3.6 Floating Point

189

Summary

The common hardware support for multiply and divide allows MIPS to provide a
single pair of 32-bit registers that are used both for multiply and divide. Figure 3.14
summarizes the additions to the MIPS architecture for the last two sections.

MIPS divide instructions ignore overflow, so software must determine if the quo-
tient is too large. In addition to overflow, division can also result in an improper
calculation: division by 0. Some computers distinguish these two anomalous
events. MIPS software must check the divisor to discover division by 0 as well as
overflow.

Elaboration: An even faster algorithm does not immediately add the divisor back if
the remainder is negative. It simply adds the dividend to the shifted remainder in the
following step since (r+ d)x2-d=rx2+dx2 —d=rx2 + d. This nonrestoring divi-
sion algorithm, which takes 1 clock per step, is explored further in Exercise 3.29; the
algorithm here is called restoring division.

Floating Point

Going beyond signed and unsigned integers, programming languages support
numbers with fractions, which are called reals in mathematics. Here are some
examples of reals:

3.14159265. . ., (1)
2.71828. . ., ()

0.000000001,, or 1.0,.. X 10~ (seconds in a nanosecond)

ten ten

3,155,760,000,,, Or 3.15576,, X 10° (seconds in a typical century)

Notice that in the last case, the number didn’t represent a small fraction, but it
was bigger than we could represent with a 32-bit signed integer. The alternative
notation for the last two numbers is called scientific notation, which has a single
digit to the left of the decimal point. A number in scientific notation that has no
leading Os is called a normalized number, which is the usual way to write it. For
example, 1.0gp X 10~ is in normalized scientific notation, but 0.1, x 10~ and
10.04,, X 10-1%are not.

ten

Hardware
Software
Interface

Speed gets you nowhere if
you're headed the wrong
way.

American proverb

scientific notation A notation
that renders numbers with a sin-
gle digit to the left of the deci-
mal point.

normalized A number in
floating-point notation that has
no leading Os.

MIPS assembly language

sy [wncion _Joranwe _—Twouwa ——____Jowmmens

add $51,%s2,%s3 |$s1 =9%s2 + $s3 Three operands; overflow detected
subtract sub $51,%$s52,%s3 |$s1 =$s2 %53 Three operands; overflow detected
add immediate addi $51,%s2,100 |$s1=9%s2 +100 + constant; overflow detected
add unsigned addu $s1,%s52,%s3 [$s1 =952+ $s3 Three operands; overflow undetected
subtract unsigned subu $51,%52,%s3 [$s1=3s2-3s3 Three operands; overflow undetected
add immediate unsigned |addiu $51,%s2,100 |$s1=3%s2 +100 + constant; overflow undetected
move from coprocessor |mfcl $s1,%epc $s1=9%epc Copy Exception PC + special regs
Arithmetic | 2ESter _ — __ —
multiply mult $s2,%s3 Hi,Lo=$s2 x $s3 64-bit signed product in Hi, Lo
multiply unsigned multu $s52,%s3 Hi,Lo=$s2 x $s3 64-bit unsigned product in Hi, Lo
divide div $s2,%s3 Lo=%s2/ $53, Lo = quotient, Hi = remainder
Hi=$sZ2 mod $53
divide unsigned divu $52,%s3 Lo=9%s2 / $s3, Unsigned quotient and remainder
Hi=9%$s2 mod $53
move from Hi mfhi $s1 $s1 =Hi Used to get copy of Hi
move from Lo mflo $s1 $s1=Lo Used to get copy of Lo
load word Tw $51,100(%s2) $s1 = Memory| $52 + 100] |Word from memory to register
store word SW $s51,100(%s2) Memory[$52 +100] = $s1 Word from register to memory
load half unsigned Thu $s51,100(%s2) $51 = Memory[$s2 + 100] Halfword memory to register
32:1asfer store half sh $51,100(%s2) Memory[$52 + 100] = $s1 Halfword register to memory
load byte unsigned Tbu $s1,100(%s2) $s1 = Memory[$s2 + 100] Byte from memory to register
store byte sb $s51,100(%s2) Memory[$52 + 100] = $s1 Byte from register to memory
load upper immediate | Tui $s1,100 $s1 = 100 * 216 Loads constant in upper 16 bits
and and $s51,%s2,%s3 $s1 = $s2 & $s3 Three reg. operands; bit-by-bit AND
or or $51,9s2,%s3 $s1 = $s2 | $s3 Three reg. operands; bit-by-bit OR
nor nor $s1,%s2,%s3 $51 = ~ ($s2 |$53) Three reg. operands; bit-by-bit NOR
Logical and immediate andi $s1,%$s2,100 $s1 = $s2 & 100 Bit-by-hit AND with constant
or immediate ori $s51,%$s2,100 $s1 = $s52 | 100 Bit-by-bit OR with constant
shift left logical 511 $s1,%s2,10 $51 = $s2 << 10 Shift left by constant
shift right logical srl $s1,9s2,10 $s1 = $s2 == 10 Shift right by constant
branch on equal beq $51,%$52,25 |if($s1l==%s7)goto Equal test; PC-relative branch
PC +4 + 100
branch on not equal bne $s1,%s52,25 |if($s1!= $s2)goto Not equal test; PC-relative
PC +4 + 100
set on less than st $s1,%s2,%s3 |if($s2 <$s3) $s1=1; Compare less than;
(:.‘,ondi— else $s1 =0 two's complement
Eans) set less than immediate [s1t1 $s51,%s2,100 |if($s?2 <100) $s1=1; Compare < constant;
e else $51=0 two’s complement
set less than unsigned |s1tu $51,%s2,%s3 |if($s2 <$s3) $s1 =1; Compare less than; natural numbers
else $51=0
set less than immediate [sTtiu $51,%$52,100 |[if($s2 <100) $s1 =1; Compare < constant; natural numbers
unsigned else $s1=0
Uncondi- |Jump h] 2500 go to 10000 Jump to target address
tional jump register jr $ra goto $ra For switch, procedure retum
jump jump and link jal 2500 $ra =PC + 4; go to 10000 For procedure call

FIGURE 3.14 MIPS architecture revealed thus far. The memory and registers of the MIPS architecture are not included for space reasons,
but this section added the hi and lo registers to support multiply and divide. Color indicates the portions revealed since Figure 3.4 on page 175. MIPS
machine language is listed in the MIPS summary reference card at the front of this book.

(page 190)

3.6 Floating Point

191

Just as we can show decimal numbers in scientific notation, we can also show
binary numbers in scientific notation:

1.0, x 271

“two

To keep a binary number in normalized form, we need a base that we can increase
or decrease by exactly the number of bits the number must be shifted to have one
nonzero digit to the left of the decimal point. Only a base of 2 fulfills our need.
Since the base is not 10, we also need a new name for decimal point; binary point
will do fine.

Computer arithmetic that supports such numbers is called floating point
because it represents numbers in which the binary point is not fixed, as it is for
integers. The programming language C uses the name float for such numbers. Just
as in scientific notation, numbers are represented as a single nonzero digit to the
left of the binary point. In binary, the form is

LXXXXXXXX K g0 X 27V

(Although the computer represents the exponent in base 2 as well as the rest of the
number, to simplify the notation we show the exponent in decimal.)

A standard scientific notation for reals in normalized form offers three advan-
tages. It simplifies exchange of data that includes floating-point numbers; it sim-
plifies the floating-point arithmetic algorithms to know that numbers will always
be in this form; and it increases the accuracy of the numbers that can be stored in
a word, since the unnecessary leading Os are replaced by real digits to the right of
the binary point.

Floating-Point Representation

A designer of a floating-point representation must find a compromise between
the size of the fraction and the size of the exponent because a fixed word size
means you must take a bit from one to add a bit to the other. This trade-off is
between precision and range: Increasing the size of the fraction enhances the pre-
cision of the fraction, while increasing the size of the exponent increases the range
of numbers that can be represented. As our design guideline from Chapter 2
reminds us, good design demands good compromise.

Floating-point numbers are usually a multiple of the size of a word. The repre-
sentation of a MIPS floating-point number is shown below, where s is the sign of
the floating-point number (1 meaning negative), exponent is the value of the 8-bit
exponent field (including the sign of the exponent), and fraction is the 23-bit
number. This representation is called sign and magnitude, since the sign has a sep-
arate bit from the rest of the number.

floating point Computer
arithmetic that represents num-
bers in which the binary point is
not fixed.

fraction The value, generally
between 0 and 1, placed in the
fraction field.

exponent In the numerical
representation system of float-
ing-point arithmetic, the value
that is placed in the exponent
field.

192

Chapter 3 Arithmetic for Computers

31 30‘29‘28‘2?‘26‘25‘24|23 22‘21‘20‘19‘18‘1?‘16‘15‘14‘13|12‘11‘10‘9‘8‘?‘6‘5‘4‘3|2‘1‘0
s exponent fraction
1 bit 8 bits 23 bits

overflow (floating-point) A
situation in which a positive
exponent becomes too large to
fit in the exponent field.

underflow (floating-point) A
situation in which a negative
exponent becomes too large to
fit in the exponent field.

double precision A floating-
point value represented in two
32-bit words.

single precision A floating-
point value represented in a
single 32-bit word.

In general, floating-point numbers are generally of the form
(-1)°x Fx2F

F involves the value in the fraction field and E involves the value in the exponent
field; the exact relationship to these fields will be spelled out soon. (We will shortly
see that MIPS does something slightly more sophisticated.)

These chosen sizes of exponent and fraction give MIPS computer arithmetic an
extraordinary range. Fractions almost as small as 2.0,,, X 107 and numbers
almost as large as 2.0, X 1033 can be represented in a computer. Alas, extraordi-
nary differs from infinite, so it is still possible for numbers to be too large. Thus,
overflow interrupts can occur in floating-point arithmetic as well as in integer
arithmetic. Notice that overflow here means that the exponent is too large to be
represented in the exponent field.

Floating point offers a new kind of exceptional event as well. Just as program-
mers will want to know when they have calculated a number that is too large to be
represented, they will want to know if the nonzero fraction they are calculating
has become so small that it cannot be represented; either event could result in a
program giving incorrect answers. To distinguish it from overflow, people call this
event underflow. This situation occurs when the negative exponent is too large to
fit in the exponent field.

One way to reduce chances of underflow or overflow is to offer another format
that has a larger exponent. In C this number is called double, and operations on
doubles are called double precision floating-point arithmetic; single precision
floating point is the name of the earlier format.

The representation of a double precision floating-point number takes two
MIPS words, as shown below, where s is still the sign of the number, exponent is
the value of the 11-bit exponent field, and fraction is the 52-bit number in the
fraction.

3130|129 |28|27|26

25|24|23(22|21|20(19 (18|17 |16 (15|14 |13|12|11|10(9|8|7|6|5|4|3(2|1|0

s exponent fraction

1 bit 11 bits 20 bits

fraction (continued)

32 bits

3.6 Floating Point

193

MIPS double precision allows numbers almost as small as 2.0, X 107% and
almost as large as 2.0, X 10°°%. Although double precision does increase the
exponent range, its primary advantage is its greater precision because of the larger
significand.

These formats go beyond MIPS. They are part of the IEEE 754 floating-point
standard, found in virtually every computer invented since 1980. This standard
has greatly improved both the ease of porting floating-point programs and the
quality of computer arithmetic.

To pack even more bits into the significand, IEEE 754 makes the leading 1 bit of
normalized binary numbers implicit. Hence, the number is actually 24 bits long in
single precision (implied 1 and a 23-bit fraction), and 53 bits long in double preci-
sion (1 + 52). To be precise, we use the term significand to represent the 24- or 53-
bit number that is 1 plus the fraction, and fraction when we mean the 23- or 52-bit
number. Since 0 has no leading 1, it is given the reserved exponent value 0 so that
the hardware won’t attach a leading 1 to it.

Thus 00 ... 00, represents 0; the representation of the rest of the numbers
uses the form from before with the hidden 1 added:

(=1)8 % (1 + Fraction) x 2E

where the bits of the fraction represent a number between 0 and 1 and E specifies
the value in the exponent field, to be given in detail shortly. If we number the bits
of the fraction from left to right s1, 52,3, ... , then the value is

(15X (1 + (s1 X2)+ (s2X272) + (s3X273) + (s4x 274 +...)x2E

Figure 3.15 shows the encodings of IEEE 754 floating-point numbers. Other
features of [EEE 754 are special symbols to represent unusual events. For example,
instead of interrupting on a divide by 0, software can set the result to a bit pattern
representing +oo or —eo; the largest exponent is reserved for these special symbols.
When the programmer prints the results, the program will print an infinity sym-
bol. (For the mathematically trained, the purpose of infinity is to form topological
closure of the reals.)

IEEE 754 even has a symbol for the result of invalid operations, such as 0/0 or
subtracting infinity from infinity. This symbol is NaN, for Not a Number. The
purpose of NaNs is to allow programmers to postpone some tests and decisions to
a later time in the program when it is convenient.

The designers of IEEE 754 also wanted a floating-point representation that
could be easily processed by integer comparisons, especially for sorting. This
desire is why the sign is in the most significant bit, allowing a quick test of less
than, greater than, or equal to 0. (It’s a little more complicated than a simple inte-
ger sort, since this notation is essentially sign and magnitude rather than two’s
complement.)

194

Chapter 3 Arithmetic for Computers

Single precision Double precision Object represented

Exponent Fraction Exponent Fraction
0 0 0 0 0
4] nonzero 4] nonzero + denormalized number
1-254 anything 1-2046 anything + floating-point number
255 0 2047 0 + infinity
255 nonzero 2047 nonzero NaN (Not a Number)
FIGURE 3.15 [EEE 754 encoding of floating-point numbers. A separate sign bit determines the

sign. Denormalized numbers are described in the elaboration on page 217.

Placing the exponent before the significand also simplifies sorting of floating-
point numbers using integer comparison instructions, since numbers with bigger
exponents look larger than numbers with smaller exponents, as long as both
exponents have the same sign.

Negative exponents pose a challenge to simplified sorting. If we use two’s com-
plement or any other notation in which negative exponents have a 1 in the most
significant bit of the exponent field, a negative exponent will look like a big num-
ber. For example, 1.0,,,, X 27 would be represented as

3130|2928 |27|26|25|24|23|22|21|20|19 |18 |17 |16 |15 |14 [13[12|11(|10|9|8|7|6|5(4|3|2(1|0

of1 14 14 14 1 1 1 1/0 0 0 0 0 0 0O 0 0O 0 O O O 0O OOOOO
(Remember that the leading 1 is implicit in the significand.) The value 1.0, x 2*!
would look like the smaller binary number

3130|2928 |27|26| 25|24 |23|22|21|20|19 |18 |17 [16|15|14 [13[12|11|10|9|8|7|6|5(4|3|2|1|0

olo o 0o o000 1/0 0 0 OO0 OO OGO OGO OTOTOOOOOOO OO

The desirable notation must therefore represent the most negative exponent as
00 ... 004y, and the most positive as 11 ... 114, This convention is called biased
notation, with the bias being the number subtracted from the normal, unsigned
representation to determine the real value.

IEEE 754 uses a bias of 127 for single precision, so —1 is represented by the bit
pattern of the value -1 + 127,,, or 126,,, = 0111 1110, and +1 is represented by
1 + 127, or 128, = 1000 0000y, Biased exponent means that the value repre-
sented by a floating-point number is really

(=1) % (1 + Fraction) x 2(Exponent —Bias)

The exponent bias for double precision is 1023.

3.6 Floating Point

195

Thus IEEE 754 notation can be processed by integer compares to accelerate
sorting of floating-point numbers. Let’s show the representation.

1s

The number —0.75

and double precision.

ten

is also

-1

—3/4

Liyo/ 22 e OF —0.11

Floating-Point Representation

Show the IEEE 754 binary representation of the number -0.75,,, in single m

ten ten

It is also represented by the binary fraction

two

In scientific notation, the value is

=0.110 X 2°

and in normalized scientific notation, it is

1.1y X 27!

The general representation for a single precision number is

(-1)% % (1 + Fraction) x 2(Fxponent—127)

When we subtract the bias 127 from the exponent of —1.1

two X 271 the result

(=1)! x (1 +.1000 0000 0000 0000 0000 000,) x 2126~ 127)

The single precision binary representation of —0.75,,, is then
31(30|29|28 |27 |26|25(24|23|22|21|20|19 |18 |17 (1615|1413 |12|11|10|9|8|7|6|5|4|3(2|1(0
i1/0 2 2 2 22 12 02 0 0 O OO OO O O0OOOOOODCOOCODOODODODODO
1 bit 8 bits 23 bits

196

Chapter 3 Arithmetic for Computers

The double precision representation is

(=1)' 3 (1 + .1000 0000 0000 0000 0000 KOO0 0000 0000 0000 0000 0000 0000 0000two) x 2(1922-1023)

3130|2928 |27|26|25(24|23|22(21|20|19|18(17|16|15(14 |13 |12|11|10|92(8|7|6|5|4 (3|2 |1|0
i1/0 1 1 1 1 1 2 2 12 12 02 0 0 O 0 O O O 0 0 O0OO0CO0CO0OCODODOODOOQO
1 bit 11 bits 20 bits

o 0o 0o o 0o 0 0o o o0 o0 o0 o0 O o0 o0 OO0 0 0 O0CO0O O0DO0CDCO0D0CDCO0CODODODCO0ODODDQO

32 bits
Now let’s try going the other direction.
]

Converting Binary to Decimal Floating Point

What decimal number is represented by this single precision float?

31|30|29

28

27

26

25|24 |23|22|21|20 (19|18 |17 |16 (15|14 |13 12|11 |10|2|8|7|6|5|4|3|2|1|0

o o o o o0 10 12 0 0 0 O 0O 0O O O0OCO0OOOO0OCOCODOOOCDO

The sign bit is 1, the exponent field contains 129, and the fraction field con-
tains 1 X 272 = 1/4, or 0.25. Using the basic equation,

(—1)% x (1 + Fraction) x 2(Expenent=Bias) _ (1)l (7 4 0,25) x 2(12%-127)
—1x 1.25 x 22

=-1.25x4

=-5.0

In the next sections we will give the algorithms for floating-point addition and
multiplication. At their core, they use the corresponding integer operations on the
significands, but extra bookkeeping is necessary to handle the exponents and nor-
malize the result. We first give an intuitive derivation of the algorithms in decimal,
and then give a more detailed, binary version in the figures.

3.6 Floating Point

197

Elaboration: In an attempt to increase range without removing bits from the signifi-
cand, some computers before the |[EEE 754 standard used a base other than 2. For
example, the IBM 360 and 370 mainframe computers use base 16. Since changing the
IBM exponent by one means shifting the significand by 4 bits, “normalized” base 16
numbers can have up to 3 leading bits of 0s! Hence, hexadecimal digits mean that up
to 3 bits must be dropped from the significand, which leads to surprising problems in
the accuracy of floating-point arithmetic, as noted in Section .

Floating-Point Addition

Let’s add numbers in scientific notation by hand to illustrate the problems in
floating-point addition: 9.999,,, X 10! + 1.610,,, X 107!, Assume that we can store

only four decimal digits of the significand and two decimal digits of the exponent.

Step 1. To be able to add these numbers properly, we must align the decimal
point of the number that has the smaller exponent. Hence, we need a form
of the smaller number, 1.610,,, X 107}, that matches the larger exponent.
We obtain this by observing that there are multiple representations of an
unnormalized floating-point number in scientific notation:

1.610 X 1071 =0.1610,,, X 10° = 0.01610,,,, X 10

The number on the right is the version we desire, since its exponent
matches the exponent of the larger number, 9.999,, X 10'. Thus the first
step shifts the significand of the smaller number to the right until its cor-
rected exponent matches that of the larger number. But we can represent

only four decimal digits so, after shifting, the number is really:

0.016,, X 10"
Step 2. Next comes the addition of the significands:

9.999,,,
+ 0.016

ten

10.015

ten

The sum is 10.015,.. x 101,

ten

Step 3. This sum is not in normalized scientific notation, so we need to adjust it:

10.015,,,, X 10 = 1.0015,,,, x 10

Thus, after the addition we may have to shift the sum to put it into nor-
malized form, adjusting the exponent appropriately. This example shows

198

Chapter 3 Arithmetic for Computers

shifting to the right, but if one number were positive and the other were
negative, it would be possible for the sum to have many leading 0s, requir-
ing left shifts. Whenever the exponent is increased or decreased, we must
check for overflow or underflow—that is, we must make sure that the ex-
ponent still fits in its field.

Step 4. Since we assumed that the significand can be only four digits long (exclud-
ing the sign), we must round the number. In our grammar school algo-
rithm, the rules truncate the number if the digit to the right of the desired
point is between 0 and 4 and add 1 to the digit if the number to the right
is between 5 and 9. The number

1.0015,. X 10°

ten

is rounded to four digits in the significand to

1.002,.. X 102

ten

since the fourth digit to the right of the decimal point was between 5 and
9. Notice that if we have bad luck on rounding, such as adding 1 to a string
of 9s, the sum may no longer be normalized and we would need to per-
form step 3 again.

Figure 3.16 shows the algorithm for binary floating-point addition that follows
this decimal example. Steps 1 and 2 are similar to the example just
discussed: adjust the significand of the number with the smaller exponent and
then add the two significands. Step 3 normalizes the results, forcing a check for
overflow or underflow. The test for overflow and underflow in step 3 depends on
the precision of the operands. Recall that the pattern of all zero bits in the expo-
nent is reserved and used for the floating-point representation of zero. Also, the
pattern of all one bits in the exponent is reserved for indicating values and situa-
tions outside the scope of normal floating-point numbers (see the Elaboration on
page 217). Thus, for single precision, the maximum exponent is 127, and the min-
imum exponent is —126. The limits for double precision are 1023 and —1022.

Decimal Floating-Point Addition

Try adding the numbers 0.5, and —0.4375,,, in binary using the algorithm
in Figure 3.16.

3.6 Floating Point

199

Let’s first look at the binary version of the two numbers in normalized scien-
tific notation, assuming that we keep 4 bits of precision:

— _ 1
05w = Ve = V2% .
= Olywo = OlyypX2 = 10004y, X 2
~04375, = 716y = ~7/2

ten ten

= 00111y = —0.011 1% 2" =—1.1104, X 27

ten

Now we follow the algorithm:

Step 1. The significand of the number with the lesser exponent (— 1.11,, X
272) is shifted right until its exponent matches the larger number:

111040 X 272 = =0.11 13y X 27!

Step 2. Add the significands:

1.000,.. X 27V + (=0.111,...x 271 = 0.001,, x 271

two two two

Step 3. Normalize the sum, checking for overflow or underflow:

0.001 10 X 271 = 0.0104y0 X 272 =0.1004,4 X 27
= 1.000,,, x 27

Since 127 = —4 = —126, there is no overflow or underflow. (The biased
exponent would be —4 + 127, or 123, which is between 1 and 254, the
smallest and largest unreserved biased exponents.)

Step 4. Round the sum:

1.000,,, X 274

The sum already fits exactly in 4 bits, so there is no change to the bits
due to rounding,.
This sum is then

1.000,, x 274

0.0001000,,,, = 0.0001,
1/2%en = 1/1644, = 0.0625,

two

This sum is what we would expect from adding 0.5, to —0.4375;,,,.

Many computers dedicate hardware to run floating-point operations as fast as
possible. Figure 3.17 sketches the basic organization of hardware for floating-point
addition.

200 Chapter 3 Arithmetic for Computers

l Start)

Y

1. Compare the exponents of the two numbers.
Shift the smaller number to the right until its
exponent would match the larger exponent

Y
2. Add the significands

-
-

Y

3. Normalize the sum, either shifting right and
incrementing the exponent or shifting left
and decrementing the exponent

l

Overflow or
underflow?

Y

(' Exception)

4. Round the significand to the appropriate
number of bits

Still normalized?

FIGURE 3.16 Floating-point addition. The normal path is to execute steps 3 and 4 once, but if
rounding causes the sum to be unnormalized, we must repeat step 3.

3.6 Floating Point

201

Y Y

Y

Sign | Exponent

Fraction

Sign | Exponent Fraction Sign | Exponent Fraction
Y Y
N Compare
Small ALU
exponents
A\
Exponent
difference
YV Yy v
Co_1)=y (o 1) (o 1)
Y v
— Shift smaller
Control | Shift right number right
N
Big ALU el
 J Y
L »(C 0 1 L —»(0
Increment or - ; :
> " decrement > Shift left or right Normalize
|
»| Rounding hardware Round

FIGURE 3.17 Block diagram of an arithmetic unit dedicated to floating-point addition. The steps of Figure 3.16 cor-
respond to each block, from top to bottom. First, the exponent of one operand is subtracted from the other using the small ALU to
determine which is larger and by how much. This difference controls the three multiplexors; from left to right, they select the larger
exponent, the significand of the smaller number, and the significand of the larger number. The smaller significand is shifted right,
and then the significands are added together using the big ALU. The normalization step then shifts the sum left or right and incre-
ments or decrements the exponent. Rounding then creates the final result, which may require normalizing again to produce the final

result.

202

Chapter 3 Arithmetic for Computers

Floating-Point Multiplication

Now that we have explained floating-point addition, let’s try floating-point multi-
plication. We start by multiplying decimal numbers in scientific notation by

hand: 1.110

x 10'% % 9.200,,, X 10~. Assume that we can store only four digits

ten ten

of the significand and two digits of the exponent.

Step 1.

Step 2.

Unlike addition, we calculate the exponent of the product by simply add-
ing the exponents of the operands together:

New exponent = 10+ (-5) =5

Let’s do this with the biased exponents as well to make sure we obtain the
same result: 10 + 127 = 137, and -5 + 127 = 122, so

New exponent = 137 + 122 = 259

This result is too large for the 8-bit exponent field, so something is amiss!
The problem is with the bias because we are adding the biases as well as
the exponents:

New exponent = (10 + 127) + (=5 +127) = (5 + 2 X 127) = 259

Accordingly, to get the correct biased sum when we add biased numbers, we
must subtract the bias from the sum:

New exponent = 137 + 122 — 127 =259 - 127 = 132 = (5 + 127)
and 5 is indeed the exponent we calculated initially.

Next comes the multiplication of the significands:
1.110,,,
X 9.200,
0000
0000
2220
9990

10212000

ten

There are three digits to the right of the decimal for each operand, so the
decimal point is placed six digits from the right in the product significand:

10.212000

ten

Assuming that we can keep only three digits to the right of the decimal
point, the product is 10.212 x 10°.

3.6 Floating Point

203

Step 3.

Step 4.

Step 5.

This product is unnormalized, so we need to normalize it:

10.212e; X 10° = 1.0212,,,, X 10°

Thus, after the multiplication, the product can be shifted right one digit to
put it in normalized form, adding 1 to the exponent. At this point, we can
check for overflow and underflow. Underflow may occur if both operands
are small—that is, if both have large negative exponents.

We assumed that the significand is only four digits long (excluding the
sign), so we must round the number. The number

1.0212,. x 10°

ten

is rounded to four digits in the significand to

1.021 5, % 10°

The sign of the product depends on the signs of the original operands. If
they are both the same, the sign is positive; otherwise it’s negative. Hence
the product is

+1.021,,, x 10°

ten

The sign of the sum in the addition algorithm was determined by addition
of the significands, but in multiplication the sign of the product is deter-
mined by the signs of the operands.

Once again, as Figure 3.18 shows, multiplication of binary floating-point num-
bers is quite similar to the steps we have just completed. We start with calculating
the new exponent of the product by adding the biased exponents, being sure to
subtract one bias to get the proper result. Next is multiplication of significands,
followed by an optional normalization step. The size of the exponent is checked
for overflow or underflow, and then the product is rounded. If rounding leads to
further normalization, we once again check for exponent size. Finally, set the sign
bit to 1 if the signs of the operands were different (negative product) or to 0 if they
were the same (positive product).

Decimal Floating-Point Multiplication

Let’s try multiplying the numbers 0.5, and —0.4375,,,, using the steps in
Figure 3.18.

204

Chapter 3 Arithmetic for Computers

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

In binary, the task is multiplying 1.000,,,, X 27! by - 1.110

X 272,

two

Adding the exponents without bias:
~1+(-2)=-3

or, using the biased representation:

(=1 +127) + (-2 +127) =127 = (=1 = 2)+(127 + 127 — 127)
=-3+127=124

Multiplying the significands:

1.000,40
X 11104,
0000
1000
1000
1000

1110000,

The product is 1.110000,,,, X 27, but we need to keep it to 4 bits, so
itis 1.110p X 27°.

Now we check the product to make sure it is normalized, and then
check the exponent for overflow or underflow. The product is already
normalized and, since 127> —3 > —126, there is no overflow or un-
derflow. (Using the biased representation, 254> 124 > 1, so the expo-
nent fits.)

Rounding the product makes no change:

1.110,, x 273

two

Since the signs of the original operands differ, make the sign of the
product negative. Hence the product is

~1.110,, X 27°

two

Converting to decimal to check our results:

111040 X 270 ==0.0011104 = —0.0011 14,
_ 5 _ _
= 7125, = 7132, = —0.21875,,,

The product of 0.5,,, and —0.4375,,,, is indeed —0.21875,,,.

(Start I

Y

1. Add the biased exponents of the two
numbers, subtracting the bias from the sum
to get the new biased exponent

Y
2. Multiply the significands

P
-

Y
3. Normalize the product if necessary, shifting

it right and incrementing the exponent

l

Overflow or
underflow?

Y

(Exception)

4. Round the significand to the appropriate
number of bits

Still normalized?

5. Set the sign of the product to positive if the
signs of the original operands are the same;
if they differ make the sign negative

Y

(Done)

FIGURE 3.18 Floating-point multiplication. The normal path is to execute steps 3 and 4 once, but if
rounding causes the sum to be unnormalized, we must repeat step 3.

(page 205)

