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Public key cryptosystem (PKC)
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One-way function

Definition A function f from a set X to a set Y is called a one-way function if f(x) is
“easy” to compute for all z € X but for “essentially all” elements y € Im(f) it is “com-
putationally infeasible” to find any z € X such that f(z) = y.

Example (one-way function) Take X = {1,2,3,...,16} and define f(z) = 7, for all
¢ € X where r; 1s the remainder when 3% 1s divided by 17. Explicitly.

z |1 2 3 45 6 7 &8 9 10 11 12 13 14 15 16
flz) {3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 1

Definition A trapdoor one-way function is a one-way function f: X — Y with the
additional property that given some extra information (called the frapdoor information) it
becomes feasible to find for any given y € Im(f), anz € X such that f(z) = y.
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More number Theory

Z.x is a multiplicative group of order ¢(n).
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Algorithm 5.1: EUCLIDEAN ALGORITHM(a, b)

ro < a MAPLE command:

i

m 1

while ,,, #£ 0
Gm < |

do 'm+1 < T'm—-1—qmTm

m<m-+4 1

m—m — 1

retumn (g1, ., G )

comment: r,,, = gcd(a, b)

rm—lJ

m
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Exercise

5.1 In Algorithm 5.1, prove that
ged(ro,r1) = ged(r1,r2) = -+ - = ged(rm—1,7m) = rm

and, hence, r,,, = gcd(a, b).
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Algorithm 5.2: EXTENDED EUCLIDEAN ALGORITHM(a, b)

ap < «a
bo(—b
t0<—0

t 1
sg — 1
s+ (

¢ — |32

r — ag — qbo

MAPLE

command:
1gcdex(a, b, ’s’, ’t’)

whiler > (

do

(temp — to — gt
to ¢

t < temp
temp < so — gs
Sg <« S

s  temp
ao(—bo
bo(—?‘

g [ 2]
k?”(—ao—qbo

o

T < bo
return (7, s, t)
comment: » = gcd(a, b) and sa + tb = r
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Exercise

54 Compute gcd(b?, 93), and find integers s and ¢ such that 575 + 93t = ged(57,93).


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

COROLLARY 5.2 Suppose ged(ro, 1) = 1. Then ;™" mod rg = t,,, mod rg

e Proof

I = ged(rg, r1) = smro +tmr.
Reducing this equation modulo rg, we obtain

tr1 = 1 (mod To).
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Example 5.1 Suppose we wish to calculate 28=! mod 75. Then we compute
the following:

vl g | s |t
0|75 1 0
1|28 2 0 1
2119 1 11 —2
31 9] 2| -1 3
4 119 3| —8

Therefore, we have found that
3 XT7H—8x28=1.
Applying Corollary 5.2, we see that

2871 mod 75 = —8 mod 75 = 67.
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Exercise

3.3 Use the EXTENDED EUCLIDEAN ALGORITHM to compute the following multi-
plicative inverses:
(@) 177" mod 101
(b) 357" mod 1234
(c) 3125~" mod 9987.
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Algorithm 5.3: MULTIPLICATIVE INVERSE(a, b)

o o

bo —b
tO — 0 While r > 0
f 1 temp « (to — qt) mod a
) GDJ to 1
7 bo l + temp
r < ag — gbg do < ag « by
MAPLE d b =
. commana. q — L%&J
a™(-1) mod b r < ag — qbo
if by £ 1
then b has no inverse modulo a
else return (?)
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THEOREM 5.3 (Chinese remainder theorem) Supposemy, ..., m, are pairwise
relatively prime positive integers, and suppose a1, . . ., a, are integers. Then the
system of v congruences ¥ = a; (mod m;) (1 < i < r) has a unique solution

modulo M = my X -+ X m,, which is given by

r
L = ZaiMiyi mod M,

i=1

where M; = M /m; and y; = M;" " mod m;, for1 <1 <r,

MAPLE command:

chrem([a,, ..., a],[m,, ..., m.])
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For example, if # = 5 (mod 7), x = 3 (mod 11) and x = 10 (mod 13), then
this formula tells us that

z = (715 x 54 364 x 3+ 924 x 10) mod 1001
= 13907 mod 1001
= 894.

This can be verified by reducing 894 modulo 7, 11 and 13. |
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Exercise

5.6 Solve the following system of congruences:
z = 12 (mod 25)
z = 9 (mod 26)
z = 23 (mod 27).
5.7 Solve the following system of congruences:
13z = 4 (mod 99)
15z = 56 (mod 101).

HINT First use the EXTENDED EUCLIDEAN ALGORITHM, and then apply the
Chinese remainder theorem.
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The order of group elements

* Definition: The order of an element g 1n G 1s the
smallest positive integer m such that g” =

« Example: Find the order of 3 and 2 in Z,".
—31=3;32=2;33=6;34=4;3>=5;35=1 (mod 7).
—21=2:22=4:23=1 (mod 7).

THEOREM 5.4 (Lagrange) Suppose G is a multiplicative group of order n,
and g € G. Then the order of g divides n.

— The order of an element g in Z,” must divides 6 {1, 2, 3, 6}.

— The order of an element g in Z,,” must divides 10 {1, 2, 5,
10}.
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Facts

COROLLARY 5.5 Ifb€ Z,", then b*(") = 1 (mod n).

COROLLARY 5.6 (Fermat) Suppose p is prime and b € 7.,. Then b* = b
(mod p).

THEOREM 5.7 Ifpis prime, then Z," is a cyclic group.

Definition: An element having order p — 1 modulo p 1s

call a primitive element modulo p.
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Observe that « is a primitive element modulo p if and only if

{ai:(]gigp—Q}:Zp*.

Now, suppose p is prime and « is a primitive element modulo p. Any element
8 € Z," can be written as 3 = o', where 0 < i < p — 2, in a unique way. It is
not difficult to prove that the order of 8 = o' is

p—1
ng(p_ 133)

THEOREM 5.8 Suppose that p > 2 is prime and o« € 7," . Then o is a primitive
element modulo p if and only if o\P=1/9 2 1 (mod p) for all primes q such that

q|(p-1).
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we can verify that 2 is a primitive element modulo 13:

2° mod 13 = 1
2! mod 13 = 2
22 mod 13 = 4
23 mod 13 = 8
2% mod 13 = 3
2° mod 13 = 6
2° mod 13 = 12
27 mod 13 = 11
2% mod 13 = 9
27 mod 13 = 5

210 hod 13 = 10
21 mod 13 = 7.
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Exercise

5.8 Use Theorem 5.8 to find the smallest primitive element modulo 97.
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The RSA cryptosystem

Short break
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Cryptosystem 5.1: RSA Cryptosystem
Let n = pq, where p and q are primes. Let P = € = 7Z,,, and define
X = {(n,p,q,a,b): ab=1 (mod ¢(n))}.

For K = (n,p,q,a,b),define

b

ek () = z” mod n

and
dg (y) = y" mod n

(z,y € Zp). The values n and b comprise the public key, and the values p, g
and a form the private key.
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Let’s verify that encryption and decryption are inverse operations. Since
ab =1 (mod ¢(n)),

we have that
ab=1t¢p(n)+ 1

for some integer ¢ > 1. Suppose that x € 7Z,,"; then we have
(2°)* = 2+ (mod n)
= (") (mod n)

1tz (mod n)

11

= z (mod n),

Exercise: show that (x*)?=x (mod n) ifxin Z \ Z *.
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Example 5.5 Suppose Bob chooses p = 101 and ¢ = 113. Then n = 11413
and ¢(n) = 100 x 112 = 11200. Since 11200 = 2957, an integer b can be used
as an encryption exponent if and only if b is not divisible by 2, 5 or 7. (In practice,
however, Bob will not factor ¢(n). He will verify that ged(¢(n),b) = 1 using
Algorithm 5.3. If this is the case, then he will compute b~! at the same time.)
Suppose Bob chooses b = 3533. Then

b=1 mod 11200 = 6597.

Hence, Bob’s secret decryption exponent is a = 6597.
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Bob publishes n = 11413 and b = 3533 in a directory. Now, suppose Alice
wants to encrypt the plaintext 9726 to send to Bob. She will compute

97263°33 mod 11413 = 5761

and send the ciphertext 5761 over the channel. When Bob receives the ciphertext
5761, he uses his secret decryption exponent to compute

5761%°°" mod 11413 = 9726.

Cryptool it!
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The security of the RSA Cryptosystem 1s based on the belief that the encryption
function ey () = z” mod n is a one-way function, so it will be computationally
infeasible for an opponent to decrypt a ciphertext. The trapdoor that allows Bob
to decrypt a ciphertext is the knowledge of the factorization n = pq. Since Bob
knows this factorization, he can compute ¢(n) = (p—1)(¢—1), and then compute
the decryption exponent ¢ using the EXTENDED EUCLIDEAN ALGORITHM. We
will say more about the security of the RSA Cryptosystem later on.
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Algorithm 5.4: RSA PARAMETER GENERATION

1. Generate two large primes, p and ¢, such that p # ¢

2. m<pgand ¢(n) « (p—1)(¢g — 1)

3. Choose arandom b (1 < b < ¢(n)) such that ged(b, ¢(n)) = 1
4. a <+ b~ mod ¢(n)

5. The public key is (n, b) and the private key is (p, g, ).
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Algorithm 5.5: SQUARE-AND-MULTIPLY(x, ¢, n)

z 1
fori < ¢ — 1 downto (
2 +— z*mod n
do {ifc; =1
then » « (2 x ) mod n
return (z)
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