not straightforward in this case. The dynamics of 
free proton diffusion in oxides are complicated by 1) the multistep process 
(jump+rotation), 2) the dependency on the dynamics of the oxygen ion sublattice, 
and 3) the quantum mechanical behaviour of a light particle such as the proton. 

The uniquely large ratios between the masses of the isotopes of hydrogen 
give rise to a number of strong isotope effects in the case of diffusion of protons. 
(These are also in principle operative for diffusion of hydrogen atoms or hydride 
ions, but they would be essentially negligible for diffusion of protons on a heavier 
vehicle, such as in OH-.) The isotope effects for proton diffusion can be classified 
as follows: The attempt frequency ν (in the pre-exponential of ω) is given as the 
O-H stretching frequency, and it is given by the inverse of the square root of the 
reduced mass of the harmonic oscillator. The reduced mass equals 
(mO+mH)/mOmH and is roughly inversely proportional to the mass of the hydrogen 
species. Therefore, the ratios of the pre-exponentials of the diffusion coefficients 
of protons, deuterons, and tritons are approximately related by D0H : D0D : D0T = 

1 : 1/ 2  : 1/ 3 . This is called the classical effect. Furthermore, the oscillators 
have different ground-state or zero-point energies, such that diffusion of lighter 
isotopes may be expected to have a slightly smaller activation energy of jumping. 
Accordingly, proton diffusion typically has 0.04 - 0.06 eV lower activation energy 
than deuteron diffusion. This is called the non-classical effect. However, there are 
more factors involved, connected to the fact that the light proton/deuteron/triton 
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must be treated quantum mechanically and to their dynamics in a dynamic lattice 
of much heavier oxygen ions. For instance, the lighter isotope has a lower sticking 
probability after an otherwise successful jump. In effect, this reduces the effective 
diffusivity of all hydrogen isotopes and it can to a varying degree counteract or 
even seemingly reverse the classical effect. The neglectance of the latter have in 
general made many investigators ascribe higher diffusivities for protons compared 
to deuterons to the classical effect, while in reality the non-classical zero-point 
energy difference appears to be the main contributor to the observed effect. 

The possibility of tunnelling as a major component of diffusion is not 
expected to apply to protons except at very low temperatures, and the orders-of-
magnitude isotope effects that would be expected for proton vs deuteron or triton 
diffusion have not been reported for oxidic materials at elevated temperatures. 

  

Temperature and oxygen pressure dependence 
of diffusion in metal oxides 

 

We will now address how diffusion coefficients vary with temperature and 
activity of the components of the compound, mainly the oxygen partial pressure 
over oxides. In order to evaluate these dependencies one must consider the 
temperature and activity dependencies of Nd (e.g. cf. Eq.5.35) and the temperature 
dependence of ω. We start by analysing Nd for some cases. 

 

Dependencies related to the concentration of defects  

Vacancies in an elemental solid 

For the sake of simplicity let us first consider the case of diffusion by a 
vacancy mechanism in a pure elemental solid. The diffusing atoms may only 
make a jump when a neighbouring site is vacant. Thus the jump frequency n/t is 
proportional to the vacancy concentration and as described in Chapter 3 the 
fraction of vacancies may be written 

 

 )exp()exp()exp(
RT

H

R

S

RT

G
N ddd

d

∆−∆
=

∆−
=     (5.38) 

 

where ∆Gd, ∆Sd, and ∆Hd denote the Gibbs free energy, entropy, and enthalpy of 
formation of the vacancies (defects). In elemental solids ∆Hd is positive and the 
vacancy concentration increases with increasing temperature. 

 

Vacancies in an oxygen deficient oxide.  

In a nonstoichiometric oxide the concentration of the predominating point 
defects will be a function of temperature but also of the oxygen pressure. By way 
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of illustration, let us consider an oxygen deficient oxide, MaOb-δ,  in which 
doubly charged oxygen vacancies are the predominating point defects. If intrinsic 
ionisation and effects of impurities can be neglected, the concentration of the 
oxygen vacancies is as described in previous chapters (Eq. 3.68) given by 

 

    )
3

exp()
3

exp()()(][ 6/13/1
4
16/13/1

4
1

22 RT

H

R

S
ppKvN OO

O

vv

OOvOd

••••

••

∆−∆
=== −−••

 (5.39) 

 

where ••
Ov

K  represents the equilibrium constant for the formation of doubly 

charged oxygen vacancies, and ••∆
Ov

S  and ••∆
Ov

H  their entropy and enthalpy of 

formation, respectively. 

In such an oxide the oxygen vacancy concentration may also be determined 
by the presence of dopants or a sufficiently large level of impurities with negative 
effective charge. If the dopant is doubly negatively charged (as, for instance, 
Ca2+, an acceptor dopant,  in ZrO2), then 

 

 ][A][ //
MOv =••          (5.40) 

 

In this case ][ ••
Ov  will be independent of oxygen pressure and most often 

temperature (see Chapter 4). 

In a similar manner one may obtain the temperature and oxygen pressure 
dependencies of the concentration of any defect (majority or minority) when the 
defect structure is known. Of course the concentrations of acceptors or donors will 
enter when they dominate the defect situation and the water vapour partial 
pressure may enter when protons are dominating defects. 

 

Temperature dependence of the attempt frequency ωωωω 

When atoms jump or move between definite sites in the crystal, they have to 
surmount energy barriers. A large part of this energy barrier involves the strain 
energy required to displace neighbouring atoms to create a sufficiently large 
opening between the atoms to permit the atom jump. The potential energy of the 
atom diffusing from one site to another may be qualitatively illustrated as shown 
in Fig. 5.12. The potential barrier height is ∆Hm and represents the activation 
energy which the atom has to surmount during the jump. Each atom vibrates in its 
position and during a fraction of time, which is given by the Boltzmann 
distribution factor exp (-∆Hm/RT), it possesses sufficient energy to overcome the 

energy barrier. The jump frequency is thus proportional to exp(-∆Hm/RT). 
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Figure 5-12. Potential energy of atom diffusing in a solid. ∆Hm is the activation energy for 

the diffusion. 

 

A more complete analysis based on the theory of activated complexes and 
on statistical mechanics has been given by Zener (1951,1952). He considered the 
system or an atom in its initial equilibrium condition and in the activated state at 
the top of the potential barrier which separates the initial position from its 
neighbouring equilibrium position. The rate of transition from one equilibrium site 
to another is given by 

 

 
RT

H
exp

R

S
exp

RT

G
exp mmm ∆−∆

=
∆−

= υυω     (5.41) 

 

where ∆Gm, ∆Sm, and ∆Hm represent the free energy, entropy and enthalpy 
change, respectively, connected with the movement of the atom from the 
equilibrium position to the top of the potential barrier and υ  (“nu”) represents the 
vibration frequency. υ is often assumed to equal the Debye frequency, i.e. about 
1013 Hz, as an order of magnitude approximation. (For protons in oxides the O-H 
stretching frequency of about 1014 Hz is used.) ∆Sm is often assumed to be a 
small, positive term (below, say, 10 J/molK). 

As a more detailed analysis of υ,  Zener suggested that υ may be 
approximated as υ =  α/a⋅ ∆H Mm / , where α is a structure- and mechanism-
dependent factor, a is a lattice parameter, and M is the reduced mass of the 
oscillator. Intuitively, a particle vibrating in an energy valley will vibrate faster (υ 
increases) when the walls become steeper (∆Hm increases). One may also view 
the particle as vibrating on a spring; the frequency becomes higher when she 
spring is shorter (α/a decreases), when the spring is stiffer (∆Hm increases) or the 
particle becomes lighter (M decreases). Thus, the temperature-independent (pre-
exponential) term in the diffusion coefficient increases when ∆Hm increases, so 
that the two tend to counteract each other. Experimental observations of this is 
sometimes referred to as the Meyer-Neldel effect (Meyer and Neldel (????)). 
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Resulting analysis of the diffusion coefficient Dr 

Vacancy diffusion in an elemental solid. From Eq.5.35 it is seen that 
the temperature dependence of Dr for vacancy diffusion in an elemental solid is 
determined by that of Nd and ω. For an elemental solid with cubic structure, Dr is 
thus obtained by combining Eqs.5.35, 5.38 and 5.41: 

 

 
RT

)HH(
exp

R

SS
exp mdmd2

0

∆∆−∆∆
=

++
υαaDr

   (5.42) 

 

Experimentally determined values of diffusion coefficients are usually obtained as 

 

 
RT

exp0

Q
DD

−
=        (5.43) 

 

where Q is termed the activation energy and Do the the pre-exponential factor. 

By comparing Eqs.5.42 and 5.43 it is seen that the activation energy, Q, in 
this case comprises  

 

 Q = ∆Hd + ∆Hm       (5.44) 

 

Correspondingly, Do is given by  

 

 
R

SS
exp md2

00

∆∆
=

+
υαaD        (5.45) 

 

If experiments are carried out under such conditions that the concentration 
of defects, Nd, is constant and independent of temperature, e.g. at sufficiently low 
temperatures that the defect concentration is frozen in, then Dr  is given by  

 

 
RT

H
exp

RT

H
exp

R

S
exp m

0
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,
2
0

∆−
=

∆−∆
= DNaD frozendr υα   (5.46) 

 

and correspondingly the activation energy is under these conditions given simply 
by  

 

 Q = ∆Hm         (5.47) 
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Oxygen vacancy diffusion in oxygen-deficient oxides.  

 In an oxygen-deficient oxide in which oxygen vacancies predominate and 
for which effects of impurities can be neglected, the oxygen vacancy 
concentration is given by Eq. 5.39. Correspondingly, the oxygen diffusion 
coefficient for random oxygen vacancy diffusion in the oxide in equilibrium with 
the ambient oxygen gas at a partial pressure becomes 
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3exp
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υα   (5.48) 

 

Dr thus increases with decreasing oxygen pressure. The activation energy for the 
diffusion is in this case given by  

 

 m
v

3
O H

H
Q ∆

∆
= +

••

       (5.49) 

 

If the concentration of oxygen vacancies is determined by lower valent impurities 
or dopants, e.g. when Eq.5.40 applies, then Dr is given by  

 

 
RT

H
exp

R

S
exp][A mm//2

0

∆−∆
= Mr aD υα     (5.50) 

 

Thus in this case the activation energy is equal to that of the mobility of the 
oxygen vacancies:  Q = ∆Hm. A similar situation would arise if the vacancy 
concentration was frozen in rather than determined by acceptor doping. 

Such a transition from intrinsic to extrinsic diffusion may take place when 
the temperature is lowered from high temperatures, where the native point defects 
predominate, to low temperatures, where the point defect concentrations are 
determined by the impurity concentration or, in other cases, frozen in. The 
temperature dependencies and the corresponding change in activation energy of 
the random diffusion in such a case are illustrated in Fig. 5.13. 

The above situations represent ideal cases. As the temperature is decreased 
defect interactions may become increasingly important. This may be treated as 
formation of associated defects. In the non-stoichiometric (intrinsic) case one may 
for instance have association between charged vacancies and electrons forming 
singly charged or neutral vacancies. This will change the oxygen pressure 
dependency of Nd and probably the temperature dependencies of Nd and ω, but 
probably not dramatically. Of larger effect, and more frequently observed, are the 
associations between the mobile vacancies and the relatively stationary acceptors 
in the extrinsic regime: The associated vacancies can be regarded as immobilised, 
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and the concentration of mobile vacancies (Nd) starts to decrease with decreasing 
temperature. This is seen as an increasing activation energy of diffusion with 
decreasing temperature in many heavily doped oxides. One may note that instead 
of expressing the effect as a changing concentration of free vacancies one may 
express it as a changing mobility in that the activation energy for diffusion is 
increased by the trapping energy exerted by the acceptor. However, the simple 
model of free and stationary (associated) point defects appears capable of 
explaining most behaviours fairly well. 

 

Figure 5-13. The diffusion coefficient for oxygen diffusion by the vacancy mechanism in an 

oxygen deficient oxide in which oxygen vacancies are the predominant native point defects. At high 

temperatures the oxide exhibits intrinsic behaviour and at reduced temperatures extrinsic 

behaviour (i.e. the oxygen vacancy concentration is determined by the concentration of lower 

valent cations). 

 

  

Interstitial diffusion of solute.  

From Eq.5.36 it is seen that Nd does not enter into the expression for the 
diffusion coefficient for interstitial diffusion in dilute solutions, thus in this case 
the activation energy, Q, represents that of the mobility of the diffusing interstitial 
atoms: ∆Hm= Q. 

For interstitial diffusion between octahedral sites in bcc metals Do is by 
combination of Eqs. 5.37 and 5.41 given by  

 

 
R

S
exp m2

06
1

0

∆
= υaD        (5.51) 
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Assuming that υ ~ 1013 s-1 and ao = 1.5.10-8 cm, and as it is probable that ∆Sm > 
0, one may estimate a lower limit of Do of 

 

 Do > 5.10-4 cm2s-1       (5.52) 

 

The diffusion of protons by the free transport mechanism is another case of 
interstitial diffusion of a solute.  

 

Interstitial diffusion of a constituent  

The diffusivity of a constituent such as the host metal or oxygen ions by an 
interstitial mechanism is not only proportional to the probability that the 
interstitial defect jumps, but also to the probability that a constituent ion is 
interstitial, i.e., the fractional concentration of interstitials. Thus the diffusion 
coefficient of the constituent contains the temperature and oxygen pressure 
dependencies of the concentration of interstitials in addition to the temperature 
dependency of the mobility of these defects. As in the case of vacancy diffusion, 
the fixation of the defect concentration by doping or freezing as well as 
association and trapping of defects apply also to interstitial diffusion. 

 

 

Diffusion coefficients of point defects 

 

In the above treatment of vacancy diffusion, only the diffusion coefficients 
of the atoms have been considered. For many purposes it may be convenient to 
consider the diffusion coefficients of the vacancies themselves. 

When an atom diffuses by the vacancy mechanism, it can only jump if a 
vacancy is located on an adjacent site, and the number of jumps per unit time is 
thus proportional to Nd (Eq. 5.33). However, the vacancy itself can jump to any 
one of the occupied nearest neighbour positions, provided it is occupied by an 
atom. Accordingly the vacancy diffusion coefficient DV for a cubic system is 
given by (cf. Eq.5.35) 

 

 DV = α ao2 ω Ν       (5.53) 

 

where N is the fraction of occupied atom positions. In dilute solutions of 
vacancies, N~1, and the diffusion coefficient of the vacancies is then not 
dependent on Nd.  

From Eqs. 5.35 and 5.53 DV for vacancies is related to Dr for the atoms 
through the relation  
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 Dr N = DV Nd        (5.54) 

 

where, as stated above, N denotes the fraction of sites occupied by atoms, often 
approximated as ~1. This relation can be generalised to be a very important and 
useful approximation for any point defect: 

 

 Dr N = Dd Nd        (5.55) 

 

where Dd is the defect diffusion coefficient. It proves to be a good approximation 
for component diffusion by the interstitialcy mechanism. It is also a useful 
approximation for component diffusion by interstitial diffusion in the case of 
small defect concentrations (N~1) but as the concentration of defects increases the 
term N must reflect the number of unoccupied interstitial sites. 

Eq. 5.55 still holds for interstitial diffusion of a dilute solution of an 
interstitially dissolved  solute, such as light elements (H, C etc. in metals or 
protons in oxides), but in this case the number of solute atoms or ions and the 
number of defects is of course the same, so that in these cases the diffusion 
coefficient for the solute and for the (interstitial) defects is the same.  

 

 

 

Excercises 

 

1. Random (self) diffusion 

a) The self-diffusion coefficient of a metal with cubic structure can be 
expressed as 

2

6

1
s

t

n
D =   

where n/t represents the jump frequency (i.e. number of jumps n over a time t). 
Close to the melting point most fcc and bcc metals have D ≈ 10-8 cm2/s.  

i) If the jump distance is 3 Å, what is the jump frequency near the melting 
point?  

ii) What is the relation between this frequency and the vibrational 
frequency? 

iii) How far has one atom traveled after 1 hour? 

iv) What is the root mean square displacement after one hour? 

v)  What is the root mean square displacement in one dimension after one 
hour? 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


5 Diffusion 

 5.29

 

b) For a metal with cubic structure the diffusion coefficient can also be 
expressed as 

dNaD ωα 2
0=  

where α is a geometric factor, a0 the lattice constant, ω is the jump frequency, and 
Nd is the defect concentration. Derive the value for α for vacancy diffusion in a 
metal with fcc structure. 
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6. Electrical conductivity 

 6.1

6.6.6.6. Electrical conductivityElectrical conductivityElectrical conductivityElectrical conductivity    
 

Introduction 
 

In the preceding chapter we have described and discussed diffusion of 
particles in solids and particularly of ions and defects in metal oxides. The driving 
force for the diffusion has been taken to be the negative value of the particle 
gradient or more precisely the negative value of the chemical potential gradient. 
When using isotopes as tracers one may study self-diffusion, i.e. diffusion of the 
components in the oxide (metal and oxygen ions) in a homogeneous oxide; in this 
case the isotopic tracer gradient is the driving force for the diffusion. 

In this chapter the transport of electrical charges will be described and 
discussed. In metal oxides the electrically charged particles comprise ions and 
electrons. The ionic charge carriers comprise the cations, anions, and foreign ions 
(e.g. impurity ions, dopant ions and protons) and the electronic charge carriers are 
the electrons and electron holes. The concentrations of the charge carriers are 
directly related to the defect structure of the oxide and in this chapter we will 
derive expressions for  the temperature and oxygen pressure dependence of the 
electrical conductivity. The discussion will be limited to transport of charges in 
chemically homogeneous metal oxides (no chemical potential gradient) but with 
an electrical potential gradient as the driving force. In the next chapter transport of 
ionic and electronic charge carriers in metal oxides which are simultaneously 
exposed to chemical and electrical potential gradients, i.e. electrochemical 
potential gradients, will be discussed. 

As the mobilities of electrons and electrons holes are normally much higher 
than those of ions, most oxides are electronic conductors. One type of charge 
carrier often predominates in an oxide under particular conditions of temperature 
and oxygen pressure. An electronically conducting oxide is an n-conductor if 
transport of electrons predominate and a p-conductor if electron holes prevail. 
However, some oxides are or may become ionic conductors or mixed 
ionic/electronic conductors depending on the temperature and oxygen pressure 
often as a result of appropriate doping with aliovalent foreign ions. Some oxides 
may also exhibit proton conductivity in hydrogen- or water vapour-containing 
atmospheres; predominant proton conductivity in such oxides is in some cases 
observed at reduced temperatures (< 600-700 °C).  

 

Transport in an electrical potential gradient 
 

As described in the previous chapter on diffusion in metal oxides the driving 
force is given by the negative of the potential gradient. The force exerted on a 
charged particle of type i with charge zie is given by  
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 F = -zie 
dφ
dx  = zieE       (6.1) 

 

where φ is the electrical potential and E = - 
dφ
dx   is the electric field. The flux of 

particles of type i is the product of the concentration ci, the particle mobility Bi, 
and the force F: 

 

 ji = ciBi F = zie ciBiE       (6.2) 

 

The current density ii is given by the product of flux and charge: 

 

 ii = zieji = (zie)2 Bi ci E      (6.3) 

 

While Bi is the particle mechanical mobility ("beweglichkeit"), the product of Bi 
and the charge on each particle, zie, is termed the charge mobility ui: 

 

 ui = zieBi        (6.4) 

 

Equation 6.3 can then be written 

 

 ii = zie ciui E = σi E       (6.5) 

 

where σi = zie ciui is the electrical conductivity due to the charge carriers of type i. 
The electrical conductivity is determined by the product of the concentration ci of 
the charged particles, the charge zie on the particles and the charge carrier 
mobility, ui. It should be noted that Eq.6.4 is an expression of Ohm's law. The unit 
for the electrical conductivity is Siemens per cm, Scm-1 (one Siemens is the 
reciprocal of one ohm and in older literature the electrical conductivity is 
expressed as ohm-1cm-1). The unit for the charge is coulomb, the concentration of 
charge carriers is expressed as the number of charge carriers of type i per cm3, and 
charge carrier mobility in units of cm2/Vs. (Although the SI unit for length is m, 
cm is being used in the following as it is still by far the one most commonly used 
in the literature). 

It may be noted that in the above terminology, F, E, ii, zi, ui and ji may each 
be positive or negative. ui and zi always have the same sign, and as long as no 
other forces than the the electrical act, ii and Ei always have the same sign, and ji 
and F always have the same sign. Bi and σi are always positive, and it is common 
also to neglect the sign when specifying charge mobilities ui. 
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The total electrical conductivity σ of a substance is the sum of the partial 
conductivities σi of the different charge carriers: 

 

 σ = ∑
i

σi         (6.6) 

 

The ratio of the partial conductivity σi to the total conductivity σ is termed the 
transport (or transference) number of species i: 

 

 ti = 
σi

σ
          (6.7) 

 

Charge carriers in ionic compounds 
 

The native charge carriers in a binary oxide are the cations, anions, 
electrons, and electron holes. The total conductivity is then given by  

 

 σ = σc + σa + σn + σp       (6.8) 

 

where σc, σa, σn, and σp are the cation, anion, electron and electron hole 
conductivities, respectively. 

Following Eq. 6.7 the individual conductivities may be written in terms of 
their transport numbers: σc = tc σ, σa = σ ta, σn = σ tn and σp = σ tp. Using these 
values Eq.6.7 takes the form 

 

 σ = σ (tc + ta + tn + tp)      (6.9) 

 

It may be noted that the sum of the transport numbers of all the charge carriers 
equals unity: 

 

tc + ta + tn + tp = 1       (6.10) 

 

The total electrical conductivity is often given by the sum of the ionic 
conductivity,  σion = σc + σa, and the electronic conductivity, σel = σn + σp, and 
the total conductivity can then be written 
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 σ = σion + σel        (6.11) 

 

Often only one type of charge carrier dominates the charge transport, and in 
many cases and as an approximation contributions from minority carriers are 
neglected. For oxides the mobilities of electrons and electron holes are usually 
several orders of magnitude (~104 - 108) larger than those of the ions, and even 
when the concentration of electron or electrons holes is smaller than that of the 
ionic charge carriers (or, more precisely, than that of ionic charge carrier defects) 
the oxide may still be a predominantly electronic conductor. The relative 
importance of ionic and electronic conductivity will often vary greatly with 
temperature and oxygen pressure. This will be illustrated in the following 
chapters. 

 

The Nernst-Einstein relation between mobility 
and diffusion coefficient 

 

In the previous chapter it was shown that the relation between the random 
diffusion coefficient of particles of type i and the particle’s mechanical mobility is 
given by  

 

 Di = kTBi        (6.12) 

 

By combining this relation with Eqs. 6.4 and 6.5 one obtains the following 
relation between the random diffusion coefficient and the charge carrier mobility 
and the electrical conductivity: 

 

 Di = kTBi = ui 
kT
zie

  = σi 
kT

ciz
2
i e2

      (6.13) 

 

This relation is called the Nernst-Einstein relation. This relation and also the 
effect of an applied electric field on migration of charged species in a 
homogeneous crystal may also be derived from the following model, in which we 
will understand also when and why conduction is termed a linear process. 

Consider a one-dimensional system with a series of parallel planes separated 
by a distance s (cf. Fick's first law in Chapter 5). It is assumed that the system is 
homogeneous and that the volume concentration of the particles in the planes is ci. 
The particles in neighbouring planes 1 and 2 have equal probability of jumping to 
the neighbouring  planes. In the absence of any external kinetic force, the number 
of particles which jump from plane 1 to plane 2 and from 2  to 1 per unit time is 
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equal and opposite and given by 
1
2 ωcis. In a homogeneous system there will be no 

net transport of particles.  

When there is no applied electric field, the activation energy associated with 
the jumps is ∆Hm. When an electric field E is applied, the jump frequency in the 
positive direction will be increased and that in the negative direction decreased in 
that the activation energies are changed. In the forward direction the activation 

energy is reduced to ∆Hm- 
1
2 ziesE and in the reverse direction increased to ∆Hm+ 

1
2 ziesE. This is illustrated schematically in Fig.6.1. 

The net particle flux is given by the difference in number of jumps in the 
forward and reverse directions: 

 

 ji = 
1
2 cis {ωforw - ωrev}      (6.14) 

where  ωforw = ν exp(
∆S

k
m ) exp(- 

∆H -  
z esE

2
kT

m
i

)  

and      ωrev = ν exp(
∆S

k
m ) exp(- 

∆H +  
z esE

2
kT

m
i

). 

∆Hm+ciesE/2

ciesE/2

-ciesE/2

E
N
E
R
G
Y

DISTANCE

∆Hm

s/2

∆Hm-ciesE/2

Forward jump

Reverse jump

Rest position

 
Figure 6-1. Schematic illustration of the effect of an electric field on the 

migration of charged species in a homogeneous crystal. E represents the 

electric field. ∆Hm is the activation energy in the absence of an electric 

field. In the forward direction the activation energy may be considered to 

be lowered by ½ ziesE and increased by the same amount in the reverse 

direction. 
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Equation 6.14 then becomes  

 

 ji = 
1
2  cisω{exp (

ziesE
2kT   ) - exp (- 

ziesE
2kT  )}    (6.15) 

where ω = ν exp(
∆S

k
m ) exp(- 

∆Hm
kT  ). 

 

When ziesE << 2kT, which is valid for normal electrical measurements in 
bulk materials (and when Ohm's law is applicable), the difference in exponentials 
in Eq. 6.15 may be written ziesE/kT (since ex - e-x = 2x for x<<1). Eq. 6.15 then 
takes the form 

 

 ji =  
1
2  ωs2ci 

zieE
kT         (6.16) 

 

The diffusion coefficient for one-dimensional random diffusion is given by Di = 
1
2  ωs2 and ji then becomes 

 

 ji = Di 
cizieE

kT          (6.17) 

 

We have by this shown that net flux density of a hopping charge carrier in an 
electrical field in the small-signal (linear) range is proportional to the random 
diffusion coefficient. As we have shown before, the flux of particles with a charge 
zie may also be expressed in terms of charge carrier mobility or conductivity: 

 

 ji = zie ciBiE = ci ui E = 
σiE
zie

       (6.18) 

 

and when one combines Eqs. 6.17 and 6.18 one obtains various forms of the 
Nernst-Einstein relation (Eq. 6.13): 

 

Di = Bi kT = ui 
kT
zie

  = σi 
kT

ciz
2
i e2

       (6.13) 

or, rearranged, 

σi = (zie)2ciDi/kT      
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It is emphasised that the relation is derived assuming random diffusion and that 
the mobilities and conductivity through this relation connects to the random (or 
self) diffusion coefficient Dr. It is thus meaningful for relating electrical and 
diffusional transport of atoms and ions. For electrons and holes this is only 
meaningful when they migrate by an activated hopping mechanism. 

From the Nernst-Einstein relation it is also seen that the temperature 
dependence of the product σiT is the same as that of Dr. Thus in evaluating the 
activation energy associated with the diffusion coefficient from conductivity 
measurements, it is necessary to plot (σiT) vs 1/T. 

It is also important to note that in the derivation it is implicitly assumed that 
the ions and electrons move independently of each other, e.g. that there is no 
interference between ionic and electronic flows. 

 

Electronic conductivity in oxides 
 

Most metal oxides are electronic conductors at high temperatures. For many 
of these oxides the conductivity increases with increasing temperature and as the 
conductivity at the same time is much smaller than in metals, this type of 
conductivity is termed semiconductivity. The principal reason for the increasing 
conductivity is that the number of electronic defects increases with increasing 
temperature. A limited number of oxides - especially among transition metal 
monoxides - are metallic conductors and for which the conductivity decreases 
with increasing temperature. In this case this is attributed to a mobility of 
electronic defects decreasing with increasing temperature. Other oxides, e.g. p-
conducting acceptor-doped perovskites to be discussed in a later chapter, also 
exhibit metallic-like conductivity in that the conductivity also here decreases with 
increasing temperature; however in these cases the decreasing conductivity is 
attributed to a decreasing number of electron holes with increasing temperature, 
and the conductivity is thus not to be classified as metallic. 

The electronic conductivity, σel, of a semiconducting oxide is given by  

 

σel = σn + σp = enun+ epup      (6.19) 

 

where σn and σp are the electron and electron hole conductivities, n and p 
the charge carrier concentrations of electrons and electron holes, respectively, and 
un and up are the carrier (or drift) mobilities of electrons and electron holes. As 
mentioned above, one type of charge carrier will often dominate; however, in 
special cases where an oxide is close to stoichiometric both n- and p- conductivity 
may contribute significantly to the electronic conductivity. 

In defect-chemical equations the concentrations of electrons and electron 
holes are often written in terms of the law of mass action without specifying 
where the electronic defects are located. The concentrations of electronic defects 
are often interpreted in terms of the band theory of solids and in the following is 
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given a brief account of this theory and the relationship between this theory and 
the law of mass action. 

 

The band theory 

 

In single atoms the electrons may only possess discrete energies. These 
allowed energies are designated by quantum numbers which refer to the electron 
shell which the electron occupies (the principal quantum number), the orbital 
angular momentum of the electron (azimuthal quantum number), and the direction 
of the angular momentum vector (magnetic quantum number). In addition, and 
according to the Pauli exclusion principle, each energy state can only be 
accommodated by two electrons which have opposite spins. 

When individual atoms are brought together in a solid, i.e. when interatomic 
spacing decreases and electronic levels overlap, a splitting of the energy levels 
begin to occur, and the energy levels may be considered to form energy bands in 
the solid. But the total number of levels within a band corresponds exactly to the 
total number of atoms present in the solid, and therefore the levels become more 
and more finely spaced the larger the number of atoms present. Because of the 
Pauli exclusion principle, each band can accommodate twice as many electrons as 
there are energy levels. Solids contain 1022 - 1023 atoms per cm3, and the number 
of levels in each band is thus of the same order. 

The energy bands may overlap or be separated by energy gaps. At absolute 
zero temperature (0 K) the electrons fill up the lowest possible energy levels. The 
highest filled band represents the orbitals of valence electrons and is termed the 
valence band. It is completely filled at 0 K while the next band, termed the 
conduction band is completely empty. In Fig.6.2, where the vertical axis 
represents the electron energy and horizontal axis the distance through the solid, 
the valence and conduction bands are separated by an energy gap, as is the case in 
semiconductors and insulators. In a pure, perfect and ideal solid the electrons may 
not possess energies within the energy gap, and this is therefore also often termed 
the forbidden energy gap. The size of the energy gap differs for inorganic 
compounds, and empirically it is found that the energy gap increases with the heat 
of atomisation of the compounds. For binary semiconductors and insulators it has 
specifically been shown that the band gap, Eg (in electron volts) can be expressed 
approximately as 

 

 Eg = 2(Es - c)        (6.20) 

 

where Es = Eat/equivalent* and c is a constant approximately equal to 2.7. 

                                                
* An equivalent in MaOb is equal to azcat = b|zan| 
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In materials where the valence band is only partly occupied or where it 
overlaps with the conduction band (no forbidden band gap) the electrons can 
move freely in the available energy levels and we have metallic conduction.  

In an insulator or semiconductor at 0 K there is a band gap and the valence 
band is completely filled with electrons while the conduction band is completely 
empty. In such cases no electronic conduction takes place when an electric field is 
applied. 

Conduction band

Valence band

E
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c
tr

o
n
 e

n
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EV

Eg=EC-EV
Forbidden  

energy gap

Distance through crystal

 
Figure  6-2. Schematic illustration of the energy band diagram for a pure 

semiconductor 

 

Intrinsic ionisation 

When the temperature is increased, electrons in the valence band are excited 
across the forbidden energy gap to the conduction band. This is the intrinsic 
ionisation. The electrons in the conduction band and the unoccupied electron sites 
in the valence band (electron holes) can move in an electric field. The electron 
holes behave as though they were positively charged and move in the opposite 
direction of the electrons. The intrinsic ionisation thus produces pairs of electron + 
electron hole charge carriers. When the electronic conductivity is due to intrinsic 
ionisation only, the semiconductor is called an intrinsic semiconductor. According 
to this model electron and electron hole conductivities increase with increasing 
concentrations of electrons in the conduction band and electron holes in the 
valence band. 

In many oxides, and particularly those with large percentage ionic bonding, 
periodic fluctuations of the electric potential associated with each ion become too 
large (and energy bands too narrow) so that the band model provides an 
inadequate description or theory. In this case the electrons or holes may be 
considered to be localised at the lattice atoms. Such localised electronic defects 
are termed polarons and may from a chemical point of view be considered to 
constitute valence defects. 
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When classical statistics (the Boltzmann approximation) can be used it may 
be shown that the concentration of electrons and electron holes (expressed in 
number per cm3) is given by  

 

 n = NC exp(- 
EC-EF

kT  )       (6.21) 

 

 p = NV exp (- 
EF-EV

kT  )       (6.22) 

 

NC and NV represent the number of available states per unit volume - density of 
states - in the conduction and valence bands. EC is the energy of the lowest level 
of the conduction band and EV the highest level in the valence band. The 
parameter EF is termed the Fermi level and we will return to this later on.  

When the electrons occupy a narrow band of energies close to EC, a 
parabolic relation between NC and EC may be assumed and it may be shown that 
NC is then given by  

 

 NC = (  
8 m kT

h
 e

*

2

π
)3/2       (6.23) 

 

where m
*
e  is the effective mass of the electron. When the holes occupy a narrow 

region of energies close to EV, NV is correspondingly given by  

 

 NV = (  
8 m kT

h
 h

*

2

π
)3/2       (6.24) 

 

where m
*
h  is the effective mass of the electron hole. The effective masses of 

electrons and electron holes are seldom accurately known and as an 
approximation the free electron mass is then used in these relations. 

The defect reaction and corresponding equilibrium between electrons in the 
conduction band and electron holes in the valence band can in terms of the law of 
mass action be expressed as  

 

 0 = e' + h.         (6.25) 

 

 n.p = Ki        (6.26) 
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where Ki is the equilibrium constant for the intrinsic ionisation. Combination with 
Eqs. 6.21 and 6.22 gives  

 

 Ki = n.p = NC NV exp (- 
Eg
kT )      (6.27) 

 

where Eg is the band gap, Eg = EC - EV. Eg may thus be considered the energy of 
the intrinsic ionisation. It is emphasised that Eq. 6.27 presupposes that classical 
statistics apply. It may also be noted that the Fermi level is eliminated in this 
expression of the law of mass action. It may be noted again that in Eq. 6.27 the 
concentrations of electrons and electron holes are expressed in terms of number 
per volume unit (e.g. per cm3).  

 

Intrinsic electronic semiconductor 

In an intrinsic semiconductor the concentrations of electrons and electron 
holes are equal, and thus 

 

 n = p = Ki1/2 = (NC NV)1/2 exp (- 
Eg

2kT )    (6.28) 

 

and the electronic conductivity (Eq. 6.19) then becomes 

 

 σel = σn + σp = enµn + epµp = e (NCNV)1/2(un + up) exp(- 
Eg
2kT ) (6.29) 

 

It may be noted that NC and NV are temperature dependent and that also un and up 
may have various dependencies on temperature. If the latter are not exponential 
(as in diffusional hopping conduction processes) the exponential term of the 
energy gap tend to dominate the temperature dependence and as an approximation 
Eq. 6.29 is then often written 

 

 σel = const. exp(- 
Eg
2kT )      (6.30) 

 

From these relations it is evident that the intrinsic electronic conductivity 
increases with decreasing energy gap. 
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Effects of charged impurities or defects. Extrinsic 
semiconductors 

 

As stated before, the valence and conduction bands may be considered to 
constitute the highest filled orbital and the lowest empty orbital, respectively. The 
valence band may in an oxide typically represent the 2p states of the O2- ions, and 
removing an electron from here (creating a hole) may be regarded as the creation 
of an O- ion, which is intuitively possible. The conduction band typically 
represents the reduced state of a metal constituent ion. For instance, in oxides with 
Ti4+ such as TiO2 or SrTiO3 the conduction band would typically represent the 

4s state of the Ti3+ ion. The size of the band gap can be imagined to represent the 
difficulty of simultaneously oxidising O2- to O- and reducing Ti4+ to Ti3+. In the 
chosen example we expect a moderate band gap. Similar oxides with Mn4+ would 
be more easily reducible and have smaller band gaps, while oxides with Si4+ or 
Zr4+ are less easily reducible and have larger band gaps. 

Let us now consider the addition of small amounts of imperfections or 
impurities. These may be considered to contribute additional localised energy 
levels in the crystal. It is commonly assumed that these always fall within the 
forbidden gap. As we shall see later on this leads to situations where a certain 
temperature is needed to excite these defects to become effectively charged. This 
is not in accordance with experimental evidence and is not intuitive for 
imperfections with very stable aliovalent valence states. Thus, we will first 
consider cases where imperfections introduce levels outside the forbidden gap. 

If these levels fall below the valence band edge EV they will always be 
occupied (even at 0 K) and be in a reduced state. We refer to it as an acceptor 
imperfection. For instance, Al4+ substituting Ti4+ in the abovementioned oxides 
may always be considered to be reduced to Al3+ and as such be a charged defect 
even at 0 K, for instance taking the electron from the valence band. We may draw 
this conclusion from the higher stability of O- as compared to Al4+.  

Similarly, an imperfection introducing a level above the conduction band 
edge EC may always be considered to lose its electron and be oxidised even at 0 

K. We refer to it as a donor. For instance, La2+ substituting Sr2+ and possibly 
Ta4+ substituting Ti4+ would be oxidised to La3+ and Ta5+ by giving off the 
electron to the easier formed Ti3+ of the conduction band. 

The above examples lead to compensating electronic defects even at 0 K, 
but real cases may comprise simultaneous formation of point defects that may 
annihilate the electronic defects, (depending on oxygen activity). Thus, while Ca 
substituting La in LaCrO3 is compensated by electron holes at high oxygen partial 
pressures, Al or Ta substituting Ti in SrTiO3 will be compensated by oxygen 
vacancies or metal vacancies, respectively, under the same conditions. Of course, 
this brings up a question of whether native point defects such as vacancies at 
different stages of ionisation themselves introduce levels within or outside the 
band gap. If aliovalent dopants charged at 0 K are to be compensated by point 
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defects at 0 K, these point defects must themselves be charged at 0 K and thus 
have levels outside the band gap. 

In the following we consider imperfections introducing levels inside the forbidden 
energy gap as illustrated in Fig.6.3. When the imperfection introduces an energy 
level which is located below the lower edge of the conduction band (EC), 
electrons can be thermally excited to the conduction band. As such the 
imperfection donates an electron, it is called a donor and the corresponding energy 
level a donor level. Under conditions where such imperfections dominate the 
defect structure the oxide becomes an n-conductor. Correspondingly, 
imperfections with energy levels just above the upper edge of the valence band 
(EV) are termed acceptors; electrons in the valence band may be excited to the 
energy level of the imperfection (acceptor level) and the oxide may become a p-
conductor.  

Distance through crystal
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Figure  6-3. Schematic illustration of additionally localised energy levels due to 

donors and acceptors in the forbidden energy gap in the energy band diagram of 

a semiconductor. 

 

In SrTiO3 it is for instance found that Fe4+ substituting Ti4+ is an acceptor 

inside the gap; Fe3+ (the result after acceptance of an electron) is less favourable 
than Fe4+ (when the electron is taken from O2-) and at a higher energy than the 
valence band of the O2- electrons, but Fe3+ is clearly more favourable than Ti3+ 
and thus way below the conductance band. Similarly, oxygen vacancies are 
considered to be donors in the gap, and this can be viewed as a trapping of 
electrons at Ti4+ (as Ti3+) near the vacancy.  

While donors and acceptors inside the forbidden gap have positive energies 
of ionisation, the donors and acceptors outside the gap may be considered simply 
to have negative energies of ionisation. 
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Effects of donors 

Let us again describe these processes in terms of the law of mass action. 
Thus the ionisation of a donor Dx may be written 

 

 Dx = D.  + e'        (6.31) 

 

and the corresponding equilibrium by 

 

 
[D.] n
[Dx]

  = KD        (6.32) 

 

If the total number of donors is ND, then 

 

 ND = [D. ] + [Dx]       (6.33) 

 

If the energy of the donor state is ED, and the donor state is mainly empty 

([Dx]<<ND) then the concentration of electrons in the donor state, [Dx], may 
following Boltzmann statistics (be expressed by  

 

 [Dx] = ND exp (- 
(ED-EF)

kT  )      (6.34) 

 

Since we assume 
[Dx]
ND

 <<1, and that Boltzmann statistics also apply to conduction 

band electrons and by further combining Eqs. 6.21 and 6.32-6.34, we get an 
expression for KD: 

 

 KD = NC exp (- 
EC-ED

kT  ) = NC exp (- 
Ed
kT )    (6.35) 

 

where Ed = EC-ED represents the ionisation energy of the donor (cf. Fig. 6.3). Ed 
may in Eq. 6.35 be considered to be the enthalpy of the ionisation of the donor. 

When no other imperfections are present, the situation described here can be 
approximated by  

 

n = [D.] ≈ ND         (6.36) 
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and if the donors are present in an invariable amount as a fully soluble or frozen-
in impurity, then n = [D·] ≈ND = constant. From Eq. 6.32, we then get the 

minority concentration of neutral unionised donors: [Dx] = N
2
D  N

-1
C   

exp(+Ed/kT). 

If, on the other hand the donor level is mainly unionised, then [D·]<<[Dx] ≈ 
ND and Boltzmann statistics give  

 

[D·] = ND exp(-
(EF-ED)

kT  )      (6.37) 

 

and then, by combination with Eqs. 6.21, 6.32, and 6.33 we again obtain KD = NC 
exp(-Ed/kT) as in Eq. 6.35.  

If the electroneutrality condition in the oxide is still given by  

 

 n = [D. ]         (6.38) 

 

(but now [D·]<<ND), then the concentration of electrons is, from insertion in Eq. 
6.32: 

 

n = [D·] = (KD ND)1/2 = (NC ND)1/2 exp (- 
Ed

2kT )   (6.39) 

 

The reader may find it useful to note the similarity between the form of this 
expression and Eq. 6.28. However, we also remind ourselves that ND may be a 
constant concentration of impurities or it may be a constant or varying level of 
other point defects such as anion vacancies or cation interstitials. 

In the above we have seen that the same equilibrium constant KD for Eq. 
6.31 applies whether the donor level is approximately empty (fully ionised) or 
approximately fully occupied (practically unionised, or, in this case, neutral). But 
our treatment does not hold for intermediate situations, i.e. what we may call 
partly filled donor levels. In the latter case Boltzmann statistics do not represent a 
sufficiently good approximation, and instead Fermi-Dirac statistics must be used. 

Let us recapitulate briefly the treatment of the ionisation of a constant 
concentration of a donor in the forbidden gap of an otherwise pure, stoichiometric, 
ideal semiconductor: At low temperatures, the concentration of electrons is given 
by a minor degree of ionisation of the donors, as given by Eq. 6.39. If we neglect 
the temperature dependence of NC, the situation can be illustrated as in the right-
hand part of Fig. 6.4; the concentration of electrons increases with an apparent 
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enthalpy of Ed/2. At a sufficiently high temperature (middle part of Fig. 6.4) all 
donors are ionised, and the concentration of electrons becomes constant (Eq. 
6.36). At even higher temperatures intrinsic semiconduction may predominate, 
i.e., n = p, and in principle the temperature dependence becomes as illustrated in 
the left hand part of Fig. 6.4, with an apparent enthalpy close to Eg/2 (cf. Eq. 
6.25). Thus at low temperatures this oxide is an n-conductor due to the ionisation 
of the donors and at high temperatures intrinsic ionisation predominates. The 
behaviour over the entire temperature range could in principle be solved from the 
full electroneutrality equation 

 

 n = [D·]+ p         (6.40) 

 

in combination with the constancy of the donor concentration and the expressions 
for the equilibrium constants Ki (Eq. 6.27) and KD (Eq. 6.35). However, as noted 
above, the expression for KD would not be valid between the intermediate and 
low temperature (right hand side) domains in Fig. 6.4. 

 

n=ND

Ed/2

Eg/2

1/T K

L
o

g
 n

 
Figure  6-4. Schematic illustration of the logarithm of the concentration of defect 

electrons as a function of the reciprocal absolute temperature for a semiconductor 

with donors. 

 

Effects of acceptors    

A corresponding treatment may be made for ionisation of acceptors, which 
in terms of a defect reaction may be written 

 

 Ax = A' + h.         (6.41) 
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The equilibrium constant for the defect reaction is given by  

 

 
[A'] p
[Ax]

  = KA        (6.42) 

 

Following a similar treatment as for the donor, KA may under the assumption that 
Boltzmann statistics apply to the valence band (small concentration of holes) and 
the acceptor (nearly full or nearly empty acceptor levels) be expressed by 

 

KA = NV exp (-
EA-EV

kT  ) = NV exp (-
Ea
kT )    (6.43) 

 

where EA is the energy level of the acceptor and Ea = EA-EV is called the 
ionisation energy of the acceptor (cf. Fig. 6.3).  

For an acceptor doped oxide the temperature dependence of the 
concentration of holes will be qualitatively analogous to that of electrons in the 
donor doped case (cf. Fig. 6.4) with the same constrictions. 

 

The Fermi level and chemical potential of electrons 

 

In this chapter we have so far treated the defect equilibria for 
semiconductivity in terms of the band model. In this model one makes use of the 
parameter termed the Fermi level, EF. As the defect equilibria are otherwise 
described by equilibrium thermodynamics, it is of interest to correlate the band 
model with the thermodynamic approach.  

A chemical equilibrium implies that the chemical potential of a species is 
the same in all phases. As regards electrons in a system, this also means that their 
chemical potentials (or electrochemical potentials if the inner potential can not be 
neglected) must be equal, although they may have different energies. Thus the 
chemical potential of the electrons in general, µe, must be equal to the chemical 
potential of valence electrons, conduction electrons, etc., 

 

µe = µ(cond. electrons) = µ(valence electrons)    (6.44) 

 

The chemical potential of electrons, for instance, the conduction electrons, may be 
written in terms of the chemical potential in a standard state, µ°(cond. electrons) 
and a term for the entropy of mixing: 
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µe = µ(cond. electrons) = µ°(cond. electrons) + kT ln 
n

NC
   (6.45) 

 

From the relation between the concentration of conduction electrons, n, the 
conduction band energy level EC and the Fermi level EF (Eq. 6.18) we may write 

 

 EF = EC + kT ln 
n

NC
        (6.46) 

 

By comparing Eqs. 6.45 and 6.46 it is seen that if EC is considered to be the 
chemical potential in the standard state for conduction electrons, the Fermi level 
represents the chemical potential of the conduction electrons, and thus of all 
electrons in a substance. 

 

Charge mobilities of electrons and electron holes 

 

In the preceding chapters we have looked at temperature dependencies of 
concentrations of electronic defects and point defects, and we have looked at the 
conductivity and mobility of thermally activated diffusing species. In the 
following we consider the charge carrier mobilities of electrons and holes in some 
more detail. For instance for an intrinsic electronic semiconductor (where n=p) we 
can from Eq. 6.29 in combination with Eqs. 6.23 and 6.24 write an expression for 
σel: 

 

 σel = {2e(  
2 k
h

 2

π
)3/2 (m

*
e .m

*
h )3/4 T3/2 exp (- 

Eg
2kT )}(un + up)  (6.47) 

 

The effective mass of electrons and electron holes can be interpreted by a 
quantum mechanical treatment of electronic motion of electrons and electron 
holes in solids. The effective mass differs from the real mass of electrons due to 
the interaction of electrons with the periodic lattice of the atoms. Only for a 

completely free electron is the mass equal to the real mass, me=m
*
e . As mentioned 

above, the values of the effective masses are not accurately known, and the value 
of me is often used as an approximation.  

In order to obtain an accurate description of the temperature dependence of 
the electronic conductivity it is necessary to consider the temperature 
dependencies of the charge carrier mobilities. 
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Non-polar solids – itinerant electron model 

The temperature dependence of the charge carrier mobility is dependent on 
the electronic structure of the solid. For a pure non-polar semiconductor - as in an 
ideal and pure covalent semiconductor - the electrons in the conduction band and 
the electron holes in the valence band can be considered as quasi-free (itinerant) 
particles. Then the mobilities of electrons and electron holes, un and up, are 
determined by the thermal vibrations of the lattice in that the lattice vibrations 
result in electron and electron hole scattering (lattice scattering). Under these 
conditions the charge carrier mobilities of electrons and electron holes are both 
proportional to T-3/2, e.g. 

 

 un,latt = const. T-3/2        (6.48) 

 

In this case the temperature dependence of σel (Eq. 6.47) becomes 

 

 σel = const. T3/2.T-3/2 exp (- 
Eg
2kT ) = const. exp (- 

Eg
2kT )   (6.49) 

 

If, on the other hand, the scattering is mainly due to irregularities caused by 
impurities or other imperfections, the charge carrier mobility is proportional to 
T3/2, e.g. 

 

 un,imp = const. T3/2       (6.50) 

 

If both mechanisms are operative, the mobility is given by 

 

 u = 
1

1
ulatt

 + 
1

uimp

        (6.51) 

 

and from the temperature dependencies given above it is evident that impurity 
scattering dominates at low temperature while lattice scattering takes over at 
higher temperature.  

 

Polar (ionic) oxides 

When electrons and electron holes move through polar compounds, such as 
ionic oxides, they polarise the neighbouring lattice and thereby cause a local 
deformation of the structure. Such an electron or electron hole with the local 
deformation is termed a polaron. The polaron is considered as a fictitious single 
particle. 
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When the interaction between the electron or electron hole and the lattice is 
relatively weak, the polaron is referred to as a large polaron. Large polarons 
behave much like free carriers except for an increased mass caused by the fact that 
polarons carry their associate deformations. Large polarons still move in bands, 
and the expressions for the effective density of states in the valence and 
conduction bands are valid. The temperature dependence of the mobilities of large 
polarons at high temperatures* is given by  

 

 ularge pol. = const. T-1/2       (6.52) 

 

For an intrinsic semiconducting oxide where the electronic conductivity 
mechanism can be described in terms of a large polaron mechanism, the 
temperature dependence of σel can be written by combination of Eqs. 6.47 and 
6.52 

 

 σel = const. T. exp (- 
Eg
2kT )       (6.53) 

 

Thus in this case the value of the band gap can be deduced by plotting log(σel/T) 
vs 1/T. 

The large polaron mechanism has been suggested for highly ionic non-
transition metal oxides. Such oxides have large energy gaps (Eg ≥ 6 eV), where 
the band structure is characterised by large band widths. Due to the large band gap 
one expects electronic semiconductivity to be low in these oxides, and to 
predominate possibly only at high temperatures. 

For other oxides it has been suggested that the interactions between the 
electronic defects and the surrounding lattice can be relatively strong and more 
localised. If the dimension of the polaron is smaller than the lattice parameter, it is 
called a small polaron or localised polaron, and the corresponding electronic 
conduction mechanism is called a small polaron mechanism.  

The transport of small polarons in an ionic solid may take place by two 
different mechanisms. At low temperatures small polarons may tunnel between 
localised sites in what is referred to as a narrow band. The temperature 
dependence of the mobility is determined by lattice scattering and the polaron 
mobility decreases with increasing temperature in a manner analogous to a broad 
band semiconductor.  

However, at high temperatures (for oxides above roughly 500 °C) the band 
theory provides an inadequate description of the electronic conduction 
mechanism. The energy levels of electrons and electron holes do not form bands, 
but are localised on specific atoms of the crystal structure (valence defects). It is 

                                                
* "High temperatures" are temperatures above the optical Debye temperature, θ. For oxides 

θ~(hω)/2πk, where h is the Planck constant, k the Boltzmann constant and ω the longitudinal 
optical frequency which for an oxide is  ~1014 s-1. 
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assumed that an electron or electron hole is self-trapped at a given lattice site, and 
that the electron (or electron hole) can only move to an adjacent site by an 
activated hopping process similar to that of ionic conduction. Consequently it has 
been suggested that the mobility of a small polaron can be described by a classical 
diffusion theory as described in a preceding chapter and that the Nernst -Einstein 
can be used to relate the activation energy of hopping, Eu, with the temperature 
dependence of the mobility, u, of an electron or electron hole: 

 

u = 
e

kT  D =  const. T-1 exp ( - 
Eu
kT )     (6.54) 

 

where Eu is the activation energy for the jump. 

At high temperatures, the exponential temperature dependence of small 
polaron mobilities can thus in principle be used to distinguish it from the other 
mechanisms.  

The different mechanisms can also be roughly classified according to the 
magnitude of the mobilities; the lattice and impurity scattering mobilities of 
metals and non-polar solids are higher than large-polaron mobilities which in turn 
are larger than small-polaron mobilities. Large polaron mobilities are generally of 
the order of 1-10 cm2/V-1s-1, and it can be shown that a lower limit is 
approximately 0.5 cm2V-1s-1. Small polaron mobilities generally have values in 
the range 10-4-10-2 cm2V-1s-1. For small polarons in the regime of activated 
hopping the mobility increases with increasing temperature and the upper limit is 
reported to be approximately 0.1 cm2V-1s-1. 

  

Nonstoichiometric semiconductors 

 

Corresponding expressions for σel for nonstoichiometric electronic 
semiconductors readily follows by considering the temperature and oxygen 
pressure dependence of the concentration of the electronic defects.  

For nonstoichiometric oxides the concentration of electronic defects is 
determined by the deviation from stoichiometry, the presence of native charged 
point defects, aliovalent  impurities and/or dopants. The concentration of 
electronic defects can be evaluated from proper defect structure models and 
equilibria. Various defect structure situations have been described in previous 
chapters and at this stage only one example - dealing with oxygen deficient oxides 
with doubly charged oxygen vacancies as the prevalent point defects - will be 
described to illustrate the electrical conductivity in nonstoichiometric oxides.  

 

Oxygen deficient oxides 

Let us recapitulate the equations for formation of doubly charged oxygen 
vacancies. As described in Chapter 3 the defect equation may be written 
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OO = V2.

O  + 2e' + 
1
2 O2       (6.55) 

 

The corresponding defect equilibrium is given by 

 

[V2.

O ] n2 = KV2.

O
  p

-1/2
O2

        (6.56) 

 

If we deal with a high-purity oxide where the concentration of impurities can be 
ignored compared to the concentration of oxygen vacancies and electrons, the 
electroneutrality condition becomes 

 

n = 2[V2.

O ]        (6.57) 

 

By combining Eqs. 6.57 and 6.58 the concentration of electrons is given by  

 

 n = 2[V2.

O ] = (2KV2.

O
 )1/3 p

-1/6
O2

      (6.58) 

 

The total electrical conductivity is given by the sum of the conductivity of the 
electrons and of the oxygen vacancies: 

 

σt = 2 e [V2.

O ] uV
2.
O

  + e n un      (6.59) 

 

2 e [V2.

O
 ] uV

2.

O
  represents the ionic conductivity due to the oxygen vacancies and 

where uV2.

O
  is the mobility of the oxygen vacancies. However, if the electrons and 

oxygen vacancies are the prevalent charge carriers, the contribution due to oxygen 
vacancies can be ignored due to the much higher mobility of electrons than 
oxygen vacancies, and the oxide is an n-conductor where the conductivity can 
then be written 

 

σt = σn = e n un = e un (2KV2.

O
 )1/3 p

-1/6
O2

     (6.60) 
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As described in previous chapters the equilibrium constant for the formation of 
doubly charged oxygen vacancies and 2 electrons is given by 

 

KV2.

O
  = exp (

∆S

k
VO

2.

) exp(- 
∆H

kT
VO

2.

)     (6.61) 

 

When one combines Eqs. 6.61 and 6.62 the n-conductivity may be written: 

 

 σt = σn = e un exp (
∆S

3k
VO

2.

) exp (- 
∆H

3kT
VO

2.

) p
-1/6
O2

    (6.62) 

 

Let us further assume that the electrons are small polarons and thus that the 
mobility of the electrons are given by Eq. 6.54. The conductivity can then be 
expressed by  

 

σn = const. 
1
T   exp (- 

∆H / 3 + E

kT
VO

2.
u ) p

-1/6
O2

     (6.63) 

 

Thus following this equation the n-conductivity is proportional to p
-1/6
O2

 , and if this 

defect structure situation prevails over a temperature range from T1 to T5, one will 
obtain a set of isotherms of the n-conductivity as shown in Fig.6.5. 

T5

Log oxygen pressure

T4
T3T2

T1

L
o
g
 n

-c
o
n
d
u
c
ti
v
it
y

σ ∝ pO2
-1/6

 
Figure  6-5. Schematic presentation of different isotherms of the n-conductivity at 

temperatures from T1 to T5 for an oxygen deficient oxide where the predominant 

defects are doubly charged oxygen vacancies and electrons. 
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Furthermore, if it can be assumed that mobility of the charge carriers (defect 
electrons) is independent of the defect concentration, then a plot of the values of 
log10(σT) at a constant oxygen pressure yields a straight-line relationship as 

illustrated in Fig. 6.6. The slope of the line is given by  -
1

2.303k
 

H

3
  

V O

2.
∆

+Eu, 

where the factor 2.303 is the conversion factor in changing from lne to log10. The 
activation energy is given by the term 

 

 Eσ = 
∆H

3
  

V O

2.

+ Eu.       (6.64) 

 

 

Figure  6-6. Schematic illustration of a plot of log10(σnT) vs. the reciprocal 

absolute temperature at constant oxygen pressure (cf. Fig.6.5). The slope  of the 

line is given by  -  
1

2.303k
 

H

3
  

VO

2.
∆

+Eu where  
H

3
  

VO

2.
∆

+Eu  is the activation 

energy for the n-conductivity. 

 

In general the temperature dependence of the charge carrier mobility of the 
electrons is much smaller than the enthalpy term associated with the formation of 
doubly charged oxygen vacancies. 

The mobility of electronic charge carriers may be determined by measuring 
the electrical conductivity and combine these measurements with independent 
measurements of the concentration of the electronic charge carriers. The 
concentration of the charge carriers may be estimated from measurements of the 
Seebeck coefficient or by measurements of the nonstoichiometry combined with  
the proper description of the defect structure (cf. Ch. 7). 

For mixed conductors that exhibit both ionic and electronic conductivities it 
is necessary to delineate the ionic and electronic contributions. A commonly used 
technique for this is the emf method originally derived by Wagner. This will be 
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described in the next chapter (Ch. 7) dealing with electrochemical transport in 
metal oxides.  

 

 

Ionic conductivity 
 

Ionic conductivity follows the Nernst–Einstein relationship, for hopping 
species, derived early in this chapter: 

 

σi = zie ci ui = (zie)2ciDi/kT      (6.65) 

 

It may be noted that the species considered may be a defect (e.g. oxygen 
vacancies) or a constituent (oxide ions). For defects the mobility and diffusivity 
are large and roughly constant, while the concentration is small and variable. For 
the constituent, the mobility and diffusivity are small and variable (with defect 
concentration) while the concentration is large and roughly constant. The 
conductivity (here oxide ion conductivity by the vacancy mechanism) is the same. 

In many cases of utilizing ionic conduction, the concentration ci of ionic 
defects is constant, given by a dopant. For instance, ionic conductivity in yttria-
doped zirconia is determined by the concentration of oxide ion vacancies, in turn 
given as charge compensating the yttrium acceptors, 2[vO

..] = [YZr
/]. If the 

concentration of acceptors is given in mole-fraction, then it is necessary to 
multiply the resulting mole fraction of vacancies by the formula density or molar 
density of the compound in order to obtain the volume density required for 
insertion in  Eq. 6.65: 

 

σvO.. = 2e [YZr
/]/2 * cZrO2 uvO.. = 2F [YZr

/]/2 * CZrO2 uvO..  (6.66) 

 

where cZrO2 and CZrO2 are, respectively, the molecular and molar densities (number 
of formula units or moles per unit volume) of the oxide. 

 There are of course also cases – also of practical interest – where the 
concentration of ionic defects vary, e.g. with temperature in intrinsically 
disordered compounds, and with temperature and non-stoichiometry in non-
stoichiometric compounds. In proton conducting oxides the proton conductivity 
varies with proton concentration, typically a function of water vapour partial 
pressure. 

 We leave further learning about ionic conduction to exercises and Chapter 
7 (electrochemical transport), and here only briefly mention a couple of aspects of 
ionic transport that relates it in more detail to diffusion.   
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Correlation effects: tracer diffusion and ionic conduction 

 

In the discussions of diffusion mechanisms in Chapter 5 it was pointed out 
that successive jumps of tracers atoms in a solid may for some mechanisms not be 
completely random, but are to some extent correlated. This is, for instance, the 
case for the vacancy and interstitialcy mechanisms. For a correlated diffusion of a 
tracer atom in a cubic crystal the tracer diffusion coefficient, Dt, is related to the 
random diffusion coefficient for the atoms, Dr, through the correlation coefficient 
f: 

 

Dt = f Dr         (6.67) 

 

The value of f is governed by the crystal structure and the diffusion mechanism. 

 

Ionic conductivity method 

Values of the correlation coefficient may be determined by comparing the 
measured values of the ionic conductivity and the tracer diffusion coefficient. 
Thus the use of the Nernst-Einstein relation gives the following expression for the 
correlation coefficient: 

 

 f  = 
Dt
Dr

  = 
Dt
σi

 
ci (zie)2

kT         (6.68) 

 

This equation is applicable to any diffusion process for which the atom jump 
distance is equal to the displacement of the effective charge, e.g. for vacancy and 
interstitial diffusion.  

However, in interstitialcy diffusion the charge displacement is larger than 
the atom jump distance, and a displacement factor S must be included in the 
Nernst-Einstein relation. In collinear interstitialcy diffusion (Fig. 5.9) the effective 
charge is, for instance, moved a distance twice that of the tracer atom and Dt/Dr is 
given by 

 

 
Dt
Dr

  = 
Dt
S  

ci (zie)2

σikT   = 
f
S   (collinear)    (6.69) 

 

where S = 2. For a collinear jump in an fcc structure the displacement factor is 
4/3. 

Studies on alkali and silver halides have provided illustrative, and by now 
classical examples of the applicability of the ionic conductivity method for 
determining the correlation factor and detailed aspects of the jumps in diffusion 
processes. NaCl, for instance, is essentially a pure cationic conductor. Measured 
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ratios of Dt/Dr are in good agreement with the assumption that f =  0.78, i.e. that 
the Na-ions diffuse by a vacancy mechanism. 

However, such a simple relationship was not found for AgBr. AgBr is also a 
cationic conductor and comparative values of Dt (diffusion of Ag in AgBr) and of 
values of Dr  evaluated from conductivity measurements are shown in Fig. 6.7. 

From studies of the effect of Cd-dopants on the ionic conductivity it could 
be concluded that cationic Frenkel defects predominate in AgBr. Thus the 
diffusion was therefore expected to involve both vacancy diffusion and transport 
of interstitial ions. The experimentally measured ratios of Dt/Dr varied from 0.46 
at 150 °C to 0.67 at 350°C. For vacancy diffusion a constant ratio of 0.78 (=f) 
would have been expected, and the diffusion mechanism could thus be ruled out. 
For interstitial diffusion f=1, and this mechanism could also be excluded. 

 

 
Figure  6-7. Values of Dt and of Dr evaluated from conductivity measurements for 

diffusion of Ag in AgBr. Results after Friauf(1957,1962). 

 

For interstitialcy diffusion of Ag in AgBr the value of f equals 2/3 for a collinear 
jump and 0.97 for a non-collinear jump. Following Eq.6.64 one would thus expect 
that Dt/Dr would range from 0.33 for a collinear jumps to 0.728 for non-collinear 
jumps. On this basis Friauf (1957, 1962) concluded that the interstitialcy diffusion 
is the important mechanism in AgBr and that collinear jumps are most important 
at low temperatures while non-collinear jumps become increasingly important the 
higher the temperature. 
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6. Electrical conductivity 

 6.28

Simultaneous diffusion and electric field 

The ionic conductivity and Dt may in principle be studied in a single 
experiment, as described by Manning (1962) and others. If a thin layer of the 
isotopes is sandwiched between two crystals and the diffusion anneal is performed 
while applying the electric field, the tracer distribution profile is displaced a 
distance ∆x = uiEt relative to the profile in the absence of the applied field (Eq. 
5.31). The resultant tracer distribution is given by  

 

 c =  
c

2( D t)
  o

t
1/2π

exp (-
(x - x)

4D t
 

2

t

∆
)     (6.70) 

 

The maximum in the concentration profile is - as illustrated in Fig. 6.8 - displaced 
a distance ∆x, and ui and Dt may be determined from the same experiment. If the 
crystal is a mixed ionic/electronic conductor, the value of the ionic transport 
number under the experimental conditions must be known. 

X

∆X = uiEt

C
O
N
C
E
N
T
R
A
T
IO
N

 
Figure  6-8. Schematic illustration of the concentration profile of a radioactive 

tracer when an electric field is applied during the diffusion anneal. The tracers 

are originally located at 0, but the concentration profile is displaced a distance 

∆X = uiEt. 
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6. Electrical conductivity 

 6.29

Exercises 
 

1. Cobalt oxide: The electronic conductivity of Co1-yO at 1350°C and pO2 = 
0.1 atm is 25 S/cm. Thermogravimetric measurements show that y = 0.008 under 
the same conditions. It is assumed that singly charged cobalt vacancies are the 
dominating point defects. Identify the charge carriers responsible for the 
conductivity and calculate their charge mobility. (Assume that the density of CoO 
at 1350°C equals that at room temperature, 6.4 g/cm3. Atomic weights MCo = 
58.93, MO = 16.00.) 

  

2. Nickel oxide: Assume that doubly charged nickel vacancies and electron 
holes are the dominating defects in Ni1-yO under oxidising conditions. At 1245°C 
and pO2 = 1 atm we know the following for the compound:  

 

The self diffusion coefficient for nickel: DNi = 9*10-11 cm2/s 

Electrical conductivity: σ = 1.4 S/cm 

(Data from M.L. Volpe and J. Reddy, J. Chem. Phys., 53 (1970) 1117.) 

 

Nickel vacancy concentration, in site or mole fraction: [vNi’’] = 2.5*10-4 

(Data from W.C. Tripp and N.M. Tallan, J. Am. Ceram. Soc., 53 (1970) 
531.) 

 

i) Calculate the concentration of electron holes under the given conditions, 
given as site fraction and as volume concentration (e.g. number/cm3). (Atomic 
weights MNi = 58.71, MO = 16.00, density of NiO = 6.67 g/cm3.) 

 

ii) Calculate the charge mobility of the electron holes. 

 

iii) Calculate the diffusion coefficient of nickel vacancies. 

 

iv) Calculate the charge mobility of the nickel vacancies and the ionic 

conductivity under the conditions referred to above. 

 

3. Ca-stabilised ZrO2 (CSZ) 

 

We shall here consider a densely sintered ZrO2 doped with 15 mol% CaO 

(Zr0.85Ca0.15O1.85). 
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6. Electrical conductivity 

 6.30

i) Assume that the oxide contains doubly charged oxygen vacancies compensating 

the Ca dopant. What are the site-fractions of dopants and of oxygen vacancies? 

 

ii) Derive equations showing how the minority concentrations of defect 
electrons and electron holes vary with pO2 in this oxide under the given conditions. 

 

iii) The conductivity of this oxide is independent of pO2 from oxidising to 
very reducing conditions. What can we deduce from this? 

 

iv) Simpson and Carter (J. Am. Ceram. Soc. 49 (1966) 139) measured the 
self diffusion coefficient for oxygen in Zr0.85Ca0.15O1.85 and found it to be DO = 
2.0*10-7 cm2/s at 1100°C. Calculate the electrical conductivity based on this. 

 

v) Find also the diffusion coeffeicient and charge mobility for the oxygen 

vacancies. 
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7. Electrochemical transport  

 7.1

7.7.7.7. Electrochemical transport Electrochemical transport Electrochemical transport Electrochemical transport     
 

Electrochemical potential 
 

In the chapter on diffusion we learned that random diffusion is driven by thermal 
energy and that it in crystalline solids requires defects. Moreover, we learned that a net flux 
of a species can result from a gradient in its chemical potential. In the chapter on electrical 
conductivity we furthermore saw that a net flux of charged particles would result in a 
gradient of electrical potential.  

In ionic media (materials, liquids, and solutions) the chemical and electrical potentials 
act simultaneously, and it is often convenient to combine them into an electrochemical 
potential. For the species i we have 

 

φµη ez+= iii
          (7.1) 

 

This is true whether the species is real or a defect, but in general we shall onwards deal 
mainly with real species and real charges zi.  

The electrochemical potential gradient is accordingly, in the one-dimensional case,  

 

dx

d
ez+

dx

d
=

dx

d
i

ii φµη
           (7.2) 

 

The combination of chemical and electrical potentials and potential gradients forms the basis 
for the treatment of all mass transport processes involving charged species (ions) in ionic 
solids, and is the theme of this chapter. The theory is termed Wagner-type after Carl Wagner, 
who was the first to derive it, originally to describe oxidation of metals. 

 

 

Flux equations – Wagner theory 

General derivation of Wagner-type flux expressions 

 

We have seen in a preceding paragraph that a force, expressed as gradient in a potential 
Pi acting on a species i, gives rise to a flux density of that species which is proportional to its 
self-diffusion coefficient Di. By assuming that the potential acting is the electrochemical 
potential, we obtain 
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7. Electrochemical transport  

 7.2

]
dx

d
ez+

dx

d
[

kT

cD-
=

dx

d

kT

cD-

dx

Pd

kT

cD-
=j i

iiiiiiiii

i

φµη
=      (7.3) 

 

Via the Nernst-Einstein equation we may substitute conductivitiy for the random diffusivity 
and obtain the following alternative expression for the flux density:  

 

]
dx

d
ez+

dx

d
[

ez

-
=j i

i

i

i

i

φµσ
2)(

          (7.4) 

 

If the species is charged, the flux density for i gives rise to a partial current density ii:   

 

]
dx

d
ez+

dx

d
[

ez
-=jez=i i

i

i

i

iii

φµσ
       (7.5) 

 

The net current density in the sample is obtained by summing the partial current densities 

over all the species k: 

 

]
dx

d
ez+

dx

d
[

ez
-=jez=i k

k

k

k

kkkktot

φµσ
∑∑       (7.6) 

 

The sample is next assumed to be connected to an external electric circuit. This may be real, 

with electrodes and wires and an electrical supply or load, or it may be absent, in which case 

we say that we have an open circuit. Since the sample makes a series connection with the 

external circuit, the currect in the sample must be the same as in the external circuit. 

For a bare sample, a gas permeation membrane, or for an open-circuit fuel cell or other 

electrochemical device, the total current is zero. For fuel cells or electrolysers in operation, 

on the other hand, the current is non-zero. 

By using the definition of total conductivity, kktot = σσ ∑ , and the definition of 

transport number, 
kk

k

tot

k
k =t

σ

σ

σ

σ

∑
= , we obtain the following very important expression: 

  

dx

d

ez

t
-

i
-=

dx

d k

k

k

k

tot

tot µ

σ

φ
∑         (7.7) 
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7. Electrochemical transport  

 7.3

This relates the electrical potential gradient to the total (net, external) current density, the 

total conductivity, and the transport number and chemical potential gradient of all charge 

carriers. 

 

From charged to neutral species: the electrochemical reaction  

 

The chemical potentials of charged species are not well-defined, and we need to 

represent them instead by chemical potentials of neutral species. For this purpose we may 

assume equilibria between neutral and charged species and electrons, i.e. in the 

electrochemical red-ox- reaction 

 

−
ze+S=S z           (7.8) 

 

where S is a neutral chemical entity and z may be positive or negative. The equilibrium 

condition for this is expressed in terms of the chemical potentials of products and reactants: 

 

0=− µµµ
SeS

dzd+d -z         (7.9) 

 

and can be rearranged with respect to the ionic species: 

 

µµµ
eSS

-z zddd −=          (7.10) 

 

We insert this for all ionic species n in the expression for the electrical potential gradient. The 

entry (among k) for electrons is left unsubstituted. By using 1=∑ kk t  we obtain 

 

dx

d

e

1
+

dx

d

ez

t
-

i
-=

dx

d en

n

n

n

tot

tot µµ

σ

φ
∑        (7.11) 

 

for which the chemical potentials now refer to the neutral forms of each carrier.  
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7. Electrochemical transport  

 7.4

The voltage over a sample 

  

 We now integrate the electrical potential gradient over the thickness of the sample, 

from side 1 to side 2, in order to obtain the voltage over the sample: 

 

∫∫∫∫ ∑−
II

I

e

II

I

n

n

n

n

II

I tot

tot

II

I

d
e

1
+d

ez

t
-dx

i
=d µµ

σ
φ       (7.12) 

 

)(
1

,, µµµ
σ

φφ
IeIIe

II

I

n

n

n

n

II

I tot

tot

III
e

+d
ez

t
-dx

i
= −∑−− ∫∫      (7.13) 

 

We further assume that the voltage is measured on each side using the same inert metal, e.g. 

Pt. This eliminates the difference between chemical potentials of electrons on the two sides, 

and the voltage measured between the two sides is  

 

∫∫ ∑−−=−

II

I

n

n

n

n

II

I tot

tot

IIIIII d
ez

t
-dx

i
=U µ

σ
φφ        (7.14) 

 

 Under open circuit conditions, itot=0, and we obtain 

 

∫∑=−

II

I

n

n

n

nIII d
ez

t
-U µ            (7.15) 

 

We shall later see how this is used to calculate transport numbers based on open circuit 

voltage measurements of cells exposed to a well-defined gradient in chemical activities. 

Alternatively, if tn is known to be unity for ionic charge carriers this expression will yield the 

open circuit voltage of a fuel cell or a galvanic sensor. 

 If current is drawn from the sample, as in a fuel cell or battery under load, we need to 

know how itot varies with x. If we assume that it is constant, we get  

 

∫∫ ∑−=∑−=−

II

I

n

n

n

ntottot

II

I

n

n

n

n

tot

tot

III d
ez

t
-rid

ez

t
-

Xi
U µµ

σ
     (7.16) 
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7. Electrochemical transport  

 7.5

 

where X is the thickness of the sample and rtot is the area-specific resistance of the sample. 

Alternatively, itotrtot (current density and area specific resistance) may be replaced by RI, 

(sample resistance and current): 

 

∫∑−=−

II

I

n

n

n

nIII d
ez

t
-IRU µ           (7.17) 

 

 The voltage of a fuel cell or battery is thus composed of a thermodynamic part that 

arises from the chemical gradient, and the well-known “IR”-term which arises from the 

limiting kinetics (transport) in the sample. The letters “IR” may be taken to reflect current 

times resistance, or to mean “internal resistance”. We will later see that the direction of the 

current ends up such that the IR-term reduces the voltage over the fuel cell or battery. 

 

Flux of a particular species 

 

 One of the general expressions for the electrical potential gradient can now be inserted 

in an expression for the flux density of an individual species (Eq. 7.4) or the corresponding 

partial current density (Eq. 7.5). Since these two sum over chemical potential gradients of 

charged species, we may conveniently use Eq. 7.7 for our purpose. Inserting this into Eq. 7.4 

and rearranging yields 

 

]
dx

d

z

t
z

dx

d
[

ezez

it
=j k

k

k

ki
i

i

i

i

toti

i

µµσ
∑−−

2)(
        (7.18) 

 

The first term in the right hand side simply says what we expect: If there is a net current, a 

flux density of species i will be set up proportional to the total current density and the 

transport number ti, divided by the species’ charge. 

 The equation above is a rather general expression that we can use to calculate flux 

densities of one charged species in the company of many other species. However, it reflects 

the flux density and gradients and properties at a particular point through the membrane. The 

gradients will adjust according to the varying materials properties so as to maintain a constant 

flux density everywhere – what we call steady state. In order to implement this, we integrate 
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7. Electrochemical transport  

 7.6

the flux density expression over the thickness of the membrane and require that the flux 

density remains constant: 

 

∫∫∫ ∑−−=
II

I

k

k
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II

I i
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i
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it
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     (7.19) 

 

If the transport number ti and the total current density itot can be taken as constant through the 

membrane we further obtain: 

 

∫ ∑−−
II

I

k

k
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kii

i

i

i

toti

i
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t
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ez
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ez
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       (7.20) 

 

 

Wagner-type transport theory case studies 
 

Oxides with transport of oxide ions and electrons 

 

General equations 

We will now apply the general theory to a number of cases. The cases we will consider 

first is an oxide that conducts oxygen ions and electrons. Flux equations for the two are 

 

]
dx

d
e

dx

d
[

e

-
=j OO

O

φµσ
2

4

22

2 2
−

−−

−          (7.21) 

 

]
dx

d
e

dx

d
[

e

-
=j ee

e

φµσ
−

−−

− 2
          (7.22) 

 

By summing up the currents from the two we obtain (as in Eq. 7.7) the expression for the 

potential gradient:  
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dx

d

e

t

dx

d

e

ti
-=

dx

d eeOO
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σ

φ −−−−

++
22

2
       (7.23) 

 

In order to relate the potantial gradient to the chemical potential of neutral species we 

introduce electrochemical equilibria between neutral and charged species of oxygen: 

 

O2e4+(g)O
2

2
−− =          (7.24) 

 

for which equilibrium can be expressed by 

 

O
2d

e
4d+

O
d 2

2
(g) −− = µµµ         (7.25) 

 

Introducing this we get  
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and knowing that the sum of transport numbers for oxygen ions and electrons in the oxide we 
have defined is unity, we further get 

 

dx

d

edx
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e
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d egOO

tot
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σ
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++
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4
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       (7.27) 

 

whereby we have exemplified Eq. 7.11. We now integrate over the thickness of the sample to 
obtain the voltage over it, eliminating the chemical potential of electrons (as in Eq. 7.14 and 
onwards): 

 

∫ −+−=−

II

I

gOOIII dt
e

IRU µ )(2
2

4
1

         (7.28) 

 

Using  

 

222
ln0

)()( OgOgO
pkT+= µµ           (7.29) 
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7. Electrochemical transport  

 7.8

22
ln)( OgO

pkTdd =µ            (7.30) 

 

we get 

 

∫ −+−=−

II

I

OOIII pdt
e

kT
IRU

2
2 ln

4
         (7.31) 

 

If tO −2  is independent of the oxygen partial pressure, or if we can assume as an approximation 

that an average tO
−2  is constant over the pressure range applied, then 

  

NOI

O

II

O

OIII EtIR
p

p

e

kT
tIRU −− +−=+−=−

2

2

2
2 ln

4
       (7.32) 

 

where EN is the Nernst-voltage of the oxygen concentration cell. 

 

Open circuit voltage of concentration cell for transport number measurements 

 The equation above can be used to measure the average oxygen ion transport number, 

by measuring the open circuit voltage (OCV) over a sample exposed to a small, well-defined 

gradient in partial pressure of oxygen: 

 

N

III
O

E

U
t

−=−2             (7.33) 

 

 

Galvanic oxygen sensor 

 By using a material with 12 =−tO , i.e. a solid electrolyte, and a well-defined reference 

partial pressure of oxygen, the OCV can be used for measuring an unknown partial pressure: 

 

RefRef

2

2ln
4

O

II

O

II
p

p

e

kT
U =−            (7.34) 
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7. Electrochemical transport  

 7.9

 

 

Fuel cell  

 If we apply a solid electrolyte with 12 =−tO  and expose it to a gradient in oxygen partial 

pressure, we get  

 

NI

O

II

O

III EIR
p

p

e

kT
IRU +−=+−=−

2

2ln
4

        (7.35) 

 

 This would be the voltage of a fuel cell. With I = 0, we obtain the OCV of the cell to be the 

Nernst voltage, of course. We furthermore see that the cell voltage diminishes due to the IR 

loss at increasing current, I. A plot of U vs I gives –R as the slope.  

 The power delivered by the cell is the current multiplied with the voltage; 

 

NIERIUIP +−== 2            (7.36) 

 

and it goes through a maximum at U=EN/2. Under these conditions, the power is split half-

half between external work and internal loss, so the electrical efficiency is 50%. The 

efficiency increases as the power and current decrease, and commonly fuel cells are designed 

to run at ca. U=2/3 EN. 

 

Mixed conducting oxygen permeable membrane 

 Now we will show how we obtain the flux of oxygen through a mixed conducting 

oxygen membrane material. As mentioned in the general section this is done by inserting the 

electrical potential gradient back into the flux equation for oxygen ions. Using e.g. Eqs. 7.21, 

7.23, and 7.25 we get: 
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The steady state restriction is introduced by integrating over the thickness of the membrane: 
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If itot is not zero, i.e., some external current is drawn, then the first term says that the oxygen 

ion flux is proportional to that current and to the oxygen ion transport number. If the latter is 

independent of x, then the integral is straightforward. The last term adds to the flux; it is 

driven by an oxygen pressure gradient, and it is proportional to the oxygen ion conductivity 

and the transport number of electrons. This term describes permeation of oxygen ions, 

requiring transport of both oxygen ions and electrons. Moreover, it is inversely proportional 

to the thickness of the sample, X. Under open circuit conditions we may simplify to get: 
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II
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eOO 2
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We now apply our derived expression for the example case of an oxygen-deficient oxide 

MO1-x. This contains oxygen vacancies compensated by electrons, and we have earlier shown 

that the defect concentrations are given by 6/13/1/

2
)4(2 −••

••== OvO pK][vn
O

. Since the mobility of 

electrons is usually much higher than that of ionic defect, and with similar concentrations of 

electrons and oxygen vacancies, we may assume that the material is mainly an n-type 

electronic conductor. Therefore 1≈−
e

t . Furthermore, 6/1
0 2

2 2 −•• === ••••− OvOvO
p]ue[v

OO

σσσ , 

and when we insert these in the flux expression we obtain 

 

pdp
Xe

kT
j

O

II

I

OO 22
2 ln

8
6/1

2
0
∫

−−=−

σ
          (7.41) 

 

We substitute 
2

2

2

1
ln O

O

O dp
p

pd =  and obtain 
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pdp
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which integrates into 

 

{ }6/16/1
2
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8

6
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OO
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j

σ
        (7.43) 

 

One may note that we here have utilised the Wagner approach for electrochemical transport 

of two defect species and combined it with the solution of the defect chemical equilibria to 

obtain an accurate description of the flux of oxygen ions. Numerical values for the flux of 

course require that one knows 0σ , which contains many parameters relating to formation and 

mobility of the defects. In the right-hand parenthesis the negative exponent –1/6 has the 

consequence that the smaller of the two partial pressures of oxygen has the biggest influence. 

The larger partial pressure makes a comparatively smaller difference and may be neglected to 

a first approximation for large gradients. For instance, consider a gas separation membrane 

exposed to air on the one side and a very reducing gas (e.g. methane) on the other. The flux 

would then be essentially proportional to 6/1)(
2

−red

Op  while it would largely be independent of 

ox

Op
2
. It would thus not help much to compress the air to 100 atm, while removal of oxidised 

products like H2O on the reducing side would lower red

Op
2

 and have a large effect. 

 

Ambipolar diffusion and conduction 

 

We have seen above that the transport coefficient term that enters in the flux of oxygen 

ions in a mixed oxygen ion conductor is a product which we may call the ambipolar 

conductivity 

 

σσ

σσ
σσσ

+
=

eO

eO

eOeOtotamb
--2

--2

--2--2 t=tt=       (7.44) 

 

This reflects the fact that so-called ambipolar conduction of two species is necessary (in this 

case for charge compensation). 
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The corresponding terms transformed to diffusivities are called the ambipolar diffusion 

coefficients for oxygen: 

 

tD=D eOamb --2           (7.45) 

 

Such terms, like partial conductivity and self-diffusion, reflect thermal random mobility 

as before, but are restricted by the slower of the two ambipolar diffusing species (ions or 

electrons). 

Many other cases of combined transport coefficients are in use, e.g. the combined 

(additive) transport of oxygen and metal ions commonly that we shall address later (and 

exemplify by the high temperature oxidation of metals), the combination of two diffusivities 

involved in interdiffusion (mixing) processes, and the mass transport in creep being rate 

limited by the smallest out of cation and anion diffusivities in a binary compound. As some 

of these sometimes are referred to as ambipolar or chemical diffusivities, we want to stress 

the above simple definition of ambipolar transport coefficients as relevant for membrane 

applications using mixed conductors. 

 

 

Chemical diffusion and tracer diffusion  

General case 

 

The chemical diffusion coefficient is the phenomenological coefficient that enters a 

Fick's 1st law of diffusion in a concentration gradient: 

 

dx

dc
D-=j

i

ii

~           (7.46) 

 

Unlike our previous treatment in this chapter (which uses Dr, B, u or σ), Fick’s 1st law and 

the chemical diffucion coefficient says in general nothing directly about the self-diffusion 

coefficient. Neither is, as we shall see, the chemical diffusion coefficient in general a constant 

in any sense. Only when the species i is an effectively neutral particle that moves 

independently of other species will the chemical diffusion coefficient be identical to the self-

diffusion coefficient. If the flux and the concentration gradient are in terms of an isotope 
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(tracer), the coefficient is the tracer diffusion coefficient, which is almost equal to the self-

diffusion coefficient:  

 

Df=D rt           (7.47) 

 

where the correlation factor f is a number usually equal to or somewhat smaller than unity, 

depending on structure and diffusion mechanism, reflecting the difference of transport 

between distinguishable and indistinguishable diffusing species. For vacancy diffusion, f 

usually falls around 0.75 depending on structure. 

Chemical diffusion is sometimes referred to as diffusion under a chemical potential or 

concentration gradient. However, we have seen that self-diffusion properly describes this, and 

that all diffusion phenomena we consider here are merely minor perturbations of thermally 

induced self-diffusion. Why then do we need to be concerned with chemical diffusivity? We 

use it whenever we want to or have to relate our flux to the concentration gradient. Under 

steady state processes, our flux vs force equivalents provides sufficient description, and can 

be integrated to yield steady state fluxes through membranes, as we have shown; Thus, for 

this purpose, the self-diffusion coefficients and conductivities are useful since they behave in 

a simple manner vs defect concentrations, and since we in general know the chemical and/or 

electrical potential gradents applied. However, if we know the concentration gradients and 

how the chemical diffusivity varies with concentration, we can use chemical diffusivity. 

In a transient experiment, however, parts of the material take up or give away matter 

(leading to changes in the concentration of species with time). This is sometimes referred to 

as a capacitive effect and is expressed in Fick's 2nd law: 

 

dx

)
dx

dc
Dd(

=
dx

dj
-=

dt

dc
         (7.48) 

 

If D is independent of c and thus of x and t, then we can simplify to obtain:  

 

dx

cd
D=

dx

dj
-=

dt

dc
2

2

         (7.49) 

 

Mathematical solutions for interpretation of transient tracer, thermogravimetric and electrical 

conductivity experiments are based on this. The diffusion coefficient obtained is the tracer 
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diffusion coefficient in case of a transient in isotope composition (whether measured 

radiographically, mass spectrometrically, thermogravimetrically or electrically) or chemical 

diffusion coefficients in case of a transient in chemical composition (measured 

thermogravimetrically or electrically or by other means). The latter is usually executed by 

stepping the oxygen activity by gas composition, total pressure, or electrochemical means. 

It may be noted that certain tracer experiments actually yield an interdiffusion 

coefficient between two tracers. The diffusion coefficient for oxygen in practice cannot and 

need not distinguish between the different isotopes in use (usually 18O and 16O, more rarely 
17O). However, for protons, the difference to deuteron (or triton) transport coefficients is 

considerable (e.g. a factor of 2) and should be taken into account when interpreting the 

results. 

The multitude of transport coefficients collected can thus be divided into self-diffusion 

types (total or partial conductivities and mobilities obtained from equilibrium electrical 

measurements,  ambipolar or self-diffusion data from steady state flux measurements through 

membranes), tracer-diffusivities, and chemical diffusivities from transient measurements. All 

but the last are fairly easily interrelated through definitions, the Nernst-Einstein relation, and 

the correlation factor. However, we need to look more closely at the chemical diffusion 

coefficient. We will do this next by a specific example, namely within the framework of 

oxygen ion and electron transport that we have restricted ourselves to at this stage. 

 

Chemical diffusivity in the case of mixed oxygen vacancy and electronic 

conductor 

 

In a system with oxygen vacancies as the only oxygen point defects, the concentration 

of oxygen ions is the concentration of oxygen sites minus the concentration of vacancies:  

 

c-c=c v

0

OO
..
O

-2-2           (7.50) 

 

such that  

 

dx

dc
-=

dx

dc vO
..
O

-2

          (7.51) 
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We manipulate this in the following manner: 

 

dx

pd

pd

dc
-=

pd

pd

dx

dc
-=

dx

dc O

O

v

O

OvO 2

2

..
O2

..
O

-2 ln

lnln

ln

2

      (7.52) 

 

and insert the result into the flux equation for oxygen ions, Eq. 7.37 (open circuit, itot = 0):  

 

dx

dc

dc

pd

e

kTt

dx

pd

e

kTt

dx

d

e

t
j O

v

OeOOeOgOeO

O

O

−

••

−−−−−−

− =−=−=
2

2
2

2
2

2
2

2

ln

8

ln

88 22

)(

2

σσµσ
  (7.53) 

 

We have thus derived an expression for the flux that relates it to the concentration gradient of 

oxygen ions. We may now therefore compare this expression with that of the oxygen flux in 

terms of Fick's 1st law involving the concentration gradient in oxygen ions and the chemical 

diffusion coefficient: 

 

dx

dc
D-=j O

OO

-2

-2-2

~             (7.54) 

 

and we obtain  

 

••

−−

−=

O

-2

v

OeO

O
dc

pd

e

kTt
D

2
2 ln

8
~

2

σ
          (7.55) 

 

Further, by using the Nernst-Einstein-relation and inserting the relation cD=cD VVOO
..
O

..
O

-22  we 

get 

 

2

222
22

ln

ln
2

ln

ln

2

ln

2

ln

2
~

O

v

ev

v

Oev

v

Oevv

v

OeOO

O

pd

cd

tD

cd

pdtD

dc

pdtcD

dc

pdtcD
D

O

O

O

O

O

OO

O

-2

••

−••

••

−••

••

−••••

••

−−−

−=−=−=−=

 (7.56) 
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Thus, depending on the p
O2

-dependency of the vacancy concentration, the chemical 

diffusion coefficient becomes a varying function of the vacancy (defect) self diffusion 

coefficient. When the sample is mainly an electronic conductor and the transport number for 

electrons is unity, the collection of remaining terms (the enhancement factor) takes absolute 

values from 1 to 3 when the sample has a variable non-stoichiometry, while it increases 

beyond this (and can take on very large values) as the stoichiometry approaches a constant 

value, as in certain doped materials or materials with prevailing point defect (Schottky or 

Frenkel) disorder; the vacancy concentration is then close to independent of p
O2

.  

The full range of aspects of chemical diffusion coefficients make them rather difficult 

to translate  into other transport coefficients, and they tend to live their own lives in the 

literature. They can, as said before, be applied directly to calculate fluxes in membranes if the 

concentration gradients through the membranes are known. However, we note that the 

chemical diffusion coefficient (for oxygen ions) is 

- proportional to the self diffusivity of the oxygen defect (here the vacancy), 

 - proportional to the electronic transport number (but which is often unity),  

- enhanced by the term c/2dpd VO O2
lnln , which for various limiting cases of 

simplified defect situations takes on values of 1, 3 or 4, and  

- fully forwards and backwards transformable into defect diffusivities (and in turn 

self diffusivities) if we know the transport numbers and how defect concentrations vary 

with pO2. 

 

 

Surface and interface kinetics limitations 

 

The flux of matter through a fuel cell or electrolyser is limited by the electrolyte (ionic) 

resistance, the electrode kinetics, and the external electronic load resistance. We commonly 

express the steady state situation and the fact that the current is the same through the entire 

closed circuit in terms of the voltage drops around the circuit: 

 

)+(-RI-E=E
aciN ηη         (7.57) 
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where I is the current, EN is the open circuit (Nernst) voltage, Ri is the ionic electrolyte 

resistance, and ηc and ηa are the cathode and anode overpotentials, respectively. (The 

conventions and practices on measuring and reporting the sign of various voltages may vary, 

so that the equation may take various forms with respect to signs).  

Similarly, the current of matter through an electrodeless gas separation, mixed 

conducting membrane will be limited by ionic conduction, the surface kinetics, and by the 

internal electronic resistance, the latter replacing the external circuit in the previous case. 

However, we may need to express the loss of potential in terms of the chemical 

potential of oxygen. 

If we look at the system without any gradients or currents applied, there will be 

equilibrium at both the electrodes and the surfaces. Depending on the application and the side 

of the membrane, the electrochemical processes in operation on an oxygen ion conductor may 

be:  

 

O2e4+(g)O
-2-

2 =          (7.58) 

 

and  

 

e+O(g)HO+(g)H
-

2
-2

2 2=         (7.59) 

 

In all of these the electrons can be supplied to or from an electrode or a mixed conductor 

surface. Thus, basically, the reactions are the same in the electrolyte/electrode as in the mixed 

conductor, although the physical presence of the electrode can promote (by catalysis) or 

obstruct the reaction.  

Most surface reactions are believed to be made up of a sequence of reactions steps. 

Some possible step reactions in the case of the reduction of oxygen gas are given by the 

following reaction sequence; 

O(g)O ads2,2 =  

Oe+O
-

ads2,
-

ads2, =  

O2e+O
-
ads

--
ads2, =  

Oe+O
-2

ads
--

ads =  

OO
-2

O
-2

ads =  
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The last of these steps may involve bulk defects (e.g. a vacancy that the adsorbed ion may 

occupy) but we will not attempt here an analysis of surface or electrode kinetics in terms of 

defect chemistry. Determination of the nature of the rate limiting step of a reaction is a 

difficult task. Studies of surface exchange kinetics using 18O or by relaxation methods can 

give information about the temperature and pressure dependence of the rate determining step. 

However, it should be pointed out that information from such methods do not give direct 

information about the exact mechanism and which intermediate species that are involved. 

Each step will have its own specific rate and resistance to the mass transport across the 

membrane. In lack of detailed knowledge of the rate limiting step(s) we normally have to 

relate to the overall reaction. 

At equilibrium the overall reaction takes place forth and back at equal rates r0 as a 

result of thermal energy. The activation process forth and back may not be symmetrical in 

this case, but that will not affect us at present. Similarly to the random diffusion coefficient 

connected with these thermal disorders in bulk (Dr = 1/6 r0 s
2) we introduce an exchange 

coefficient for interfaces; ki = r0si which says something about the thermal fluctuations of the 

reaction across the interface of thickness si. We can alternatively express this as an exchange 

flux density  

 

csr=ck=j i0i0
         (7.60) 

 

or an exchange current density  

 

necsr=neck=nej=i i0i00         (7.61) 

 

where n is the number of electrons involved in the reaction. If we now apply a small force 

over the interface, we get a perturbation and a net flux, given by 

 

kT

dP
k-c=j i           (7.62) 

 

where c is the volume concentration of species in the interface, and dP is the potential step 

over the interface. The net current density is 
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kT

dP
i=

kT

dP
kcne=jne=i 0i         (7.63)  

 

If dP is taken as the electrical (over-)potential energy step affecting the reaction, dP = ηne 
and the overpotential becomes 

 

i

i

ne

kT
=

0

η           (7.64) 

 

This is the linear or ohmic (small overpotential) form of the kinetics expression, as we expect 

from our specification of small forces and perturbations. We note that the interface thickness 

si has dropped out and is mostly not an interesting parameter at this level. 

By measuring the overvoltage vs current density by voltammetric DC or impedance 

spectroscopy AC methods, we may obtain the charge transfer resistance 

 

cken

kT
=

ine

kT
=

i
=R

i
22

0

e

η
        (7.65) 

 

The overpotential enters directly into the sum of voltages over the fuel cell or electrolyser 

circuit, and we can solve the system in terms of current and voltage. As the force and 

perturbations of the reaction becomes larger, the full so-called Butler-Volmer exponential 

dependence of current and flux on overpotential (and force) must be taken into account: 

 

)
i

i
(

ne

kT
=

0

lnη           (7.66) 

 

, but we will not elaborate on this here. 

In order to approach an interpretation of transport measurements, we take as starting 

point that the flux(es) through the interface must be the same as that in the bulk of the 

membrane next to the interface in all cases (and in the entire membrane in the steady state 

cases). This is done in reality and in the mathematical solutions by adjusting the potential at 

the border between the interface and the bulk so as to equalise the two fluxes. However, this 

soon becomes difficult, as it is not trivial to choose the proper set of potentials to apply for 

different interface processes. 
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We resort first to chemical diffusion and assume that the interface process is one which 

can be described as species flowing from a high to a lower concentration. Then 

 

c-k=)
dx

dc
D(- interfacebulk

∆         (7.67)  

 

, and D as well as k must refer to chemical coefficients. This requirement can be included in 

the solution of Fick's 2nd law for transients, and D and k can in principle be found 

independently by fitting transient data to this solution. The k's obtained in this way can be 

used to predict steady state fluxes if they are measured as a function of e.g. p
O 2

 or at the p
O 2

 

extremes which the membrane is going to be subjected to. Otherwise, the k values are not 

immediately easy to relate to other data.   

In a tracer experiment, we obtain Dt which is close to the self diffusivity (Dt = f Dr) and 

then the exchange coefficient should also reflect the tracer exchange coefficient kt . ki and 

this should be comparable to that calculated as above from measurements of Re; the 

difference should say to what extent the presence of an electrode has changed the kinetics of 

the rate limiting step of the surface reaction. 

In order to analyse the effect of interface kinetics on fluxes through a membrane under 

steady state conditions, we may take an approach similar to that for fuel cells and 

electrolysers. Principally, no electrodes are involved, and voltages are therefore not directly 

appropriate as in the other cases. Instead we may sum up chemical potential changes of 

oxygen (or hydrogen) through the membrane and its interfaces. We start out with the 

membrane interior, and from earlier we have for a mixed oxygen ion and electron conductor 

of thickness L (earlier also referred to as X or ∆x): 

 

µ
σ

)(2 2

2

2

8

1
gO

II

I

eO

O
d

e

t

L
j ∫

−−

− −=           (7.68) 

 

If we introduce ambipolar diffusivities and conductivities and assume these constant, the 

equation may be integrated to obtain 

 

Le8
=

L2kT

cD
=j O

2

ambOOamb

O

22
-2

2

µσµ ∆∆
       (7.69) 
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and, by rearrangement, the chemical potential drop over the bulk of the membrane is  

 

σ
µ

amb

2

O

Oamb

O

O

Le8j-
=

cD

kTLj2-
=

2

-2

2

2
∆        (7.70) 

 

This drop over the membrane bulk is given by the external full gradient minus the losses at 

the interfaces. In the present terms, the flux through an interface is, from Eqs. 7.62 and 7.65 

given by 

 

Re8

-
=

2kT

kc-
=j

e
2

interface

O

interface

OiO

O

22
-2

-2

µµ ∆∆
         (7.71) 

 

such that, by rearrangement, 

 

Re8j-=
ck

kTj2-
= e

2

O

Oi

Ointerface

O
2

-2

2

2
µ∆        (7.72) 

 

Now, we sum up the total gradient in chemical potential of oxygen over the bulk of the 

membrane and the two interfaces  

 

µµµ
interface

O

bulk

O

tot

O 222
2+= ∆∆∆         (7.73) 

 

and after insertion of the above expressions for bulk and interface, we can solve for the flux 

of oxygen ions through a membrane with two equally contributing interfaces under the 

conditions given: 

 

R2+
L

e8/-
=

k

2
+

D

L

/2kTc-
=j

e

amb

2tot

O

iamb

O

tot

O

O

2-22

-2

σ

µµ ∆∆
       (7.74) 
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This result simply states that the flux is given by the driving force (which easily transforms to 

Nernst voltage) divided by the total ambipolar resistance, in our case namely that of the bulk 

and twice that of one interface.   

In lack of full understanding of the relations involved in interface kinetics of 

membranes, we may refer to a critical thickness; the thickness of the bulk membrane where 

the interface and bulk impose equally large restrictions on the flux. In any membrane 

application, going much below this thickness is not of much use. We see from the above that 

this thickness is Lcrit=D/k for the thickness of the part of a membrane relating to one 

interface, or Lcrit =2D/k for thickness of a membrane with two equally limiting interfaces, 

typically the two surfaces. 

 Experimentally the value of Lcrit has been found to be of the order of 100 µm for many 

polished samples of different fluorite and perovskite materials, indicating that there is a close 

relationship between e.g. vacancy concentration in bulk and the surface exchange. Roughing 

the surface should increase relatively the surface flux, and this has been shown to work. 

 

Ionic transport of both anions and cations 
  

General expressions 

 

 We have in the previous section considered ionic transport by oxygen ions (anions) 

only. This was done for simplicity, because it represents many real applications, and because 

oxygen ions relate most directly to the oxygen (non-metal) activity which we may control 

most conveniently. 

 Now we will include cation (metal ion) transport. Some systems have predominant 

transport of cations, and we thus need to see how this relates this to the non-metal activity. 

Some systems have both anion and cation transport so we need to take both into account. In 

some cases we may not know which one is dominating and as we shall see it is not always 

easy or necessary to distinguish them. 

In an inorganic compound the total ionic current density, iion, is given by the sum of the 

current densities of anions, ian, and the cations, icat. From our previously derived expressions 

for partial current densities we thus obtain 

 

dx

d

ezdx

d

ez
ejzejziii cat

cat

catan

an

an

catcatanancatanion

ησησ −
+

−
=+=+=    (7.75) 
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where zan and zcat represent the valences and thus ionic charges of the anions and cations, 

respectively. 

In order to relate the current density of the cations and anions let us consider the 
equilibrium involving the formation of the compound MaOb from its ions: 

 

ba

zz
OMbOaM ancat =+         (7.76) 

 

Through the Gibbs-Duhem relation, equilibrium in this reaction may be expressed as 

 

)(sOMOM baanzcatz dbdad µµµ =+        (7.77) 

 

The fact that 0)( =sOM ba
dµ  arises from MaOb(s) being a pure condensed phase. It may further be 

noted that  

 

ancat bzaz −=           (7.78) 

 

so that we obtain the very important expression 

 

dx

d

z

z

dx

d

a

b

dx

d an

an

catancat µµµ
=−=        (7.79) 

 

From this we note that the cation and anion chemical potential gradients are the negative of 

each other in a binary compound, a relation that is used extensively, mathematically or by 

intuition.  

By adding 
dx

d
ezcat

φ
  to both sides of the equation and rearranging on the right hand side 

we obtain 

 

dx

d

z

z

dx

d an

an

catcat ηη
=          (7.80) 
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By combining Eqs 7.75. and 7.80 the total ionic conductivity may be expressed by 

 

dx

d

ezdx

d

ez
i an

an

ioncat

cat

ion

ion

ησησ

−
==        (7.81) 

 

Thus, the ionic current density can be expressed in terms of the ionic conductivity (sum of 

cationic and anionic conductivities) and the gradient in the chemical potential of cations or 

anions. 

 From this it becomes clear that the derivations of oxygen ion fluxes and currents in 

various situations done earlier could have been done for the case of ions (sum of cations and 
anions) simply by inserting ionσ  instead of −2O

σ , but with for instance the oxygen activity 

gradient as the driving force.  

 

Membrane ”walk-out” 

Metal ions are transported from the low oxygen pressure to the high oxygen pressure 

side of the membrane while metal vacancies are transported in the opposite direction. During 

the process oxygen is liberated and oxygen and metal sites are annihilated at the low oxygen 
pressure side, e.g. for a metal deficient oxide M1-∂O with doubly charged metal vacancies: 

 

 OO + V
2'
M  + 2h.   =  

1
2  O2(g)       (7.82) 

 

while equivalent number of lattice sites are formed at the high oxygen pressure side: 

 

 
1
2  O2(g) = OO + V

2'
M  + 2h.        (7.83) 

 

In this way the oxide membrane is actually moving in laboratory space in the direction of the 

higher oxygen potential.  

From this we see that even a very minor transport of metal ions may be detrimental to 

the operation of an oxygen separation membrane or fuel cell: Over the many years of 

operation the electrolyte or membrane will simply “walk out” of its housing, towards the high 

oxygen pressure. 
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Demixing of oxide solid solutions 

An additional important aspect of diffusional transport of metal ions in a chemical 
potential gradient is that in a homogeneous crystal of an oxide solution, e.g. (A,B)1-δO such 

as for instance (Co,Ni)1-δO, a demixing process begins to take place. Both cations move by 

vacancy diffusion. When one of the cations in (A,B)1-δO, e.g. A2+, has a higher mobility than 

the other, the A2+ ions will move faster to the side of the higher oxygen potential. The solid 

solution is enriched in AO at this side and thus becomes kinetically demixed. After extended 

time a steady state concentration profile is reached. This can be formulated through the use of 

the appropriate transport equations and by taking into account the conditions of 

electroneutrality and of local thermodynamic equilibrium. The process is schematically 

illustrated below. 

 

Figure 7-1. Schematic illustration of kinetic demixing of the oxide solid solution (A,B)1-δO in a oxygen 

potential gradient. 

 

Multicomponent compounds, e.g. ABO3 and AB2O4, can similarly be demixed in an 

oxygen potential gradient. In this case defects are formed due to the nonstoichiometric A/B 

ratio. Both in the case of the solid solution and in the case of a ternary oxide, new phases may 

be precipitated as soon as the concentration of solute or defects exceeds the solubility limit. 

We may in fact end up in the peculiar situation that the starting oxide is stable in both the low 

and the high oxygen activities separately, but unstable in the gradient between them.  

 The decomposition and precipitation of new phases may violate the functional or 

mechanical properties of the material. These types of phenomena are not only of importance 

in oxide membranes, but also in oxidation of alloys where solid solutions of two or more 

oxides or multicomponent compounds may be formed in the oxide scales. 
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High temperature oxidation of metals; the Wagner oxidation theory 

 

When high temperature oxidation of metals results in the formation of compact scales 

and sufficient oxygen is available at the oxide surface, the rate of reaction is governed by the 

solid state diffusion of the reactants or transport of electrons through the scale. As the 

diffusion distance increases as the oxide grows in thickness, the rate of reaction decreases 

with time. When the diffusion takes place homogeneously through the scale, the rate of 

growth of the oxide thickness, x, is inversely proportional to the oxide thickness: 

 

x
k

dt

dx
p

1*=           (7.84) 

 

In the integrated form this becomes 

 

00
*2 2 CtkCtkx pp +=+=         (7.85) 

 

where )2( *
pp kk =  and *

pk  are expressions for the rate constants and Co is an integration 

constant. The oxide thickness may alternatively be measured in terms of the oxygen uptake 

by the metal specimen during oxidation by using, for instance, thermogravimetry. The oxide 

thickness or oxygen uptake is parabolic with time, and the oxidation is termed parabolic. 
Accordingly pk  and *

pk  are termed parabolic rate constants. The figure below illustrates the 

variation in the oxide thickness or oxygen uptake as a function of time. 

 

Figure 7-2.  The variation in oxide thickness as a function of time (x vs t and x2 vs t) during parabolic 

oxidation of metals 
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Carl Wagner developed the theory for parabolic oxidation assuming that the reaction is 

governed by lattice diffusion of the reacting ions (metal and oxygen ions) or transport of 

electrons. The important aspect of the Wagner oxidation theory is that the parabolic rate 

constant is expressed in terms of independently measurable properties, i.e. the electronic and 

ionic conductivity of the oxide or alternatively in terms of the self-diffusion coefficients of 

the reacting ions. This thus provides an interpretation of the reaction mechanism and a 

theoretical basis for changing and improving the oxidation resistance of metals and alloys. 

The Wagner theory has been one of the most important contributions to our understanding of 

the high temperature oxidation of metals. 

The basic assumption of the theory is that the lattice diffusion of the reacting ions or the 

transport of electrons through the dense scale is rate-determining for the overall reaction. 

Lattice diffusion is assumed to take place because of the presence of point defects, and the 

migrating species may alternatively be considered to constitute lattice and electronic defects. 

Wagner further assumed that ions and electrons migrate independently of each other and that 

local equilibria exist within the oxide. Such transport processes through a dense, single-phase 

scale growing by lattice diffusion is illustrated in the figure below. One part (a) illustrates the 

transport of metal and oxygen ions and electrons, while the other (b) illustrates the transport 

processes when the predominant diffusion processes involve metal vacancies and interstitials. 

 

Figure 7-3. Transport processes during growth of a dense, single phase scale growing by lattice 

diffusion. a) transport processes illustrated by transport of reacting ions, b) transport processes illustrated by 

transport of diffusion of important point defects (in this case assumed to be metal vacancies and interstitials). 
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As diffusion through the scale is rate-determining, reactions at the phase boundaries are 

considered to be rapid, and it is assumed that thermodynamic equilibria are established 

between the oxide and oxygen gas at the oxide/oxygen interface and between the metal  and 

the oxide at the metal/oxide interface. 

The overall "driving energy" of the reaction is the Gibbs free energy change associated 
with the formation of the oxide, e.g. MaOb, from the metal M and the oxygen gas. 

Correspondingly, a gradient in the partial pressure (activity) of oxygen exists across the scale 

from the partial pressure of oxygen in the ambient atmosphere at the outer surface to the 

partial pressure of oxygen at the metal/oxide interface. The latter partial pressure is the 

decomposition pressure of the oxide in equilibrium with its metal. 

The main driving force for the transport through the plane is the chemical potential 

gradient. But when one considers the transport of the reacting ions and of the electrons 

through the scale, it may also be noted that the mobilities of the cations, anions and electrons 

are not equal. Because of this difference, a separation of charges takes place in a growing 

scale. This creates a space charge (diffusion potential) that opposes a further separation of 

charges, and a stationary state is reached for which no net electric current flows through the 

scale. In describing the transport of ions and electrons through the scale, it is thus necessary 

to take into account both the transport due to the gradient of the chemical potential and that 

due to the gradient of the electrical potential, i.e. the electrochemical potential gradient. Thus, 

the treatment of the transport through the oxide scale is identical to that done earlier for 

electrochemical transport through a mixed conducting oxide. 

The net ionic current is from earlier given by 

 

dx

d

edx

d

ez
i Oionan

an

ion

ion

−

=−=
2

2

ησησ
       (7.86) 

 

and the electronic current is given by 

 

dx

d

edx

d

e
i elelelel

el

ησησ
=

−
−=

1
        (7.87) 

  

As no net current flows through the scale during the scale growth, then itot = iion + iel = 0. 

By solving this system in the usual manner (solving for the electrical potential gradient, 

inserting into the expression for the ionic current density and inserting the equilibrium 

condition between oxygen ions, oxygen molecules and electrons) we obtain 
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dx

pd

e

kTt

dx

d

e

t
i

OeliongOelion

ion
22

ln

44
)( σµσ

==       (7.88) 

 

The rate of oxygen ions reacting per unit area is obtained by dividing the ionic current density 
by the charge of the oxygen ions. Moreover, the rate dn/dt of oxide molecular units MaOb 

formed per unit area is obtained by further division by b:  

 

dx

pd

be

kTt

dx

d

be

t

eb

i

dt

dn

bdt

dn OeliongOelionionO 22
ln

882
1

2

)(

2

σµσ
−=−=

−
==    (7.89) 

 

Similar to the integrations we have done earlier over the thickness of the oxide, we now 
integrate over the instantaneous thickness ∆x and from the ambient oxygen pressure, 0

2Op , to 

the partial pressure at the metal/oxide interface, i

Op
2
. The growth rate 

dn
dt     then takes the form 

 

∆x
 p dtσ

be

kT
 

dt

dn
Oelion

1
ln

8

o
2O

i
2O

2

p

p
2













= ∫        (7.90) 

 

We have chosen to organize the equation and direction of integration such that the rate is 
positive if 0

2Op > i

Op
2
. In general the directionalities and signs of the fluxes and processes that 

go on pose a problem for us. One may most often neglect this issue because the output, 

namely growth (increase in amount of oxide or thickness of scale) is intuitively positive. 

However, it may not be just that easy, since there is nothing preventing scale reduction 

(reverse of growth) if the outer oxygen partial pressure is smaller than the activity at the 

metal/oxide. 

 Many readers will probably wonder about another small apparent problem: We 

integrate over the scale to take into account the steady state condition, namely that the fluxes 

are constant throughout the scale. Still, the scale grows, so how can it be steady state? The 

answer is that it is steady state (constant fluxes) for that moment of time with that 

instantaneous thickness of the scale. So our integration is for a given moment in time. At 

another moment the integration will give a different flux.    
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The expression in the parentheses, 












∫

o
2O

i
2O

2

p

p
2

ln
8 Oelion p dtσ

be

kT
 , can be considered to be 

one form of the parabolic rate constant and is in the following written kt: 

 

∆x
k

dt

dn
t

1
=           (7.91) 

 

kt thus represents a time-independent coefficient, while the flux and thickness of the scale 

vary according to the parabolic relation above.  

As written in this form 
dn
dt     is expressed in number of molecular units of MaOb per 

cm2sec and ∆x in cm. The derivation of Wagner's equation that we here have done for growth 

of oxide scales, may be applied to many other gas-metal reactions. 

It may be noted that although the total particle current is equal to the rate of growth of 

the scale, the rate-determining process may either be diffusion of ions or transport of 
electrons depending on the properties of the scales. If the scale is an electronic conductor, tel 

≈ 1, the diffusion of the reacting ions through the scale is rate-determining, while the 

transport of electrons through the scales is rate-determining if the scale is an ionic conductor, 
tion ≈ 1. The oxygen pressure dependence of the reaction will depend on whether the scale is 

an ionic or electronic conductor and in the latter case on the type of nonstoichiometry that 

prevails in the oxide scale. 

In our derivation, the growth rate is proportional to σiontel = σtottiontel = (σan + σcat) tel. 

However, the conductivity of the metal and oxygen ions in MaOb can be expressed in terms 

of the self-diffusion coefficients of the metal and oxygen ions in MaOb through the Nernst -

Einstein relation (zi2e2Dici = kT σi). Let us insert this relationship in Eq.7.89 and assume that 

the oxide is an electronic conductor (tel ≈ 1). Let us furthermore take into account that 

concentrations of metal ions (cations), cM, and oxygen ions, cO, in an oxide MaOb with 

relatively small deviation from stoichiometry are related through cM/cO = a/b = |zan|/zcat. The 

expressions for the flux through the growing scale (expressed in terms of the number of 
MaOb units per cm2sec.) and for kt then become  
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pd
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z

b

c

dx
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∆x
k
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+= ∫      (7.93) 

 

cO denotes the number of oxygen ions in MaOb per cm3 and DM and DO are respectively the 

self-diffusion coefficients of the metal and oxygen ions in MaOb. It should be noted that DM 

and DO are the self-diffusion coefficients for random diffusion of the respective ions.  

In Eqs.7.92 and 7.93, kt represents the rate of formation of MaOb units per cm2 per 

second for an MaOb scale of thickness 1 cm. One may as said before alternatively express the 

parabolic rate constant in terms of the rate of growth of the oxide thickness 

 

x
k

dt

dx
p

1*=           (7.94) 

 

The dimensions of  k
*
p   are then cm2sec-1, and Eq.7.93 then takes the form 
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Growth of metal-deficient Ma-yOb on M  

Let us make use of Eq. 7.95 to illustrate the temperature and oxygen pressure 

dependence of the parabolic rate constant. Consider the growth of the metal deficient oxide 
Ma-yOb on high purity M. Let us assume that the predominant defects throughout the entire 

scale are metal vacancies with an effective charge α, i.e. V
α'
M

 . Let us further assume that the 

metal ion diffusion is much faster than the oxygen diffusion, i.e. DM >> DO. Eq. 7.95 then 

reduces to  
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k
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In order to integrate this we need to analyse the defect structure of the oxide. The formation 
of the metal vacancies may be written as  

 

x

OM O
a

b
hvgO

a

b
++= •αα /

2 )(
2

        (7.97) 

 

If other defects may be neglected  and the electroneutrality condition is given by α[V
α'
M

 ] = p, 

the concentration of metal vacancies is given by  

 
ab

OVM pKv
M

2/1/

2
/][ α

ααα =+         (7.98) 

 

where /α
MV

K  is the equilibrium constant for the formation of the metal vacancies (Eq. 7.97) 

and ][ /α
Mv  denotes the fraction of the metal ion sites that are vacant. On the basis of this 

relation, 
2

ln Opd  may be written 

 

][ln
)1(2

ln /

2

αα
MO vd

b

a
pd

+
=         (7.99) 

 

When this expression for 
2

ln Opd  is introduced in Eq.7.96 , the expression for  k
*
p  becomes  

 

}][]{[)1( i/o/*
/

αα
αα MMvp vvDk
M

−+=        (7.100) 

 

If the concentration of metal vacancies at the oxide/oxygen interface is much larger than at 
the metal/oxide interface, i.e. i/o/ ][][ αα

MM vv >>  then  

 
o

MMvp DvDk
M

)1(][)1( o/*
/ +=+= αα α

α        (7.101) 

 

where o/ ][/
α

α Mv

o

M vDD
M

=  is the self-diffusion coefficient of the metal ions in Ma-yOb at the 

oxide/oxygen interface. Thus under these conditions the parabolic rate constant and the self-
diffusion coefficient of M in Ma-yOb has the same temperature and oxygen pressure 

dependences. 
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Growth of oxygen-deficient MaOb-y on M  

The same procedure may be used to derive the parabolic rate constant for the growth of 
oxygen deficient MaOb-y on M. let us assume that the oxygen vacancies have α charge α, i.e. 

Vα.

O  , and the formation of the oxygen vacancies may then be written 

 

OO = Vα.

O   + αe' + 
1
2 O2        (7.102) 

 

If DO>>DM and (p
i
O2 <<p

o

O2 ) then  k
*
p  becomes 

)1(2
1

2
)()1()1(][)1( 0i* +

−

• +=+=+= • α
α ααα α i

OO

i

OOvp pDDvDk
O

    (7.103) 

 

where •α
Ov

D  is the self-diffusion coefficient of the oxygen vacancies, i][ •α
Ov  the concentration 

of oxygen vacancies and DOi  the self-diffusion coefficient of oxygen in MaOb-y at the 

metal/oxide interface. DO0 is the oxygen self-diffusion coefficient at 1 atm. O2, and p
i
O2

  is 

the oxygen activity at the metal/oxide interface. For this case the parabolic rate constant is 

independent of the ambient oxygen pressure, and the temperature dependence is given by that 
of the oxygen self-diffusion coefficient in MaOb-y at the metal/oxide interface. In this respect 

it may be further noted that the oxygen self-diffusion coefficient at the metal/oxide interface 

is given by that the product of the self-diffusion coefficient of oxygen at constant oxygen 

pressure (at 1 atm O2) and (p
i
O2

 )-1/2(α+1) , i.e. DOi = DO0 (p
i
O2

 )-1/2(α+1) . In these terms the 

activation energy of the parabolic rate constant is under these conditions given by the 

activation energy associated with DO0 and the enthalpy term associated with (p
i
O2 )-1/2(α+1) .

 Similar treatments may be given for oxide scales growing by interstitial metals ions or 

interstitial oxygen ions.  

 

Scales with ionic conductivity predominant. 

Most oxides encountered in high temperature oxidation of metals are electronic 

conductors. In the literature there are no examples of high temperature metal-oxygen 

reactions  involving conventional metals or alloys with essentially pure ionic conductivity 

over the entire existence range of the oxide. Such type of reactions are, however, found in 
metal-halogen reactions, e.g. Ag+Br2 to form AgBr. The same treatment as given above may 

be applied to reactions involving formation of ionically conducting scales, and the important 
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feature of these reactions is that it is the electronic transport through the scale that is rate-

determining. 

 

Varying defect structure situations through the scale. 

In the preceding examples it has been assumed that the same defect structure prevails 

throughout the entire scale from the scale/gas to the metal oxide interfaces. This is an 

oversimplified model for many systems. The charge on the defects, or even the predominant 

defects may change with changing oxygen activity. Furthermore, the presence of impurities 

and dopants may significantly affect the defect structure situation. Thus, following the 

discussion in Ch.4 one part of the scale may possibly have intrinsic properties and another 

part extrinsic properties. As part of such behaviour one part of the scale may have significant 

ionic conductivity while the rest has electronic conductivity.  

In the presence of water vapour, hydrogen defects may affect the diffusional behaviour 

in growing oxide scales in many different ways. 

 

Sintering 

 

Stages of the sintering process 

Sintering is the process whereby powders and small particles agglomerate and grow 

together to form a continuous polycrystalline body. As a rule of thumb the material must be 

heated to 2/3 of the melting temperature to achieve considerable sintering.  

The overall sintering process may conveniently be divided into different stages. The 

principal stages involved is illustrated schematically below.  
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Figure 7-4. Principle stages during the sintering process: a) particles in contact prior to sintering; b) 

neck growth between particles during initial stage of sintering; c) further neck growth and formation of 

continuous pore channels along grain boundaries; and d) further sintering in closing channels and formation of 

closed pores at grain corners. 

 

During an initial stage the surface roughness is decreased and the particles begin to 

adhere and grow together. At the end of this stage grain growth begins to occur and grain 

boundaries and metastable pore phase is established. Only modest shrinkage of a few percent 

takes place during the initial stage. 

During an intermediate stage grain growth continues, and the cross-sectional area of the 

pore phase decreases. The final stage begins when the body achieves 90-95% theoretical 

density. At this point the pore phase becomes discontinuous, and the closed pores usually 

remain at grain boundaries. The final stage may involve complete removal of the remaining 

pores, leading to a completely dense material. Alternatively, it may involve discontinuous 

growth of the large grains at the expense of the small ones, and closed pores may as a 

consequence be isolated  inside the grains. If the latter process occurs, complete densification 

becomes extremely difficult. 

 

Driving force for sintering 

During sintering, as for other spontaneous processes, the total free energy of the system 

decreases. For elemental solids and homogeneous compounds the only free energy change 

involved in sintering is that of the surface free energy or surface tension, γ, of the particles.  

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


7. Electrochemical transport  

 7.36

Any surface atom or molecule is subjected to a resultant inward attraction because of 

the unsaturated chemical bonds at the surface. The surface therefore tends to contract to the 

smallest possible area. In the case of a spherical particle with radius r, the interior is subjected 

to an excess force of πr2p, where p is the pressure. This is counteracted by the surface tension 

acting along the circumference: 2πrγ. When equating these opposing forces, the pressure is 

given by  

 

 p = 
2πrγ

πr2
  = 

2γ
r           (7.104) 

 

From this it is seen that the vapour pressure of a sphere is larger the smaller the radius 

and as a result a large sphere will grow at the expense of a neighbouring small sphere. This 

type of grain growth in polycrystalline solids is termed Ostwald's law. Similarly the vapour 

pressure of convex surfaces is larger than the vapour pressure of a concave surface and as a 

result surface roughness of particles is reduced during the initial stage of sintering. 

 

Transport processes during sintering 

As for creep, sintering of oxides implies that molecular units of the oxide are 

transported from areas from high to low surface free energies, e.g. from convex to concave 

surfaces. Generally it is concluded that transport of the slower moving species determines the 

overall sintering rate. Thus, in a binary oxide where oxygen ions diffuse much more slowly 

than the metal ions, it is generally to be expected that the sintering rate is determined by the 

transport, e.g. lattice or grain boundary diffusion of oxygen. 

Sintering governed by lattice diffusion will be dependent upon the concentration of 

point defects in oxides. Accordingly, sintering rates of an oxide can be optimised by close 

control of impurities or dopants and the ambient partial pressures of oxygen and of water 

vapour in cases where proton defects affect the defect structure of the oxide. 

 

 

Oxides with additional transport of protons 
 

If an oxidic material conducts protons in addition to oxygen ions and electrons we need to 

introduce electrochemical equilibria between neutral and charged species of both oxygen and 

hydrogen: 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


7. Electrochemical transport  

 7.37

 

O2e4+(g)O
2

2
−− =          (7.105) 

 

e+H2(g)H 2
−+= 2          (7.106) 

 

for which equilibria can be expressed by 

 

O
2d

e
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O
d 2

2
(g) −− =µµ         (7.107) 

 

e
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H
2d

H
d

(g)
2

−+= µµµ 2         (7.108) 

 

We insert these into the flux equations for the species and utilise that the sum of all transport 

numbers equals unity. We furthermore use that dµ = kTdlna • kTdlnp, where a and p are 

activity and partial pressure, respectively, and obtain 
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    (7.109) 

 

This can now be integrated to obtain the voltage of a cell, or inserted into a flux equation of a 
species of interest in the usual manner. We now have a system with two chemical driving 
forces for electrochemical transport; that of oxygen activity and that of hydrogen activity.  

 

 

Other cases 
 

We have in the present version of the treatment of electrochemical transport omitted 
many cases. These include a more full coverage of proton transport in oxides and transport by 
other hydrogen species and other foreign species. Moreover, we have left out the case of 
solid-solid reactions. Also, creep and sintering were given more phenomenological than 
defect-chemical treatments. 

We have throughout assumed isothermal conditions. If we instead of (or in addition to) 
chemical driving forces considered a temperature gradient, our integrations over membranes 
would have been from one temperature to another. The voltage we would have obtained 

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


7. Electrochemical transport  

 7.38

would be the thermoelectric voltage. It has several contributions, but in general it is related to 
the transport numbers and the gradients in concentrations of defects. The variations of 
concentration is in turn given by the entropy of the defects. 

 

More on these themes will be included in future updates.    
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Excercises 

 

1. Electrochemical cell with stabilised zirconias (YSZ and CSZ)  

 

a) Consider an yttria-stabilised zirconia (YSZ) material with 90 mol% ZrO2 and 10 
mol% Y2O3. What is the site fraction of oxygen vacancies in the material? We often 
use and refer to the YSZ as an electrolyte. What is an electrolyte? What requirements 
does it put on a material? 

 

b) We make ourselves a disk of YSZ, attach Pt electrodes to both faces, and place the 
disk in a cell where we can expose the two faces to different gases. If the gases have 
different partial pressures of oxygen, a voltage will be set up over the electrodes, and 
we can draw current from the cell. Write equations for the two half-cell-reactions that 
run when current is drawn. Write the expression for the voltage over the cell given 
that the material is a purely ionic conductor. Which (high or low pO2) is the positive 
pole? 

 

c) Smith, Meszaros and Amata (J. Am. Ceram. Soc., 49 (1966) 240) found that the 
permeabilities at high temperatures of Ar and N2 through calcium-stabilised zirconia 
(CSZ) were immeasureable, while that of O2 was significant and proportional to 
pO2

1/4. Suggest an explanation for these observations.  

 

2. Electrochemical cell for determination of thermodynamic properties 

 

a) Indicate how you can use a YSZ cell with Pt electrodes to determine 
the thermodynamic parameters for formation of a binary oxide (e.g. NiO). 

 

b) J.J. Egan (J. Phys. Chem. 68 (1964) 1978) studied an electrochemical 
cell built up as follows:  

 

 - (Mo)Th(s),ThF4(s)|CaF2(s)|ThF4(s),ThC2(s),C(s)(Mo) + 

in order to measure the thermodynamic properties of ThC2. The Mo serves as 
inert electrodes. The cell was kept under an inert atmosphere. The CaF2(s) is a solid 
electrolyte – a fluoride ion conductor – in the temperature range of operation of the 
cell (700-900°C). The signs indicate the polarity of the cell. Write the reactions at 
each electrode when current is drawn from the cell. Also, express the voltage of the 
cell as a function of the Gibbs energy, enthalpy and entropy of formation of ThC2. 
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3. Wagner’s oxidation theory 

 

Wagner’s equation for the oxidation rate of a metal, forming the oxide MaOb, can in 
one form be written 

 

x
pdttt

bF

RT

dt

dn
Oelancat

∆
+= ∫

1
ln)(

8

2

1
2 2

σ  

 

a) Specify what the different symbols denote in this equation. 

b) Examine the equality of units on both sides of the equation. 

c) What are the model and requirements for the theory. Why do the different terms 
enter the equation as they do? 

d) This type of behaviour is called parabolic. What does it reflect? Identify the 
parabolic rate constant. 

e) Which deviations from the requirements of the theory may give rise to non-
parabolic (e.g. linear) behaviour? 

f) Assume that the oxide has formula MO and is a p-type semiconductor with doubly 
charged metal vacancies as dominating point defects (DM >> DO). Assume that 
pO2

o >> pO2
i and find how the oxidation rate varies with the outer oxygen 

pressure pO2
o. 

g) Assume that the oxide has formula MaOb and that it is an n-type semiconductor 
with Mi

… as dominating point defects and that DM >> DO. How does the oxidation 
rate in this case vary with the outer oxygen partial pressure (assuming also now 
that pO2

o >> pO2
i)? 

h) The tracer self-diffusion coefficient for Co in CoO in air at 1200°C is 9*10-9 
cm2/s. Calculate the parabolic rate constant in cm2/s (which is kp in dx/dt = kp/x) 
when cobalt oxidizes to CoO under the same conditions. The dominating point 
defects in CoO are assumed to be singly charged metal vacancies vCo’. 

 

4. Sintering 

 

a) What happens during sintering? What are the driving forces? What are the 
contributing mechanisms and what may be the rate limiting factors? 

b) Powders of CoO can be sintered to dense samples. The defect structure of 
CoO is characterized by the following: There is a deficiency of metal and 
the dominating point defects are singly charged metal vacancies. DCo >> 
DO.Assume that the oxygen defects are interstitials with one negative 
effective charge. Draw a Brouwer-diagram for the oxide. Under what 
conditions should the oxide be sintered to achieve the highest sintering rate?  
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5. Creep 

 

a) What is creep? What are the driving forces, mechanisms, and rate limiting 
factors? 

b) TiO2 is an n-type electronic conductor with oxygen deficiency, dominated 
by doubly charged oxygen vacancies and triply charged titanium 
interstitials. Assume that the concentration of oxygen vacancies is 1000 
times higher than that of titanium interstitials at pO2 = 1 atm. Draw a 
Brouwer diagram for the oxide from pO2 = 10-20 to 1 atm. How would you 
qualitatively expect that the creep of TiO2 single crystals varies with pO2? 

 

6. General considerations 

 

b. The expression “uphill diffusion” is used for diffusion against a concentration 
gradient, referring to Fick’s 1st law. From what you know about 
electrochemical transport, what might cause uphill diffusion? 

c. Eq. 7.4 is written with conductivity as the transport coefficient. Flux of a 
neutral species is not affected by the electrical potential gradient and can not 
be expressed by conductivity. It is therefore meaningful to express the 
equation using the random diffusion coefficient for the chemical potential 
gradient and the conductivity for the electrical potential gradient. Do this 
splitting/substitution. (This is mainly a simple exercise in the Nernst-Einstein 
relation). Check that both parts of the resulting equation will have units that 
confer with flux density. 

 

7. Transport number and partial conductivity measurements 

 

d. A membrane of a mixed oxygen ion and electron conducting oxide is equipped 
with Pt electrodes and exposed to two different oxygen partial pressures: On 
one side is dry air (pO2 = 0.21 atm) and on the other is pure oxygen (pO2 = 1.00 
atm). What is the Nernst voltage of this cell at 1000°C?  

e. A voltage of 0.01 V is read over the cell at 1000°C using a high impedance 
voltmeter. What is the average ionic transport number of the oxide under these 
conditions? 

f. Make a sketch of the sample and gases and external circuitry during the 
voltage measurement. Indicate internal and external fluxes and currents (with 
directions). 

g. The total conductivity of the sample is measured and the result is 0.01 S/cm. 
What are the partial ionic and electronic conductivities?  

h. Assuming that the sample is 0.5 mm thick, what is the flux of oxygen gas 
through the sample during the voltage measurements?  

i. If you had measured this flux in some way, and used this as your (only) 
transport measurement, what would be the transport parameter that you find? 
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8. Sensor 

 

a) A sensor is made out of a membrane of yttria.stabilized zirconia (YSZ) with Pt electrodes 
and is operated at 700°C. As reference is used pure oxygen at 1 atm. A voltage of -950 mV is 
read over the sensor (measuring on the “unknown” side vs the reference side). What is pO2 at 
the “unknown” side?  

 

b) If you assume that the “unknown” side is hydrogen gas at 1 atm, what does the sensor 
voltage say about the water vapour content of that hydrogen gas? 

 

9. Fuel cell 

 

a) A fuel cell made of YSZ electrolyte with Pt electrodes is operated at 700°C and runs on 
hydrogen as fuel and air as oxidant, both at atmospheric pressure. Both gases contain 2% 
water vapour. What is the open circuit voltage of the fuel cell? 

 

b) Assuming that the electrolyte has a conductivity of 0.1 S/cm and is 100 µm thick, calculate 
the short-circuit current density, the maximum power density and the current and power 
densities at a voltage of 2/3 of the open circuit voltage. (Assume in all cases that the gas 
compositions remain unaffected by the current in the cell, and that electrode polarization is 
insignificant). 

c) Assuming the operation at 2/3 of the OCV voltage, what is the area of electrolyte needed 
for a power plant of 300 MW capacity? 

d) The assumption that the gas compositions are unaffected is not realistic for a real power 
plant; what would it mean in terms of fuel utilization? 

e) The system we have described can be operated at other temperatures. Still neglecting 
electrode polarization, what are the factors and processes that enter into the temperature 
dependency of the power density of the fuel cell? (Hint: refers to defects and transport.)  

 

10. Gas separation membranes 

 

a) 

A gas separation membrane that can separate oxygen from air is constructed from 
La2NiO4+d, a material where we for simplicity may assume that the defect structure is 
dominated by doubly ionized oxygen interstitials compensated by electron holes. In the 
following assume further that the cell is operated at 1000°C and that the membrane is 100 µm 
thick and has no surface kinetics limitations. Assume also that the oxygen ion conductivity 
(by interstitials) is 1 S/cm at 1 atm O2 and that the electronic (hole) conductivity is 200 S/cm 
at 1 atm O2. The membrane is operated with atmospheric air on one side and pumped to 
effectively 0.1 atm at the other side. What is the area-specific flux of oxygen? 
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b) 

What would increase the flux more: Compress the air to 10 atm or pump the vacuum side to 
0.01 atm? 

1. Find an expression for the chemical diffusion coefficient for oxygen ions. 

2. During operation the membrane may possibly suffer from both membrane 
“walk-out” and decomposition. Explain both phenomena qualitatively. 

c) Solid –solid reactions 

 

1. La2NiO4 may be synthesized by solid-state reaction between La2O3 and 
NiO. Imagine that you investigate this reaction by making tablets of the 
two reactants and holding them together at high temperature. Sketch how 
the product La2NiO4 is formed as a phase between the reactants and what 
diffusion process (or processes) that take place to constitute the reaction.  

2. Suggest how you might use a marker (e.g. a Pt wire) to identify the rate 
limiting diffusion process.  

3. The reaction rate can be measured as the thickness of the product layer. It 
would be expected to grow parabolically. Explain. 

d) High temperature oxidation of metals 

 

1. Zr metal is used at high temperatures in nuclear installations. It is 
protected by an oxide layer of ZrO2-y, dominated by oxygen vacancies and 
electrons.  

2. What is rate limiting for the parabolic oxidation process in your opinion? 

3. Nb is often used as allyoing element in Zr in order to reduce oxidation of 
the metal. Explain how this dopant might work when it ends up in the 
oxide scale. 

4. In nuclear reactors it is a problem that hydrogen diffuses as protons 
through the oxide scale, dissolves in the Zr alloy and makes it brittle. How 
would you expect Nb alloying to affect the proton transport through the 
oxide scale? 

5. Ni oxidizes to Ni1-yO, i.e. an oxide dominated with Ni vacancies and 
electron holes. How would you suggest to dope this oxide to reduce 
oxidation? 
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Tables 

Greek letters 

 

Α α alfa 

Β β beta 

Γ γ gamma 

∆ δ delta 

Ε ε epsilon 

Ζ ζ zeta 

Η η eta 

Θ θ theta 

Ι ι iota 

Κ κ kappa 

Λ λ lambda 

Μ µ my 

Ν ν ny 

Ξ ξ ksi 

Ο ο omikron 

Π π pi 

Ρ ρ rho 

Σ σ sigma 

Τ τ tau 

Υ υ ypsilon 

Φ φ phi 

Χ χ khi 

Ψ ψ psi 

Ω ω omega 

 

Constants 

 

Gravitational acceleration g 9,80665  m/s2 

Atomic mass unit  u 1,6605*10-27  kg 

Electron mass   me 9,110*10-31  kg 

Elementary charge  e 1,602*10-19 C 

Electron volt   eV 1,602*10-19 J 

Proton mass   mp 1,673*10-27 kg 

Neuytron mass  mn 1,675*10-27  kg 

Speed of light in vacuum c 2,99792*108 m/s 

Boltzmann’s constant  k 1,381*10-23 J/K 

     8,6174*10-5 eV/K 

Planck’s constant  h 6,626*10-34 Js 

Rydberg’s constant  ℜ 1,097*107 m-1 

Bohr’s constant  B 2,18*10-18 J 

Avogadro’s number  NA 6,022*1023 mol-1 

Gas constant   R 8,31451 J/molK 

     0,0820578 Latm/molK 

Faraday’s constant  F 96485  C/mol 

Gravitational constant  γ 6,672*10-11 Nm2/kg2 

Permeability in vacuum µ0 1,257*10-12 H/m 

Permittivity in vacuum ε0 8,854*10-12 F/m 

Electrical constant =(4πε0)
-1 ke 9,0*109 Nm2/C2 

Magnetic constant  km 2*10-7  N/A2 

Stefan-Boltzmann constant σ 5,67*10-8 W/m2K4 

Wien’s constant  a 2,90*10-3 mK 

Volum of 1 mol ideal gas Vm,298K 24,4651 L 
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