160

Chapter 3 Arithmetic for Computers

Introduction

Computer words are composed of bits; thus words can be represented as binary
numbers. Although the natural numbers 0, 1, 2, and so on can be represented
either in decimal or binary form, what about the other numbers that commonly
occur? For example:

m How are negative numbers represented?
B What is the largest number that can be represented in a computer word?

B What happens if an operation creates a number bigger than can be repre-
sented?

B What about fractions and real numbers?

And underlying all these questions is a mystery: How does hardware really multi-
ply or divide numbers?

The goal of this chapter is to unravel this mystery, including representation of
numbers, arithmetic algorithms, hardware that follows these algorithms, and the
implications of all this for instruction sets. These insights may even explain quirks
that you have already encountered with computers. (If you are familiar with
signed binary numbers, you may wish to skip the next section and go to Section
3.3 on page 170.)

Signed and Unsigned Numbers

Numbers can be represented in any base; humans prefer base 10 and, as we exam-
ined in Chapter 2, base 2 is best for computers. To avoid confusion we subscript
decimal numbers with ten and binary numbers with two.

In any number base, the value of ith digit d is

d x Basei

where i starts at 0 and increases from right to left. This leads to an obvious way to
number the bits in the word: Simply use the power of the base for that bit. For
example,

10114,

3.2 Signed and Unsigned Numbers 161

represents
(1x2%) +(0x2) + 1 x2) + (1 x 29,
= (1 x8) +(0x4) +(1x2) + (1 x 1),
- 8 + 0 + 2 + lpen
= 11ten
Hence the bits are numbered 0, 1, 2, 3, . . . from right to left in a word. The

drawing below shows the numbering of bits within a MIPS word and the place-

ment of the number 1011,

313029282726252423222120191817161514131211109876543210

000000000OO000000000‘0000‘0000|1011‘

(32 bits wide)

Since words are drawn vertically as well as horizontally, leftmost and rightmost

may be unclear. Hence, the phrase least significant bit is used to refer to the right- least significant bit The right-
most bit (bit 0 above) and most significant bit to the leftmost bit (bit 31). most bit in a MIPS word.

The MIPS word is 32 bits long, so we can represent 2° different 32-bit pat;zems. most significant bit The left-
It is natural to let these combinations represent the numbers from 0 to 27° — 1 most bit in a MIPS word.
(4,294,967,295,,,):

0000 0000 0000 0000 0000 0000 0000 00004,, = Oen
0000 0000 0000 0000 0000 0000 0000 0001, = liey
0000 0000 0000 0000 0000 0000 0000 00104y, = 2ten

1111 1111 1111 1111 1111 1111 1111 1101y, = 4,294,967,293,,,
1111 1111 1111 1111 1111 1111 1111 11104, = 4,294,967,294,,
1111 1111 1111 1111 1111 1111 1111 11114, = 4,294,967,295,,,

That is, 32-bit binary numbers can be represented in terms of the bit value times a
power of 2 (here xi means the ith bit of x):

(31 x 22D + (x30 x 229 + (x29 X 22%) + ... + (x1 x 21) + (x0x 29)

Base 2 is not natural to human beings; we have 10 fingers and so find base 10 nat- Hardware
ural. Why didn’t computers use decimal? In fact, the first commercial computer Software
did offer decimal arithmetic. The problem was that the computer still used on and

off signals, so a decimal digit was simply represented by several binary digits. Dec- Interface
imal proved so inefficient that subsequent computers reverted to all binary, con-

verting to base 10 only for the relatively infrequent input/output events.

162

Chapter 3 Arithmetic for Computers

ASCII versus Binary Numbers

We could represent numbers as strings of ASCII digits instead of as integers
(see Figure 2.21 on page 91). How much does storage increase if the number
1 billion is represented in ASCII versus a 32-bit integer?

One billion is 1 000 000 000, so it would take 10 ASCII digits, each 8 bits
long. Thus the storage expansion would be (10 x 8)/32 or 2.5. In addition to
the expansion in storage, the hardware to add, subtract, multiply, and divide
such numbers is difficult. Such difficulties explain why computing profes-
sionals are raised to believe that binary is natural and that the occasional dec-

imal computer is bizarre.

Keep in mind that the binary bit patterns above are simply representatives of
numbers. Numbers really have an infinite number of digits, with almost all being
0 except for a few of the rightmost digits. We just don’t normally show leading 0s.

Hardware can be designed to add, subtract, multiply, and divide these binary
bit patterns. If the number that is the proper result of such operations cannot be
represented by these rightmost hardware bits, overflow is said to have occurred. It’s
up to the operating system and program to determine what to do if overflow
occurs.

Computer programs calculate both positive and negative numbers, so we need
a representation that distinguishes the positive from the negative. The most obvi-
ous solution is to add a separate sign, which conveniently can be represented in a
single bit; the name for this representation is sign and magnitude.

Alas, sign and magnitude representation has several shortcomings. First, it’s
not obvious where to put the sign bit. To the right? To the left? Early computers
tried both. Second, adders for sign and magnitude may need an extra step to set
the sign because we can’t know in advance what the proper sign will be. Finally, a
separate sign bit means that sign and magnitude has both a positive and negative
zero, which can lead to problems for inattentive programmers. As a result of these
shortcomings, sign and magnitude was soon abandoned.

In the search for a more attractive alternative, the question arose as to what
would be the result for unsigned numbers if we tried to subtract a large number
from a small one. The answer is that it would try to borrow from a string of lead-
ing 0s, so the result would have a string of leading 1s.

3.2 Signed and Unsigned Numbers

1le3

Given that there was no obvious better alternative, the final solution was to
pick the representation that made the hardware simple: leading 0s mean positive,
and leading 1s mean negative. This convention for representing signed binary
numbers is called two’s complement representation:

00000000 00000000 0000 000000000000, = O4ep
00000000 00000000 0000 000000000001,,, = 1.,
00000000 00000000 0000 000000000010,y = 2tep

01111111111111111111111111111101,,, = 2,147,483,645,,,,
011111111111111111111111111111104,,, = 2,147,483,646,,
011111111111111111111111111111114,, = 2,147,483,647,,,
10000000 00000000 0000 00000000 0000,,, = -2,147,483,648,,,
10000000 00000000 0000 000000000001 ,,, = -2,147,483,647,.,
10000000 00000000 0000 00000000 0010,,, = -2,147,483,646,.,

1111111111111111111111111111110140 = ~3ten
111111111111111111111111111111104,, = ~2+ep
1111111111111111111111111111111245 = ~Liep

The positive half of the numbers, from 0 to 2,147,483,647,,, (2% — 1), use the
same representation as before. The following bit pattern (1000 ...0000,,,) rep-
resents the most negative number —2,147,483,648,,, (-2°1). It is followed by a
declining set of negative numbers: —2,147,483,647,,, (1000 ...0001,,,) down to
iy (1111 ... 111 140)

Two’s complement does have one negative number, —2,147,483,648,,,,, that has
no corresponding positive number. Such imbalance was a worry to the inattentive
programmer, but sign and magnitude had problems for both the programmer and
the hardware designer. Consequently, every computer today uses two’s comple-
ment binary representations for signed numbers.

Two’s complement representation has the advantage that all negative numbers
have a 1 in the most significant bit. Consequently, hardware needs to test only this
bit to see if a number is positive or negative (with 0 considered positive). This bit
is often called the sign bit. By recognizing the role of the sign bit, we can represent
positive and negative 32-bit numbers in terms of the bit value times a power of 2:

(31 X =22 + (x30 x 2°9) + (x29 x 2%%) +. .. + (x1 x21) + (x0x 29)

ten two

The sign bit is multiplied by —2°1, and the rest of the bits are then multiplied by
positive versions of their respective base values.

164

Chapter 3 Arithmetic for Computers

Binary to Decimal Conversion

What is the decimal value of this 32-bit two’s complement number?

1111 1111 1111 1111 1111 1111 1111 11004,

Substituting the number’s bit values into the formula above:

(Ix=-22D+(1x22)+ (1 x22)+...+ (1 x2H) +(0x2H) + (0x29
=23 4 20 4 92 4L 4+ 22 4+ 0 + 0

= —2,147,483,648,,, + 2,147,483,644,,,

=-4

ten

We’ll see a shortcut to simplify conversion soon.

Just as an operation on unsigned numbers can overflow the capacity of hard-
ware to represent the result, so can an operation on two’s complement numbers.
Overflow occurs when the leftmost retained bit of the binary bit pattern is not the
same as the infinite number of digits to the left (the sign bit is incorrect): a 0 on
the left of the bit pattern when the number is negative or a 1 when the number is
positive.

Hardware
Software
Interface

Signed versus unsigned applies to loads as well as to arithmetic. The function of a
signed load is to copy the sign repeatedly to fill the rest of the register—called sign
extension—but its purpose is to place a correct representation of the number
within that register. Unsigned loads simply fill with 0s to the left of the data, since
the number represented by the bit pattern is unsigned.

When loading a 32-bit word into a 32-bit register, the point is moot; signed and
unsigned loads are identical. MIPS does offer two flavors of byte loads: load byte
(1b) treats the byte as a signed number and thus sign-extends to fill the 24 left-
most bits of the register, while load byte unsigned (1bu) works with unsigned inte-
gers. Since C programs almost always use bytes to represent characters rather than
consider bytes as very short signed integers, 1bu is used practically exclusively for
byte loads. For similar reasons, load half (1h) treats the halfword as a signed num-
ber and thus sign-extends to fill the 16 leftmost bits of the register, while load half-
word unsigned (1hu) works with unsigned integers.

3.2 Signed and Unsigned Numbers

Unlike the numbers discussed above, memory addresses naturally start at 0 and
continue to the largest address. Put another way, negative addresses make no
sense. Thus, programs want to deal sometimes with numbers that can be positive
or negative and sometimes with numbers that can be only positive. Some pro-
gramming languages reflect this distinction. C, for example, names the former
integers (declared as int in the program) and the latter unsigned integers
(unsigned int). Some C style guides even recommend declaring the former as
signed int tokeep the distinction clear.

Comparison instructions must deal with this dichotomy. Sometimes a bit pat-
tern with a 1 in the most significant bit represents a negative number and, of
course, is less than any positive number, which must have a 0 in the most signifi-
cant bit. With unsigned integers, on the other hand, a 1 in the most significant bit
represents a number that is larger than any that begins with a 0. (We’ll take advan-
tage of this dual meaning of the most significant bit to reduce the cost of the array
bounds checking in a few pages.)

MIPS offers two versions of the set on less than comparison to handle these
alternatives. Set on less than (s1t) and set on less than immediate (s1ti) work
with signed integers. Unsigned integers are compared using set on less than
unsigned (s1tu) and set on less than immediate unsigned (s1tiu).

Signed versus Unsigned Comparison

Suppose register $50 has the binary number
1111 1111 1111 1111 1111 1111 1111 11114,
and that register $s1 has the binary number
0000 0000 0000 0000 0000 0000 0000 0001;y,
What are the values of registers $t0 and $t1 after these two instructions?

slt $t0, $s0, $sl1 # signed comparison
sltu $t1, $s0, $sl1 # unsigned comparison

Hardware
Software
Interface

166

Chapter 3 Arithmetic for Computers

The value in register $s0 represents —1 if it is an integer and 4,294,967,295
if it is an unsigned integer. The value in register $s1 represents 1 in either
< 1y and register $t1

case. Then register $t0 has the value 1, since -1
has the value 0, since 4,294,967,295,, > L.

ten

Before going on to addition and subtraction, let’s examine a few useful short-

cuts when working with two’s complement numbers.

The first shortcut is a quick way to negate a two’s complement binary number.
Simply invert every 0 to 1 and every 1 to 0, then add one to the result. This short-
cut is based on the observation that the sum of a number and its inverted repre-
sentation must be 111...111,,,, which represents —1. Since x + x = —1, therefore

x+x+1 =0o0orx+1=-—x.

Negation Shortcut

Negate 2,,,, and then check the result by negating —2,..

24, = 0000 0000 0000 0000 0000 0000 0000 0010,
Negating this number by inverting the bits and adding one,

111111111111 1111 11111111111111014,,¢
+ 1two

111111111111 1111 111111111111111 04,4
_Zten

Going the other direction,
111111111111111112111111 111111104,
is first inverted and then incremented:

00000000000000000000000000000001 4,4
+ 1two

000000000000000000000000000000104,4
= 2ten

3.2 Signed and Unsigned Numbers

1le7

The second shortcut tells us how to convert a binary number represented in #
bits to a number represented with more than n bits. For example, the immediate
field in the load, store, branch, add, and set on less than instructions contains a
two’s complement 16-bit number, representing —32,768,,, (-2!°) to 32,767,
(2" —1). To add the immediate field to a 32-bit register, the computer must con-
vert that 16-bit number to its 32-bit equivalent. The shortcut is to take the most
significant bit from the smaller quantity—the sign bit—and replicate it to fill the
new bits of the larger quantity. The old bits are simply copied into the right por-
tion of the new word. This shortcut is commonly called sign extension.

Sign Extension Shortcut

Convert 16-bit binary versions of 2., and —2,,,, to 32-bit binary numbers.

The 16-bit binary version of the number 2 is

000000000000 0010,,, = 2¢en

It is converted to a 32-bit number by making 16 copies of the value in the
most significant bit (0) and placing that in the left-hand half of the word. The
right half gets the old value:

0000 00000000000000000000000000104y5 = 2ten
Let’s negate the 16-bit version of 2 using the earlier shortcut. Thus,
0000 0000000000104y,

becomes

11111111111111014,,

+ 1two

= 11111111111111104,,

Creating a 32-bit version of the negative number means copying the sign
bit 16 times and placing it on the left:

1111111111111111111111111111111045 = ~2¢en

This trick works because positive two’s complement numbers really have an
infinite number of 0s on the left and those that are negative two’s complement

le8

Chapter 3 Arithmetic for Computers

Check
Yourself

numbers have an infinite number of 1s. The binary bit pattern representing a
number hides leading bits to fit the width of the hardware; sign extension simply
restores some of them.

The third shortcut reduces the cost of checking if 0 < x < 3, which matches the
index out-of-bounds check for arrays. The key is that negative integers in two’s
complement notation look like large numbers in unsigned notation; that is, the
most significant bit is a sign bit in the former notation but a large part of the num-
ber in the latter. Thus, an unsigned comparison of x < y also checks if x is nega-
tive.

Bounds Check Shortcut

Use this shortcut to reduce an index-out-of-bounds check: jump to Index-
OutOfBounds if $al> $t2 orif $al is negative.

The checking code just uses s1tu to do both checks:

sTtu $t0,%al,$t2 # Temp reg $t0=0 if k>=length or k<0
beq $t0,$zero,IndexOut0OfBounds #if bad, goto Error

Summary

The main point of this section is that we need to represent both positive and neg-
ative integers within a computer word, and although there are pros and cons to
any option, the overwhelming choice since 1965 has been two’s complement.
Figure 3.1 shows the additions to the MIPS assembly language revealed in this sec-

tion. (The MIPS machine language is also illustrated on the back endpapers of
this book.)

Which type of variable that can contain 1,000,000,000
space?

1. intinC

ten takes the most memory

2. stringinC

3. stringin Java (which uses Unicode)

3.2 Signed and Unsigned Numbers

le9

MIPS operands

oo Joxampie——— Joommems]

32 $s0-3$s7, $t0-3t9, $gp, Fast locations for data. In MIPS, data must be in registers to perform arithmetic. MIPS

registers $fp, $zero, $sp, $ra, $at |register $zero always equals 0. Register $at is reserved for the assembler to handle
large constants.

230 Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so sequential word

memory Memory[4], . .., addresses differ by 4. Memory holds data structures, such as arrays, and spilled registers,

words Memory[4294967292] such as those saved on procedure calls.

MIPS assembly language

cugory Jimevcton __Jeramie —Twewans ——____Jewmons _____

$51,%$s52,9s3 $s1 = $s2 + $s3 Three operands
Arithmetic | subtract sub $51,%s2,3s3 $s1 = $s2 - $s3 Three operands
add immediate addi $s1,%s52,100 $s1 = $s2 + 100 + constant
load word Tw $s1,100(3s2) |%s1l = Memory[$s2 + 100] Word from memory to register
store word SW $51,100(%s2) |Memory[$s2 + 100] = $s1 Word from register to memory
load half unsigned Thu $s1,100(%s2) |$sl = Memory[$s2 + 100] Halfword memory to register
Pr:ntifer store half sh $s51,100(%s2) Memory[$52 + 100] = $s1 Halfword register to memory
load byte unsigned Thu $s1,100(%s2) |[$s51 = Memory[$s2 + 100] Byte from memory to register
store byte sb $51,100(%s2) |Memory[$s2 +100]=$s1 Byte from register to memory
load upper immediate | 1ui $s1,100 $s1 = 100 * 216 Loads constant in upper 16 bits
and and $s1,%s2,%s3 | $s1 = $s2 & $s3 Three reg. operands; bitby-bit AND
or or $s1,$s2,3s3 |$s1 = $s2 | $s3 Three reg. operands; bit-by-bit OR
nor nor $s1,$s2,3s3 | $s1l = ~ ($s2 |$s3) Three reg. operands; bitby-bit NOR
Logical and immediate andi $s1,$s2,100 |$s1 = $s2 & 100 Bit-by-bit AND with constant
or immediate ori $s1,%s2,100 |$sl = $s? | 100 Bitby-bit OR with constant
shift left logical 511 $s51,%s52,10 $s1 = $s52 << 10 Shift left by constant
shift right logical srl $s1,%s2,10 $s1 =$s2 >> 10 Shift right by constant
branch on equal beq $s1,%$s2,25 if ($s1 ==%s7)goto PC + 4+ 100 |Equal test; PC-relative branch
branch on not equal bne $s51,%s2,25 if (§s1 1= $s2)gotoPC + 4+ 100 |Not equal test; PC-relative
set on less than st $s1,%$s2,3s3 |if($s2 < $s3) $sl=1; Compare less than;
else $s1 =0 two's complement
Conditional | set less than immediate | s1ti $s1,$s2,100 |if($s52 <100) $s1 = Compare < constant;
branch else $s1 = 0 two's complement
set less than unsigned |sltu $s1,$s2,3$s3 |if($s2 < $s53) $s1 = 1; Compare less than; unsigned
else $s1 = 0 numbers
set less than immediate |s1tiu $s1,%s2,100 |if ($s2 < 100) $s1 = 1; Compare < constant;
unsigned else $s1 = 0 unsigned numbers
jump J 2500 go to 10000 Jump to target address
lt-il:)]r(iglnj(::hp jump register ar $ra goto $ra For switch, procedure return
jump and link jal 2500 $ra =PC + 4; go to 10000 For procedure call

FIGURE 3.1 MIPS architecture revealed thus far. Color indicates portions from this section added to the MIPS architecture revealed in
Chapter 2 (Figure 3.26 on page 228). MIPS machine language is listed in the MIPS summary reference card in the front of this book.

170

Chapter 3 Arithmetic for Computers

biased notation A notation
that represents the most
negative value by 00 . .. 000,
and the most positive value by
11... 114, with O typically
having the value 10 . .. 00,
thereby biasing the number
such that the number plus the
bias has a nonnegative
representation.

Subtraction: Addition’s
Tricky Pal

No. 10, Top Ten Courses for
Athletes at a Football Factory,
David Letterman et al., Book of
Top Ten Lists, 1990

Elaboration: Two's complement gets its name from the rule that the unsigned sum
of an nbit number and its negative is 2"; hence, the complement or negation of a two's
complement number x is 2" — x.

A third alternative representation is called one’s complement. The negative of a
one's complement is found by inverting each bit, from O to 1 and from 1 to O, which
helps explain its name since the complement of x is 2" — x — 1. It was also an attempt
to be a better solution than sign and magnitude, and several scientific computers did
use the notation. This representation is similar to two's complement except that it also
has two Os: 00 . . . OO0y, is positive O and 11 . . . 11, is negative O. The most nega-
tive number 10 ... 000y, represents —2,147,483,647,,,, and so the positives and
negatives are balanced. One's complement adders did need an extra step to subtract a
number, and hence two's complement dominates today.

A final notation, which we will look at when we discuss floating point, is to represent
the most negative value by 00 . .. 000, and the most positive value represented by
11... 11, with O typically having the value 10 ... OQ,. This is called a biased
notation, since it biases the number such that the number plus the bias has a nonneg-
ative representation.

Elaboration: For signed decimal numbers we used “-" to represent negative
because there are no limits to the size of a decimal number. Given a fixed word size,
binary and hexadecimal bit strings can encode the sign, and hence we do not normally
use “+" or

with binary or hexadecimal notation.

Addition and Subtraction

Addition is just what you would expect in computers. Digits are added bit by bit
from right to left, with carries passed to the next digit to the left, just as you would
do by hand. Subtraction uses addition: The appropriate operand is simply negated
before being added.

Binary Addition and Subtraction

ten from 7., in

Let’s try adding 6
binary.

to 7., in binary and then subtracting 6

ten

3.3 Addition and Subtraction

171

0000 00000000 0000 00000000 000001114,y = 7tep
+ 0000 0000 0000 0000 0000 0000 00000110,,, = 6.,

= 000000000000 0000 00000000 000011014, = 13ten

The 4 bits to the right have all the action; Figure 3.2 shows the sums and car-
ries. The carries are shown in parentheses, with the arrows showing how they
are passed.

F\ ¥\ F\ F\ F\
@ \ @ \ (1 \ (1) \ (@ \ (Caries)
o | o | o | 1 | 1 | 1
o o o | 1 11 | o

© 0 (0 0 (0 1 (1’)1 (1’) 0o (© 1

FIGURE 3.2 Binary addition, showing carries from right to left. The rightmost bit adds 1
to 0, resulting in the sum of this bit being 1 and the carry out from this bit being 0. Hence, the operation
for the second digit to the rightis 0 + 1 + 1. This generates a 0 for this sum bit and a carry out of 1. The
third digit is the sum of 1 + 1 + 1, resulting in a carry out of 1 and a sum bit of 1. The fourth bitis 1 + 0
+ 0, yielding a 1 sum and no carry.

Subtracting 6,,, from 7, can be done directly:

ten

0000 00000000 0000 0000 0000 000001114,y = 7+en
- 0000 00000000 0000 00000000 000001104,,, = 64en

- 000000000000 0000 00000000 00000001 4,5 = Lten

or via addition using the two’s complement representation of —6:

0000 0000 0000 0000 0000 0000 000001114, = 74en
+ 111111111111111111111111111110104,, = ~6yen

= 0000 0000 0000 0000 0000 0000 000000014, = 1gep

We said earlier that overflow occurs when the result from an operation cannot
be represented with the available hardware, in this case a 32-bit word. When can
overflow occur in addition? When adding operands with different signs, overflow
cannot occur. The reason is the sum must be no larger than one of the operands.
For example, —10 + 4 = —6. Since the operands fit in 32 bits and the sum is no
larger than an operand, the sum must fit in 32 bits as well. Therefore no overflow
can occur when adding positive and negative operands.

There are similar restrictions to the occurrence of overflow during subtract, but
it’s just the opposite principle: When the signs of the operands are the same, over-
flow cannot occur. To see this, remember that x — y = x + (—y) because we subtract
by negating the second operand and then add. So, when we subtract operands of

172

Chapter 3 Arithmetic for Computers

the same sign we end up by adding operands of different signs. From the prior
paragraph, we know that overflow cannot occur in this case either.

Having examined when overflow cannot occur in addition and subtraction, we
still haven’t answered how to detect when it does occur. Overflow occurs when
adding two positive numbers and the sum is negative, or vice versa. Clearly, add-
ing or subtracting two 32-bit numbers can yield a result that needs 33 bits to be
fully expressed. The lack of a 33rd bit means that when overflow occurs the sign
bit is being set with the value of the result instead of the proper sign of the result.
Since we need just one extra bit, only the sign bit can be wrong. This means a
carry out occurred into the sign bit.

Overflow occurs in subtraction when we subtract a negative number from a
positive number and get a negative result, or when we subtract a positive number
from a negative number and get a positive result. This means a borrow occurred
from the sign bit. Figure 3.3 shows the combination of operations, operands, and
results that indicate an overflow.

We have just seen how to detect overflow for two’s complement numbers in a
computer. What about unsigned integers? Unsigned integers are commonly used
for memory addresses where overflows are ignored.

The computer designer must therefore provide a way to ignore overflow in
some cases and to recognize it in others. The MIPS solution is to have two kinds of
arithmetic instructions to recognize the two choices:

B Add (add), add immediate (add i), and subtract (sub) cause exceptions on
overflow.

B Add unsigned (addu), add immediate unsigned (addiu), and subtract
unsigned (subu) do net cause exceptions on overflow.

Because C ignores overflows, the MIPS C compilers will always generate the
unsigned versions of the arithmetic instructions addu, addiu, and subu no mat-
ter what the type of the variables. The MIPS Fortran compilers, however, pick the
appropriate arithmetic instructions, depending on the type of the operands.

Result
Operation Operand A | Operand B indicating overflow
=20 =20 <0

A+B

A+B <0 <0 =20
A-B =0 <0 <0
A-B <0 =0 =0

FIGURE 3.3 Overflow conditions for addition and subtraction.

