Nontraditional Microfabrication Techniques

Other Micromachining Techniques

- Template replication
- Sealed cavity formation
- Surface modification
- Printing
- Stereolithography (3-D)
- Sharp tip formation
- Chemical-mechanical polishing

- Electric discharge machining
- Precision mechanical machining
- Thermomigration
- Photosensitive glass
- Focused ion beam
- SCREAM

Sealed Cavity Formation

- Form structure using sacrificial material and small access holes
- Cover holes using one of three methods
 - Simple application of glues, plastics, photoresist,
 etc
 - Thin-film application such as sputtered, evaporated, and CVD films
 - Reactive sealing, i.e. thermal oxidation, etc
- Gettering- collect gases in cavity

Surface Modification

- Used to change surface properties, especially in biomedical applications
- HMDS used to "methylate" surface and remove hydroxyl groups
- Self-assembled monolayers (SAMs) formed using RSiCl3 (R is alkyl group)
- Often used to reduce wear and adhesion forces
- Apply dendrimers (hyper-branched polymers) for molecule recognition

Printing

- Useful for non-planar substrates
- Very low-cost
- Screen printing
 - Resolution limit of about 100 mm
 - Alignment more difficult
 - Great for patterning polymer layers in biosensors
 - One step process
 - Requires liquid form
- Transfer printing
 - Raised bumps used to transfer ink, etc
- Powder loaded polymers
- Material properties dependent on material in plastic liquid that can be rolled on and patterned

Ink jet

Micromechanical Machining - An Option to Lithography

- Can produce extremely smooth, precise, highresolution structures
- Expensive, non-parallel, but handles much larger substrates
- Precision cutting on lathes produces miniature screws, etc with 12 mm accuracy
- Chip Processes
 - diamond machining, tools ~100 mm thermal surfaces, fluid microchannels
 - microdrilling, tools > 25 mm manifolds, fiber optics, molds
 - micromilling, tools ~22 mm, features < 8 mm molds,
 masks, thermal surfaces

Micromechanical Machining - An Option to Lithography

- Energy Processes
- microEDM, tools > 10 :m microturbines, toolselectrodes, stators
- focused ion beam (FIB), atomic-scale machining, micromilling tools, probes, etc.
- laser, micron-scale spot ablate hard materials, polymerization

Micromechanical Machining Characteristics

- Relative tolerances are more typically 1/10 to 1/1000 of feature or part dimensions
- Absolute tolerances are typically similar to those for conventional precision machining (micrometer to submicrometer)
- Feature is often inaccessible by conventional metrology techniques (high aspect ratio boolean negative features)
- Like conventional machining, in-process, on-line metrology is preferred over post-process or off-line metrology

General Micromachining Metrology

- Tool location
 - Endmills 8 mm x 2 mm
 - 22 mm x 3 mm
 - Drills 25 mm x 4 mm
 - Diamond 100 mm x 2 mm
- Part/fixture location for multiple processes in multiple machines
- Post processing of lithographic molds
- Post processing of electroplated structures

Complementary Processes (Direct Removal Processes)

- Chip making (force processes)
 - Diamond machining
 - Microdrilling
 - Micromilling
 - Grinding and polishing
 - Microsawing
- Energy beam (forceless processes)
 - Focused ion beam
 - Micro electrical discharge
 - Laser ablative and photo polymerization

Microfabrication Using Polymers

Polymers for Microfabrication

- Examples diverse
 - PDMS
 - PMMA
 - Polyurethane
 - Polyimide
 - Polystyrene
- Disadvantages
 - Low thermal stability
 - Low thermal and electrical conductivity
 - Techniques for fabrication on microscale not as well developed

PDMS (Polydimethylsiloxane)

- Polydimethylsiloxane
- Advantages
- Deforms reversibly
- Can be molded with high fidelity
- Optically transparent down to ~300 nm
- Durable and chemically inert
- Non-toxic
- Inexpensive

Soft Lithography

- Developed by Whitesides, et. al. at Harvard
- Microcontact printing
 - Elastomeric stamp
 - Patterns of self-assembled monolayers (SAMs) and proteins
 - SAMs allow a variety of surface modifications
- Thickness variation by changing tail length
- Modification of tail group changes surface properties
- Variety available for different substrate materials
 - Other SAM advantages
- Self healing and defect rejecting
- Ultrathin resists and seed layers
- Do not require clean room facilities
- Low cost
 - Fabricated using a PDMS mold of "photoresist" structure

High Aspect Ratio Molding

LIGA Process; typical Materials are Ni, NiCo

- Micromachining; typical Materials are Brass, Al alloys
- Si Micromachining; typical Materials are Si, Ni
- Combination of Various Techniques Followed by Electroplating:
 Ni, NiCo

Compound Abbrivation Glass Transition [ºC]

Polymethylmethacrylate PMMA 105

Polycarbonate PC 150

Polysuflone PSU 190

Polyoxymethylene POM 165

Polyethylethylketone PEEK 340

Polyvinylidenfluorid PVDF 170

Polyamide PA 12 180

Mold Inserts

Basic requirements

- Low mechanical stiction and friction
- No deviation from vertical sidewalls (no undercuts)
- Avoid surface oxidation
 - Chemically inert
 - Smooth surfaces
 - Defect free sidewalls
 - Homogeneous material properties

Common Molding Materials

PMMA

Poly(methyl methacrylate),
Tg 100°C, Tproc 170°C-210°C
Transparent, brittle, sensitive to crack
optics, lost mold for production of metallic
microstructures

PC

Poly(carbonate), Tg 148°C, Tproc 180°C-200°C Transparent, good hardness and impact strength optics, medical

POM

Poly(oxy methylene),

Tm = 156°C (Copolymer), Tproc 180°C

Tm = 175°C (Homopolymer)

Low friction, good impact strength, critical decomposition into formaldehyde, critical cavitation due to crystallization mechanical applications (gear wheels)

PSU

Poly(sulfone),
Tg 190°C, Tproc 250°C
Transparent, high strength
for use at higher temperatures up to 180°C,
microfluidic pump

Molding of Ceramic Microstructures

Why are we Interested in Ceramic Microstructures?

But

- Attractive Material Properties (Mechanical, Chemical, Thermal,...
- Additional Functionality (PZT Effect, Conductivity, Shrink Compensated,..)
- More Compatible to other Materials used in MST than Polymers
- Can the Material be Processed on the Micrometer Scale?
- Can the LIGA like Sidewall Quality be Maintained?
- Can the Microstructures be Mass Fabricated?
- Can the Overall Shrinkage due to Sintering be
 Compensated and the Dimensional Accuracy Ensured?

General Design Rules for Mold

- Round the corners where the polymer will shrink onto the metal
- Avoid patterning numerous aspect ratios in one sample (ie. Use AR that deviate +/- 2 from the average AR in the pattern)
- Centralize the patterns that are most critical.

Deviation further from center are more difficult to emboss

General Design Rules for Mold

- Sidewall quality is critical
 - Surface roughness > 500 nm
 - Perpendicularity >85° with >2°
 center bowing
- Bottom surface quality less critical
 - Surface roughness > 10 mm

LIGA process

LIGA

- German term
 - <u>Li</u>thographie,
 <u>G</u>alvanoformung,
 <u>A</u>bformung *
 Lithography,
 electroplating, molding
- Also called DXRL (Deep Xray lithography)
- XRL
 - IC: small feature sizes using small wavelength of X-ray (many industry gave up)
 - MEMS: Very thick structures using high energy

Source: IMM, Institut für Mikrotechnik mainz Gmbh

LIGA examples

High aspect ratio microstructures (HARMs)

Thickness: ~2 mm

Aspect ratio: > 10:1

15kV WD:46mm

S:0SD01 P:60217

50 µm

UV-LIGA process

UV-LIGA

- Standard UV lithography
- UV-sensitive polymeric resists:
 +ve PR, -ve PR (SU-8 epoxy, polyimide, thick photoresist)
- Multi-layer possible
- Cost-effective compared to LIGA (Also called LIGA-like or poor man's LIGA)
- Polymer as electroplating mold
 - PR
 - Low aspect ratio (< 1:1)
 - \sim 40 μ m thick
 - Polyimide
 - Low aspect ratio (< 3:1)
 - ~80 μm thick
 - SU-8 epoxy
 - High aspect ratio (~10:1)
 - $\sim 500 \mu m$ thick

Examples of UV-LIGA processed SU-8

https://fb.com/tailieudientucntt

CuuDuongThanCong.com

Molding

Molding

 Low cost massive production of precise plastic parts using LIGA or UV-LIGAprocessed metallic mold inserts

Injection molding

- Molten plastic is injected onto a metallic mold insert
- Heated above glass transition temperature (T_g) of the plastic
- Polymers
 - PE, PP, PC, PMMA, COC, or biodegradable polymers (e.g. RESOMER®)

Injection molding system

Injection molded plastic toys

www.toysrgus.com

CuuDuongThanCong.com

tps://fb.com/tailieudientucntt

PDMS molding process

- PDMS (polydimethyl siloxane)
 - Microelectronics compatible silicone elastomer, durable, optically transparent, and inexpensive

Process

- A mixture of PDMS pre-polymer and a curing agent cast or spin-coated onto master molds
- Cured at 100 °C for ~1 hour (65 °C for 4 hours)
- Replicated PDMS peeled off from master molds

Advantages

- No need of expensive equipment such as injection molding and hot embossing machines for polymer replication
- Low temperature processing for curing PDMS (65 °C)

PDMS replication and pattern transfer process

Application: massive replication of precision PDMS microstructures, pattern transfer of MEMS components on circuit

Ni mold

Replicated PDMS

Hot embossing

- Hot embossing
 - Plastic is heated above T_g and a mold insert is pressed into the plastic

Micro contact printing (μ CP)

Stamping picture

Source: http://www.zurich.ibm.com/st/microcontact/highres/mucp.html

Stereolithography (SL)

- Stereolithography
 - Repeatedly print layers that become part of a final microstructures
 - Freeform 3D structures made of polymers
 - Optical energy is focused and locally hardens a photopolymer
 - Rapid prototyping
 - Low cost
 - No integration w/ electronics

Micro SL examples

Source: http://dmtwww.epfl.ch/ims/micsys/

Miscellaneous micromachining techniques

- EDM (Electro-discharge machining)
 - Also called spark machining
 - Metal is locally removed by high frequency electrical sparks
 - Used for unusual designs in hard, brittle metals

- LCVD (Laser-assisted chemical vapor deposition)
 - Energy needed for deposition is provided by photons
 - Complex 3D structures
 - Adjusting the focal point of the laser continuously

Source: http://www.eng.nus.edu.sg/
EResnews/0601/sf/sf 4.html

A 7-mm car fabricated by precision machining

CuuDuongThanCong.com

Packaging Technology

Bonding techniques

- Wafer bonding
- Plasma bonding
- Anodic bonding
- Adhesive bonding

Wafer bonding

- Wafer bonding technique
 - A technique to create cavities or channels
 - Joint wafers together to provide hermetic sealing
 - Bond similar or dissimilar substrates permanently
 - Various bonding techniques are used
 - Anodic bonding, fusion bonding, eutectic bonding, glass frit bonding,

IC vs. MEMS packaging

- IC packaging
 - ICs are 2D planar devices and immoveable
 - Standardized process
 - Well established mass production technology
 - 1/3 ~2/3 of the total manufacturing cost
- MEMS packaging
 - MEMS devices are mostly freestanding and moveable
 - Non-standardized process
 - Packaging requirement different from one MEMS device to another
 - Easily takes up 2/3 or more of the manufacturing cost for initial commercialization

TI DLP packaging process

