

ĐẠI HỌC QUỐC GIA TP. HỒ CHÍ MINH TRƯỜNG ĐH KHOA HỌC TỰ NHIỀN KHOA KHOA HỌC VÀ CÔNG NGHỆ VẬT LIỆU

Chương 1– Thiết lập các phương trình tốc độ động học Quang xúc tác

ThS. Phạm Văn Việt

(pvviet@hcmus.edu.vn)

Tp. Hồ Chí Minh, năm 2017

Giới thiệu

Fig. 6 Relationship between band structure of semiconductor and redox potentials of water splitting.⁵

$$TiO_2 \xrightarrow{hv} e^- + h^+$$
 (1-2)

Electron transfer from the adsorbed substrate (RX_{ad}) , adsorbed water or the OH_{ad} ion, to the electron-hole.

$$h^+ + RX_{ad} \to RX_{ad}^+ \tag{1-3}$$

$$h^{+} + RX_{ad} \rightarrow RX_{ad}^{+}$$

$$h^{+} + H_{2}O_{ads} \rightarrow OH_{ads}^{\bullet} + H^{+}$$

$$(1-3)$$

$$(1-4)$$

$$h^+ + OH_{ad}^- \to OH_{ad}^{\bullet} \tag{1-5}$$

The third step is of great importance, mostly because of the high concentrations of OH⁻, given water dissociation into ions.

$$H_2O \rightarrow OH_{ad}^- + H^+ \tag{1-6}$$

Molecular oxygen acts as an acceptor species in the electron-transfer reaction.

$$e^- + O_2 \to O_2^-$$
 (1-7)

Super-oxide anions, (equation 1-7), can subsequently be involved in the following reactions.

$$O_2^- + H^+ \to HO_2^{\bullet} \tag{1-8}$$

$$H^+ + O_2^- + HO_2^{\bullet} \rightarrow H_2O_2 + O_2$$
 (1-9)

CuuDuongThanCong.com

Photoconversion of hydrogen peroxide gives more OH* free radical groups.

$$H_2O_2 + h_\nu \to 2OH^{\bullet} \tag{1-10}$$

Finally, OH^{\bullet} radicals oxidize organic adsorbed pollutants (RX_{ad}) onto the surface of the titanium dioxide particles.

$$OH_{ad}^{\bullet} + RX_{ad} \rightarrow Intermediate$$
 (1-11)

The OH[•] radicals, as described by equation (1-11), are very reactive and attack the pollutant molecule to degrade it into mineral acids including carbon dioxide and water (Al-Ekabi *et al.*, 1993).

Adsorption isotherm

The Langmuir-Hinshelwood kinetic adsorption equilibrium isotherms

$$Q_e = \frac{Q_m K_L C_e}{1 + K_l C_e} \tag{1a}$$

$$\frac{1}{Q_e} = \frac{1}{Q_m K_L C_e} + \frac{1}{Q_m} \tag{1b}$$

where Q_e is the adsorbed chemical concentration per weight of adsorbent at equilibrium (mg.g⁻¹),

 C_e is the final equilibrium solution concentration (mg.l⁻¹), K_L is the free energy Langmuir adsorption constant (mg.l⁻¹), and Q_m is the maximum adsorption capacity (mg.g⁻¹)

Photolytic reaction kinetics

$$[OC] + hv \stackrel{\Phi I}{\rightarrow} [OC]_{oxid}$$
 (2)

where ϕ and I, are the quantum yield of the reaction and the radiation intensity, respectively

$$V\frac{dC_o}{dt} = \left[\sum_k V_{o,k} R_k\right] W_{ir} \tag{3}$$

 C_o is the concentration of a singular analyte compound, $V_{o,k}$ is a dimensionless stoichiometric coefficient for the compounds involved in reaction step, k and R_k being the rate of photo-conversion of step k based on the unit weight of irradiated catalyst, W_{ir} .

$$r_1 = \frac{V}{W_{ir}} \frac{dC_o}{dt} = \sum_k V_{o,k} R_k \tag{4}$$

The consideration of Eqs. (3) and (4) leads to the advancement of the photocatalytic conversion rate models into a format that is expressed in Eq. (5).

$$\frac{dC_{o}}{dt} = \frac{-k_{o}^{m}C_{o}}{1 + \sum_{j=1}^{n} C_{j}K_{j}}$$
(5)

where k_o represents the kinetic constants for the o specie and K_j is the adsorption constant for the species j or any other species present

The end!

Thank you for your attention