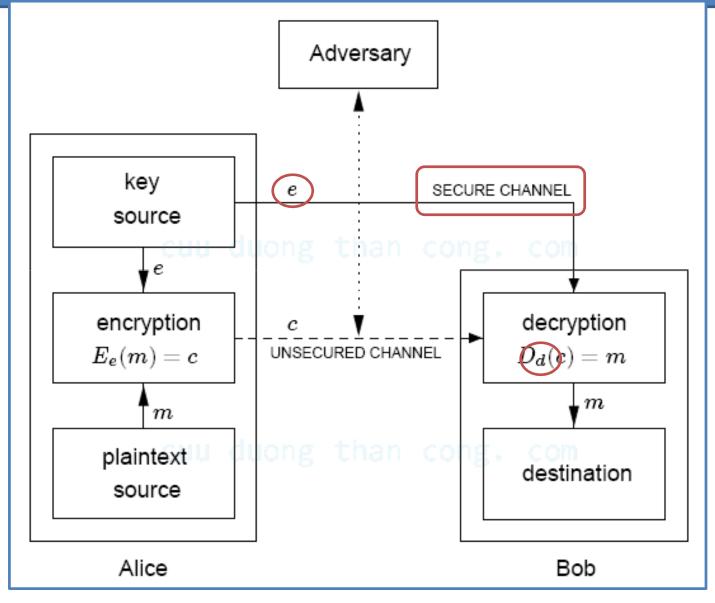
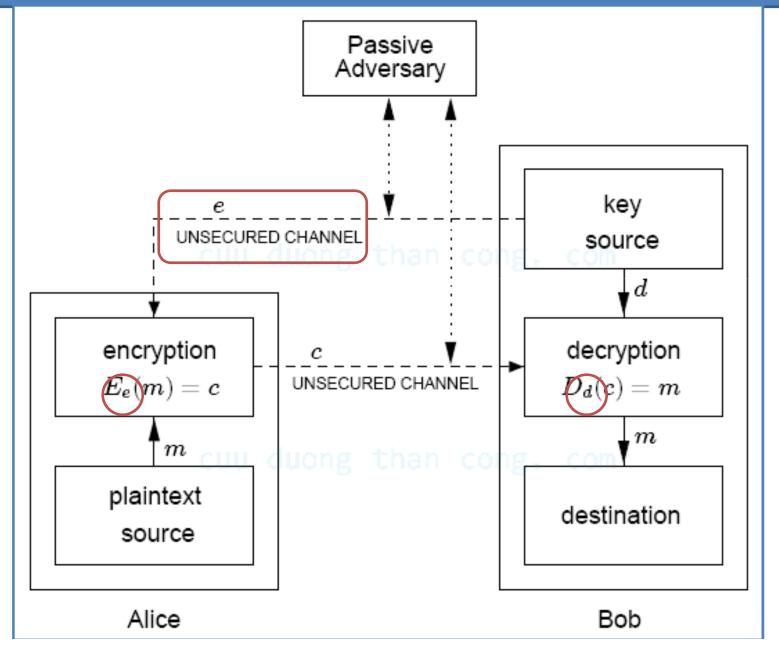
The RSA Cryptosystem

cuu duong than cong. com

Symmetric key cryptosystem



Public key cryptosystem (PKC)



One-way function

Definition A function f from a set X to a set Y is called a *one-way function* if f(x) is "easy" to compute for all $x \in X$ but for "essentially all" elements $y \in \text{Im}(f)$ it is "computationally infeasible" to find any $x \in X$ such that f(x) = y.

Example (one-way function) Take $X = \{1, 2, 3, ..., 16\}$ and define $f(x) = r_x$ for all $x \in X$ where r_x is the remainder when 3^x is divided by 17. Explicitly,

x																
f(x)	3	9	10	13	5	15	11	16	14	8	7	4	12	2	6	1

Definition A trapdoor one-way function is a one-way function $f: X \longrightarrow Y$ with the additional property that given some extra information (called the trapdoor information) it becomes feasible to find for any given $y \in \text{Im}(f)$, an $x \in X$ such that f(x) = y.

More number Theory

 \mathbb{Z}_n^* is a multiplicative group of order $\phi(n)$.

cuu duong than cong. com

Algorithm 5.1: EUCLIDEAN ALGORITHM(a, b)

$$r_0 \leftarrow a$$

$$r_1 \leftarrow b$$

$$m \leftarrow 1$$

MAPLE command: igcd(a,b)

while
$$r_m \neq 0$$

$$\begin{cases} q_m \leftarrow \left \lfloor \frac{r_{m-1}}{r_m} \right \rfloor \\ r_{m+1} \leftarrow r_{m-1} - q_m r_m \\ m \leftarrow m+1 \end{cases}$$

$$m \leftarrow m-1$$

return
$$(q_1,\ldots,q_m;r_m)$$

comment: $r_m = \gcd(a, b)$

example

Exercise

5.1 In Algorithm 5.1, prove that

$$\gcd(r_0,r_1)=\gcd(r_1,r_2)=\cdots=\gcd(r_{m-1},r_m)=r_m$$
 and, hence, $r_m=\gcd(a,b)$.

cuu duong than cong. com

Algorithm 5.2: EXTENDED EUCLIDEAN ALGORITHM(a, b)

$$egin{aligned} a_0 &\leftarrow a \ b_0 &\leftarrow b \ t_0 &\leftarrow 0 \ t &\leftarrow 1 \ s_0 &\leftarrow 1 \ s &\leftarrow 0 \ q &\leftarrow \left\lfloor rac{a_0}{b_0}
ight
floor} \ r &\leftarrow a_0 - q b_0 \end{aligned}$$

MAPLE command:

igcdex(a, b, 's', 't')

$$\begin{array}{l} \textbf{while } r > 0 \\ \begin{cases} temp \leftarrow t_0 - qt \\ t_0 \leftarrow t \\ t \leftarrow temp \\ temp \leftarrow s_0 - qs \\ s_0 \leftarrow s \\ s \leftarrow temp \\ a_0 \leftarrow b_0 \\ b_0 \leftarrow r \\ q \leftarrow \lfloor \frac{a_0}{b_0} \rfloor \\ r \leftarrow a_0 - qb_0 \\ \end{cases} \\ r \leftarrow b_0 \\ \textbf{return } (r, s, t) \\ \textbf{comment: } r = \gcd(a, b) \text{ and } sa + tb = r \\ \end{cases}$$

Exercise

5.4 Compute gcd(57, 93), and find integers s and t such that 57s + 93t = gcd(57, 93).

cuu duong than cong. com

COROLLARY 5.2 Suppose
$$gcd(r_0, r_1) = 1$$
. Then $r_1^{-1} \mod r_0 = t_m \mod r_0$.

Proof

$$1 = \gcd(r_0, r_1) = s_m r_0 + t_m r_1.$$

Reducing this equation modulo r_0 , we obtain

$$t_m r_1 \equiv 1 \pmod{r_0}$$
.

cuu duong than cong. com

Example 5.1 Suppose we wish to calculate $28^{-1} \mod 75$. Then we compute the following:

i	r_i	q_i	s_i	t_i
0	75		1	0
1	28	2	0	1
2	19	1	1	-2
3	9	2	-1	3
4	on l e	9	an 3ϵ	-8

Therefore, we have found that

$$3 \times 75 - 8 \times 28 = 1$$
.

Applying Corollary 5.2, we see that

$$28^{-1} \mod 75 = -8 \mod 75 = 67.$$

Exercise

- 5.3 Use the EXTENDED EUCLIDEAN ALGORITHM to compute the following multiplicative inverses:
 - (a) $17^{-1} \mod 101$
 - (b) $357^{-1} \mod 1234$ duong than cong. com
 - (c) $3125^{-1} \mod 9987$.

cuu duong than cong. com

Algorithm 5.3: MULTIPLICATIVE INVERSE(a, b)

$$egin{aligned} a_0 &\leftarrow a \ b_0 &\leftarrow b \ t_0 &\leftarrow 0 \ \hline t &\leftarrow 1 \ q &\leftarrow \lfloor rac{a_0}{b_0}
floor & ext{cutu duong} \ r &\leftarrow a_0 - qb_0 \end{aligned}$$

MAPLE command: a^(-1) mod b

example

$$\begin{array}{l} \textbf{while } r>0 \\ & \begin{cases} temp \leftarrow (t_0-qt) \bmod a \\ t_0 \leftarrow t \\ t \leftarrow temp \end{cases} \\ a_0 \leftarrow b_0 \\ b_0 \leftarrow r \\ q \leftarrow \lfloor \frac{a_0}{b_0} \rfloor \\ r \leftarrow a_0 - qb_0 \end{cases} \\ \textbf{if } b_0 \neq 1 \\ \textbf{then } b \text{ has no inverse modulo } a \\ \textbf{else return } (t) \\ \end{array}$$

THEOREM 5.3 (Chinese remainder theorem) Suppose m_1, \ldots, m_r are pairwise relatively prime positive integers, and suppose a_1, \ldots, a_r are integers. Then the system of r congruences $x \equiv a_i \pmod{m_i}$ $(1 \leq i \leq r)$ has a unique solution modulo $M = m_1 \times \cdots \times m_r$, which is given by

$$x = \sum_{i=1}^r a_i M_i y_i \mod M,$$

where $M_i = M/m_i$ and $y_i = M_i^{-1} \mod m_i$, for $1 \le i \le r$.

MAPLE command:

chrem($[a_1, ..., a_r], [m_1, ..., m_r]$)

For example, if $x \equiv 5 \pmod{7}$, $x \equiv 3 \pmod{11}$ and $x \equiv 10 \pmod{13}$, then this formula tells us that

$$x = (715 \times 5 + 364 \times 3 + 924 \times 10) \mod 1001$$

$$= 13907 \mod 1001$$

$$= 894.$$

This can be verified by reducing 894 modulo 7, 11 and 13.

cuu duong than cong. com

Exercise

5.6 Solve the following system of congruences:

$$x \equiv 12 \pmod{25}$$

$$x \equiv 9 \pmod{26}$$

$$x \equiv 23 \pmod{27}$$
.

5.7 Solve the following system of congruences:

$$13x \equiv 4 \pmod{99}$$

$$15x \equiv 56 \pmod{101}.$$

HINT First use the EXTENDED EUCLIDEAN ALGORITHM, and then apply the Chinese remainder theorem.

The order of group elements

- **Definition**: The *order* of an element g in G is the smallest positive integer m such that $g^m = 1$.
- Example: Find the order of 3 and 2 in \mathbb{Z}_7^* .
 - $-3^1 = 3$; $3^2 = 2$; $3^3 = 6$; $3^4 = 4$; $3^5 = 5$; $3^6 = 1 \pmod{7}$.
 - $-2^1 = 2$; $2^2 = 4$; $2^3 = 1 \pmod{7}$.

THEOREM 5.4 (Lagrange) Suppose G is a multiplicative group of order n, and $g \in G$. Then the order of g divides n.

- The order of an element g in \mathbb{Z}_7^* must divides 6 {1, 2, 3, 6}.
- The order of an element g in \mathbb{Z}_{11}^* must divides 10 {1, 2, 5, 10}.

Facts

COROLLARY 5.5 If $b \in \mathbb{Z}_n^*$, then $b^{\phi(n)} \equiv 1 \pmod{n}$.

COROLLARY 5.6 (Fermat) Suppose p is prime and $b \in \mathbb{Z}_p$. Then $b^p \equiv b \pmod{p}$.

THEOREM 5.7 If p is prime, then \mathbb{Z}_p^* is a cyclic group.

Definition: An element having order p-1 modulo p is call a *primitive element* modulo p.

Observe that α is a primitive element modulo p if and only if

$$\{\alpha^i: 0 \le i \le p-2\} = \mathbb{Z}_p^*.$$

Now, suppose p is prime and α is a primitive element modulo p. Any element $\beta \in \mathbb{Z}_p^*$ can be written as $\beta = \alpha^i$, where $0 \le i \le p-2$, in a unique way. It is not difficult to prove that the order of $\beta = \alpha^i$ is

$$\frac{p-1}{\gcd(p-1,i)}.$$

THEOREM 5.8 Suppose that p > 2 is prime and $\alpha \in \mathbb{Z}_p^*$. Then α is a primitive element modulo p if and only if $\alpha^{(p-1)/q} \not\equiv 1 \pmod{p}$ for all primes q such that $q \mid (p-1)$.

we can verify that 2 is a primitive element modulo 13:

$$2^0 \mod 13 = 1$$

$$2^1 \mod 13 = 2$$

$$2^2 \bmod 13 = 4$$

$$2^3 \mod 13 = 8$$

$$2^4 \mod 13 = 3$$

$$2^5 \bmod 13 = 6$$

$$2^6 \mod 13 = 12$$

$$2^7 \mod 13 = 11$$

$$2^8 \mod 13 = 9$$

$$2^9 \bmod 13 = 5$$

$$2^{10} \mod 13 = 10$$

$$2^{11} \mod 13 = 7$$
.

CuuDuongThanCong.com

Exercise

5.8 Use Theorem 5.8 to find the smallest primitive element modulo 97.

cuu duong than cong. com

The RSA cryptosystem

Cryptosystem 5.1: RSA Cryptosystem

Let n=pq, where p and q are primes. Let $\mathfrak{P}=\mathfrak{C}=\mathbb{Z}_n$, and define

$$\mathcal{K} = \{(n, p, q, a, b) : ab \equiv 1 \pmod{\phi(n)}\}.$$

For K = (n, p, q, a, b), define

 $e_K(x) = x^b mod n$

and

$$d_K(y) = y^a \mod n$$

 $(x, y \in \mathbb{Z}_n)$. The values n and b comprise the public key, and the values p, q and a form the private key.

Let's verify that encryption and decryption are inverse operations. Since

$$ab \equiv 1 \pmod{\phi(n)},$$

we have that

$$ab = t\phi(n) + 1$$

for some integer $t \geq 1$. Suppose that $x \in \mathbb{Z}_n^*$; then we have

$$(x^b)^a \equiv x^{t\phi(n)+1} \pmod{n}$$

 $\equiv (x^{\phi(n)})^t x \pmod{n}$
 $\equiv 1^t x \pmod{n}$
 $\equiv x \pmod{n}$,

Exercise: show that $(x^b)^a = x \pmod{n}$ if x in $Z_n \setminus Z_n^*$.

Example 5.5 Suppose Bob chooses p = 101 and q = 113. Then n = 11413 and $\phi(n) = 100 \times 112 = 11200$. Since $11200 = 2^65^27$, an integer b can be used as an encryption exponent if and only if b is not divisible by 2, 5 or 7. (In practice, however, Bob will not factor $\phi(n)$. He will verify that $\gcd(\phi(n), b) = 1$ using Algorithm 5.3. If this is the case, then he will compute b^{-1} at the same time.) Suppose Bob chooses b = 3533. Then

$$b^{-1} \mod 11200 = 6597.$$

Hence, Bob's secret decryption exponent is a = 6597.

Bob publishes n=11413 and b=3533 in a directory. Now, suppose Alice wants to encrypt the plaintext 9726 to send to Bob. She will compute

$$9726^{3533} \mod 11413 = 5761$$

cuu duong than cong. com

and send the ciphertext 5761 over the channel. When Bob receives the ciphertext 5761, he uses his secret decryption exponent to compute

$$5761^{6597} \mod 11413 = 9726.$$

Cryptool it!

The security of the RSA Cryptosystem is based on the belief that the encryption function $e_K(x) = x^b \mod n$ is a one-way function, so it will be computationally infeasible for an opponent to decrypt a ciphertext. The trapdoor that allows Bob to decrypt a ciphertext is the knowledge of the factorization n = pq. Since Bob knows this factorization, he can compute $\phi(n) = (p-1)(q-1)$, and then compute the decryption exponent a using the EXTENDED EUCLIDEAN ALGORITHM. We will say more about the security of the RSA Cryptosystem later on.

cuu duong than cong. com

Algorithm 5.4: RSA PARAMETER GENERATION

- 1. Generate two large primes, p and q, such that $p \neq q$
- 2. $n \leftarrow pq$ and $\phi(n) \leftarrow (p-1)(q-1)$ ng. com
- 3. Choose a random b ($1 < b < \phi(n)$) such that $gcd(b, \phi(n)) = 1$
- $4. \quad a \leftarrow b^{-1} \bmod \phi(n)$
- 5. The public key is (n, b) and the private key is (p, q, a).

cuu duong than cong. com

Algorithm 5.5: SQUARE-AND-MULTIPLY(x,c,n) $z \leftarrow 1$ for $i \leftarrow \ell - 1$ downto 0 do $\begin{cases} z \leftarrow z^2 \mod n \\ \text{if } c_i = 1 \text{ duong than cong. com} \\ \text{then } z \leftarrow (z \times x) \mod n \end{cases}$ return (z)

cuu duong than cong. com