230

Chapter 4 Arithmetic for Computers

The field is in the lower 16 bits of the word and we want Os in the upper bits of the
result of the andi. In general, a shift left of 32 — (n + m) followed by a shift right by
32 — n will isolate any n-bit field whose least significant bit is in bit m.

Since addi and s1t1 are intended for signed numbers, it is not surprising that their
immediate fields are sign-extended before use. Branch and data transfer address fields
are sign-extended as well.

Perhaps it is surprising that addiu and s1t1u also sign-extend their immediates, but
they do. The u stands for unsigned, but in reality addi u is often used simply as an add
instruction that cannot overflow, and hence we often want to add negative‘ﬁumbers. it's
much harder to come up for an excuse that s1t1u does not sign extend its immediate.

Since andi and ori normally work with unsigned integers, the immediates are
treated as unsigned integers as well, meaning that they are expanded to 32 bits by pad-
ding with leading Os instead of sign extension. Thus if the bit fields in the third line of
the example above extended beyond the 16 least significant bits, the andi instruction
would need a 32-bit constant o avoid clearing the upper portion of the fields.

The MIPS assembler creates 32-bit constants with the pair of instructions Tui and
ori; see Chapter 3, page 147 for an example of creating 32-bit constants using 1ui
and addi.

Constructing an Arithmetic Logic Unit

ALU n. [Arthritic Logic Unit-or (rare) Arithmetic Logic Unit] A random-number
generator supplied as standard with all computer systems.

Stan Kelly-Bootle, The Devil’'s DP Dictionary, 1981

The arithmetic logic unit or ALU is the brawn of the computer, the device that
performs the arithmetic operations like addition and subtraction or logical
operations like AND and OR. This section constructs an ALU from the four
hardware building blocks shown in Figure 4.8 (see Appendix B for more
details on these building blocks). Cases 1, 2, and 4 in Figure 4.8 all have two
inputs. We will sometimes use versions of these components with more than
two inputs, confident that you can generalize from this simple example. In
any case, Appendix B provides examples with more inputs. (You may wish to
review sections B.1 through B.3 before proceeding further.)

Because the MIPS word is 32 bits wide, we need a 32-bit-wide ALU. Let's as-
sume that we will connect 32 1-bit ALUs to create the desired ALU. We'll
therefore start by constructing a 1-bit ALU.

A 1-Bit ALU

The logical operations are easiest, because they map directly onto the hard-
ware components in Figure 4.8.

4.5 Constructing an Arithmetic Logic Unit 231

1. AND gate (¢ = a - b}

= e o
Cc
b —

RIOoIr|O
MICIO|IO

2. ORgate{c=a+b)

Rrlo|r|o
Rlikik|o

3. Inverter (c = @)

4. Multiplexor
(ifd==0,¢c=g;
elsec=Db) 0 a
a8 b1 1 b

b —>il

FIGURE 4.8 Four hardware building blocks used to construct an arithmetic logic unit.
The name of the operation and an equation describing it appear on the left. In the niiddle is the
symbol for the block we will use in the drawings. On the right are tables that describe the outputs
in terms of the inputs. Using the notation from Appendix B, a * b means “a ANDb,” a + b means
“a ORb,” and a line over the top (e.g., a) means invert.

Operation

a P
- 0
) ot
b —

FIGURE 4.9 The 1-bit logical unit for AND and OR.

Resuit

232

Chapter 4 Arithmetic for Computers

The 1-bit logical unit for AND and OR looks like Figure 4.9. The multiplexor
on the right then selects # AND b or a OR b, depending on whether the value
of Operation is 0 or 1. The line that controls the multiplexor is shown in color to
distinguish it from the lines containing data. Notice that we have renamed the
control and output lines of the multiplexor to give them names that reflect the
function of the ALU. '

The next function to include is addition. From Figure 4.3 on page 221 we can
deduce the inputs and outputs of a single-bit adder. First, an adderinust have
two inputs for the operands and a single-bit output for the sum. There must be
a second output to pass on the carry, called CarryOut. Since the CarryOut from
the neighbor adder must be included as an input, we need a third input. This
input is called Carryln. Figure 4.10 shows the inputs and the outputs of a 1-bit
adder. Since we know what addition is supposed to do, we can specify the out-
puts of this “black box” based on its inputs, as Figure 4.11 demonstrates.

Carryin

— SUm

| -

R CarryOut

FIGURE 4.10 A 1-bit adder. This adder is called a full adder; it is also called a (3,2) adder
because it has 3 inputs and 2 outputs. An adder with only the a and b inputs is called a (2,2)
adder or half adder.

0+ 0+0=00u,
O0+0+1=01y,
0+1+0=01,,
O0+1+1=10y,
1+0+0=03%,0
1+0+1 =104,
1+1+0=10,
1+1+1=1%,.,

rlmiolo|r| kool
- oloir|olririo

FIGURE 4.11 Input and output specification for a 1-bit adder.

4,5 Constructing an Arithmetic Logic Unit 233

e’

From Appendix B, we know that we can express the output functions Carry-
Out and Sum as logical equations, and these equations can in turn be in1plé~
mented with the building blocks in Figure 4.8. Let’s do CarryOut. Figure 4.12
shows the values of the inputs when CarryOutisa 1.

We can turn this truth table into a logical equation, as explained in
Appendix B. (Recall that a + b means “a OR b” and that a - b means “a AND

b.”)
CarryOut = (b - Carryln) + (a - Carryln) + (a- b) + (a- b - Carryln)

If a- b Carryln is true, then one of the other three terms must also be true, so
we can leave out this last term corresponding to the fourth line of the table.
We can thus simplify the equation to

CarryOut = (b - Carryln) + (a - Carryln) + (a - b)

Figure 4.13 shows that the hardware within the adder black box for CarryOut
consists of three AND gates and. one OR gate. The three AND gates corre-
spond exactly to the three parenthesized terms of the formula above for Car-
ryOut, and the OR gate sums the three terms.

Rrikrirlo

Rpiplo|m

plo|klk

FIGURE 4.12 Values of the inputs when CarryOutisa 1.

Carryin

!

CarryOut

FIGURE 4.13 Adder hardware for the carry out signal. The rest of the adder hardware is the
logic for the Sum output given in the equation above.

234

Chapter 4 Arithmetic for Computers

The Sum bit is set when exactly one input is 1 or when all three inputs are 1.
The Sum results in a complex Boolean equation (recall that a means NOT a):

Sum = (a: b. Carryln) + (a-b- Carryln) + (a-b- CarryIn) + (a-b- Carryln)

The drawing of the logic for the Sum bit in the adder black box is left as an
exercise (see Exercise 4.43).

Figure 4.14 shows a 1-bit ALU derived by combining the adder with the ear-
lier components. Sometimes designers also want the ALU to perform a few
more simple operations, such as generating 0. The easiest way to add an oper-
ation is to expand the multiplexor controlled by the Operation line and, for this
example, to connect 0 directly to the new input of that expanded multiplexor.

A 32-Bit ALU

Now that we have completed the 1-bit ALU, the full 32-bit ALU is created by
connecting adjacent “black boxes.” Using xi to mean the ith bit of x, Figure 4.15
shows a 32-bit ALU. Just as a single stone can cause ripples to radiate to the
shores of a quiet lake, a single carry out of the least significant bit (Result0)
can ripple all the way through the adder, causing a carry out of the most sig-
nificant bit (Result31). Hence, the adder created by directly linking the carries
of 1-bit adders is called a ripple carry adder. We'll see a faster way to connect
the 1-bit adders starting on page 241.

Operation
Carryln l
!
a = _\ g\
»

+ Result

2
—/

v

CarryGut

FIGURE 4.14 A 1-bit ALU that performs AND, OR, and addition (see Figure 4.13).

4.5 Constructing an Arithmetic Logic Unit 235

Carryln

l L ‘

a0 —| Carryln
ALUO
CarryOut

> ResultO

b0 =

vV v

al ——>1 Carryin

ALUL

Resuitl

v

bl b

CarryOut

Yy v

a2 —> Carryin

ALU2

> Result2
b2 ——

CarryOut
l |
i :

a31 —> Carryin
ALU31

> Result31
b31 —

FIGURE 4.15 A 32-bit ALU constructed from 32 1-bit ALUs. CarryOut of the less significant
bit is connected to the CarryIn of the more significant bit. This organization is called ripple carry.

Subtraction is the same as adding the negative version of an operand, and
this is how adders perform subtraction. Recall that the shortcut for negating a
two’s complement number is to invert each bit (sometimes called the one’s com-
plement as explained in the elaboration on page 219) and then add 1. To invert
each bit, we simply add a 2:1 multiplexor that chooses between b and b, as
Figure 4.16 shows.

Suppose we connect 32 of these 1-bit ALUs, as we did in Figure 4.15. The
added multiplexor gives the option of b or its inverted value, depending on
Binvert, but this is only one step in negating a two’s complement number. No-
tice that the least significant bit still has a CarryIn signal, even though it’s un-
necessary for addition. What happens if we set this CarrylIn to 1 instead of 0?

236

Chapter 4 Arithmetic for Computers

Binvert " Operation

Carryln |
a > _\ G}\
NI

[> Result -
‘ : i .
1o+

v

CarryOut

4

. FIGURE 4.16 A 1-hit ALU that performs AND, OR, and addition on a and b or a and b. By

selecting b (Binvert = 1) and setting CarryIn to 1 in the least significant bit of the ALU, we get
two’s complement subtraction of b from a instead of addition of b to a.

P
3

The adder will then calculate a + b + 1. By selecting the inverted version of b,
we get exactly what we want: -

a+b+1 =a+(b+1) =a+(-b) =a-b

The simplicity of the hardware design of a two’s complement adder helps
explain why two’s complement representation has become the universal stan-
dard for integer computer arithmetic.

Tailoring the 32-Bit ALU to MIPS

This set of operations—add, subtract, AND, OR—is found in the ALU of
almost every computer. If we look at Figure 4.7 on page 228, we see that the
operations of most MIPS instructions can be performed by this ALU. But the
design of the ALU is incomplete. ,

One instruction that still needs support is the set on less than instruction
(s11). Recall that the operation produces 1 if rs < rt, and 0 otherwise. Conse-
quently, s1t will set all but the least significant bit to 0, with the least signifi-
cant bit set according to the comparison. For the ALU to perform s1t, we first
need to expand the three-input multiplexor in Figure 4.16 to add an input for
the st result. We call that new input Less, and use it only for s1t.

4.5 Constructing an Arithmetic Logic Unit 237

The top drawing of Figure 4.17 shows the new 1-bit ALU with the expanded
multiplexor. From the description of 71 above, we must connect 0 to the Less
input for the upper 31 bits of the ALU, since those bits are always set to 0. What
remains to consider is how to compare and set the lenst significant bit for set on
less than instructions.

What happens if we subtract b from a? If the difference is negative, thena <
b since

(a-b)<0=s((a-Db)+b)<(0+D)
=a<b

We want the least significant bit of a set on less than operation tobea 1ifa <
b; that is, a 1 if a — b is negative and a 0 if it's positive. This desired result cor-
responds exactly to the sign-bit values: 1 means negative and 0 means posi-
tive. Following this line of argument, we need only connect the sign bit from
the adder output to the least significant bit to get set on less than.

Unfortunately, the Result output from the most significant ALU bit in the
top of Figure 4.17 for the 51t operation is not the output of the adder; the ALU
output for the s1t operation is obviously the input value Less.

Thus, we need a new 1-bit ALU for the most significant bit that has an extra
output bit: the adder output. The bottom drawing of Figure 4.17 shows the de-
sign, with this new adder output line called Set, and used only for s1t. As long
as we need a special ALU for the most significant bit, we added the overflow
detection logic since it is also associated with that bit.

Alas, the test of less than is a little more complicated than just described be-
cause of overflow; Exercise 4.23 on page 326 explores what must be done.
Figure 4.18 shows the 32-bit ALU.

Notice that every time we want the ALU to subtract, we set both CarryIn
and Binvert to 1. For adds or logical operations, we want both control lines to
be 0. We can therefore simplify control of the ALU by combining the Carryln
and Binvert to a single control line called Bnegate.

To further tailor the ALU to the MIPS instruction set, we must support con-
ditional branch instructions. These instructions branch either if two registers

are equal or if they are unequal. The easiest way to test equahty with the ALU
is to subtract b from a and then test to see if the result is 0 since

(a-b=0)=a=b

Thus, if we add hardware to test if the result is 0, we can test for equality.
The simplest way is to OR all the outputs together and then send that signal
through an inverter:

Zero = (Result31 + Result30 + . . . + Result? + Result] + Result0)

Figure 4.19 shows the revised 32-bit ALU. We can think of the combination
of the 1-bit Bnegate line and the 2-bit Operation lines as 3-bit control lines for

238 Chapter 4 Arithmetic for Computers

Binvert Operation
Carryin
a W N
;_J 0
[
s P P Result
b - 0 +)
1
Less o3
./
Y
CarryOut
Binvert Operation
Carryin |
a T H6)
) T
€
g ' » Result
°7 Ow + 2
1
Less o3
N
> Set
YY w 3 v
Overflow .
detection > Overflow

FIGURE 4.17 (Top) A 1-bit ALU that performs AND, OR, and additicn on a and b or b, and
(bottom) a 1-bit ALU for the most significant bit. The top drawing includes a direct input that
is connected to perform the set on less than operation (see Figure 4.18); the bottom has a direct out-

put from the adder for the less than comparison called Set. (Refer to Exercise 4.42 to see how to cal-
culate overflow with fewer inputs.)
@,

4.5 Constructing an Arithmetic Logic Unit 239

Binvert Carryin Qperation

Vl"

a0 —»{ Carryin

bQ =i ALUO
Less

CarryOut

k-

ResultO

A4

v VvV o
al -—-»| Carryln
bl —»| ALUL
O —p! Less
CarryOut

v

Resultl

v VvV Vv
a2 —» Carryln
b2 —» " ALU2
0 —» less
CarryOut

v

Result2

v

a3l — Carryin Result31
b31 —>»| ALU3L Set

0 —#{ Less » Overflow

FIGURE 4.18 A 32-bit ALU constructed from the 31 copies of the 1-bit ALU in the top of
Figure 4.17 and one 1-bit ALU in the bottom of that figure. The Less inputs are connected to
0 except for the least significant bit, and that is connected to the Set output of the most significant
bit. If the ALU performs a — b and we select the input 3 in the multiplexor in Figure 4.17, then
Result =0 ...001ifa <b, and Result = 0. .. 000 otherwise.

the ALU, telling it to perform add, subtract, AND, OR, or set on less than.
Figure 4.20 shows the ALU control lines and the corresponding ALU opera-
tion. :

Finally, now that we have seen what is inside a 32-bit ALU, we will use the
universal symbol for a complete ALU, as shown in Figure 4.21.

240 Chapter 4 Arithmetic for Computers

Bnegate Operation

vV V V
a0 —»{ Carryln R
esulto
b0 — ALUO e
Less ‘ L'—
CarryOut

A4

vV vV V
al - Carryln Resul
bl —>| ALUL tesuit

'[j e
Q —> |ess R .
CarryOut : > Zero
W
vV Vv ¥
a2 —»| Carryin R
esul
D2 = ALU2 2 >
O = |[ess
CarryOut

— . s s

l I
*-Y Y Result3l [_

asl == Carryin %
b31 =i ALU31 Set
0 ——> |ess > Overflow

Y

010 add
110 subtract
111 set on less than

FIGURE 4.20 The values of the three ALU control lines Bnegate and Operation and the
corresponding ALU operations.

4.5 Constructing an Arithmetic Logic Unit 244

> 7ero
>ALU b Result
> Overflow

CarryOut

FIGURE 4.21 The symbol commonly used to represent an ALY, as shown in Figure 4.19.
This symbol is also used to represent an adder, so it is normally labeled either with ALU or
Adder.

Carry Lookahead

The next question is, How quickly can this ALU add two 32-bit operands? We
can determine the a and b inputs, but the Carryln input depends on the oper-
ation in the adjacent 1-bit adder. If we trace all the way through the chain of
dependencies, we connect the most significant bit to the least significant bit,
s0 the most significant bit of the sum must wait for the sequential evaluation of
all 32 1-bit adders. This sequential chain reaction is too slow to be used in
time-critical hardware. '

There are a variety of schemes to anticipate the carry so that the worst-case
scenario is a function of the log, of the number of bits in the adder. These an-
ticipatory signals are faster because they go through fewer gates in sequence,
but it takes many more gates to anticipate the proper carry.

Akey to understanding fast carry schemes is to remember that, unlike soft-
ware, hardware executes in parallel whenever inputs change.

Fast Carry Using “Infinite” Hardware

Appendix B mentions that any equation can be represented in two levels of
logic. Since the only external inputs are the two operands and the CarryIn to
the least significant bit of the adder, in theory we could calculate the Carryln
values to all the remaining bits of the adder in just two levels of logic.

For example, the CarryIn for bit 2 of the adder is exactly the CarryOut of bit
1, so the formula is

CarryIn2 = (bl CarryInl) + (al - Carrylnl) + (al - b1)
Similarly, CarryIn1 is defined as '
CarryInl = (b0 - CarryIn0) + (a0 - CarryIn0) + (a0 - b0)

242

Chapter 4 Arithmetic for Computers

- Using the shorter and more traditional abbreviation of ci for CarrylIni, we can'

rewrite the formulas as
2. = (bl-cl)+(al-cl)+(al-bl)
¢l = (b0 c0)+(ald-c0)+ (a0 bd)
Substituting the definition of c1 for the first equation results in this formula:
2=(al-a0-b0)+(al-al-c0)+(al-b0-c0) .
+(b1-a0-b0) + (b1-a0-¢0)+(b1-b0-c0)+(al-bl)
You can imagine how the equation expands as we get to higher bits in the
adder; it grows exponentially with the number of bits. This complexity is

reflected in the cost of the hardware for fast carry, making this simple scheme
prohibitively expensive for wide adders.

Fast Carry Using the First Level of Abstraction: Propagate and
Generate

Most fast carry schemes limit the complexity of the equations to simplify the
hardware, while still making substantial speed improvements over ripple
carry. One such scheme is a carry-lookahead adder. In Chapter 1, we said com-
puter systems cope with complexity by using levels of abstraction. A carry-
lookahead adder relies on levels of abstraction in its implementation.

Let’s factor our original equation as a first step:

ci+l = (bi-ci)+(ai- ci)+(ai- bi)
= (ai-bi)+ (ai+bi) ci

If we were to rewrite the equation for c2 using this formula, we would see
some repeated patterns:

2= (al-bl)+(al+bl)-((a0-b0)+ (al+b0) - c0)
Note the repeated appearance of (ai - bi) and (ai + bi) in the formula above.
These two important factors are traditionally called generate (gi) and propagate
(pi):
gi = ai-bi
pi = ai+bi
Using them to define ci+I, we get
ci+l = gi+pi-ci
To see where the signals get their names, suppose gi is 1. Then

ci+l = gi+pi-ci = l+pi-c =1

4.5 Constructing an Arithmetic Logic Unit 243

That is, the adder generates a CarryOut (ci+1) independent of the value of Car-
rvIn (ci). Now suppose that gi is 0 and pi is 1. Then

ci+l = gi+pi-ci=0+1-¢ci =ci

That is, the adder propagates CarryIn to a CarryOut. Putting the two together,
Carrylni+1 is a 1 if either gi is 1 or both pi is 1 and Carrylni is 1.

As an analogy, imagine a row of dominoes set on edge. The end domino can
be tipped over by pushing one far away provided there are no gaps between
the two. Similarly, a carry out can be made true by a generate far away provid-
ed all the propagates between them are true.

Relying on the definitions of propagate and generate as our first level of ab-

straction, we can express the CarryIn signals more economically. Let’s show it
for 4 bits:

cl = g0+ (p0-cO)
2= gl+(pl-g0)+(pl-p0-c0)
3 =g2+(p2-gl)+(p2-pl-g0)+(p2-pl-p0-cl)

o4 = g3+ (p3-g2)+(p3-p2-gl)+(p3-p2-pl-gl)
+(p3-p2-pl-p0-cO)
These equations just represent common sense: Carrylni is a 1 if some earlier
adder generates a carry and all intermediary adders propagate a carry. Figure
4.22 uses plumbing to try to explain carry lookahead.

Even this simplified form leads to large equations and, hence, considerable
logic even for a 16-bit adder. Let’s try moving to two levels of abstraction.

Fast Carry Using the Second Level of Abstraction

First we consider this 4-bit adder with its carry-lookahead logic as a single
building block. If we connect them in ripple carry fashion to form a 16-bit
adder, the add will be faster than the original with a little more hardware.

To go faster, we'll need carry lookahead at a higher level. To perform carry
lookahead for 4-bit adders, we need propagate and generate signals at this
higher level. Here they are for the four 4-bit adder blocks:

PO= p3-p2-pl-p0
Pl= p7-p6-p5-p4
P2= pll-pl0-p9-p8
P3= pl5-pl4-pl3-pl2

That is, the “super” propagate signal for the 4-bit abstraction (Pi) is true only
if each of the bits in the group will propagate a carry.

244

Chapter 4 Arithmetic for Computers

[o2:3

FIGURE 4.22 A plumbing analogy for carry lookahead for 1 bit, 2 bits, and 4 bits using
water, pipes, and valves. The wrenches are turned to open and close valves. Water is shown in
color. The output of the pipe (ci+1) will be full if either the nearest generate value (gi) is turned on
or if the i propagate value (pi) is on and there is water further upstream, either from an earlier
generate, or propagate with water behind it. CarryIn (c0) can result in a carry out without the
help of any generates, but with the help of all propagates.

For the “super” generate signal (Gi), we care only if there is a carry out of
the most significant bit of the 4-bit group. This obviously occurs if generate is
true for that most significant bit; it alsc occurs if an earlier generate is trueand
all the intermediate propagates, including that of the most significant bit, are
also true:

4,5 Constructing an Arithmetic Logic Unit 245

in) a

GO = g3+ (p3-g2)+(p3-p2-gl)+(p3-p2-pl-gl)

Gl = g7+ (p7-g6)+(p7 - p6-g5) +(p7-pb-p>-gd)

aq

G2 = gl1 + (pll- gl0) +(pll-pl0-g9) +(pll- pl0-p9 - g8)
G3 = g15 + (pl5- gl4) + (pl5- pl4 - gl3) + (plo- pl4 - pl3-gl2)
Figure 4.23 updates our plumbing analogy to show PO and GO.

FIGURE 4.23 A plumbing analogy for the next-level carry-lookahead signals PO and GO.
PO is open only if all four propagates (pi) are open, while water flows in GO only if at least one
generate (gi) is open and all the propagates downstream from that generate are open.

246 Chapter 4 Arithmetic for Computers

Carryin
. Y
a0 —>| Carryln
b0 = > ResultO-3
al
g% —> ALUO .
PO > DI
b2— o > gi
83 " .
b3 — _ Carrvlookahead unit
Cl . ‘
l——— ci+1
a4 —»! Carryin
b4 — > Result4-7
a5
b5 —
ALUL
86 ———v L p1 » Pi+ 1
. b6 —> G1 s gi+ 1
: g7) ;
Y 2
c2 | .
L——————— ci+2
a8 ——p| Carryln
b8 + Result8-11
ag —>
b9 —1 pLu2
810 m——p p2 pi+2
b10 — G2 gi+ 2
ali =
b1l ——b ca| |
L_——— ci+3
al2 —| Carryln
D12 > + Resultl2-15
al3 ——p .
bl3 weps ALU3
al4 —» P3 ¥ pi+ 3
b14 —» G3 M gi+3
Q15 > c4 iv
DS —— [————— ci+
v
CarryOut

FIGURE 4.24 Four 4-bit ALUs using carry lookahead to form a 16-bit adder. Note that the

carries come from the carry-lookahead unit, not from the 4-bit ALUs.

Then the equations at this higher level of abstraction for the carry in for each
4-bit group of the 16-bit adder (C1, C2, C3, C4 in Figure 4.24) are very similar
to the carry out equations for each bit of the 4-bit adder (c1, 2, 3, c4) on page

243:

4.5 Constructing an Arithmetic Logic Unit 247

Cl = GO+ (P0-c0)
C2=GLl+(@P1-GO)+ (1 -PO-c0)
C3=G2+(P2-G)+(P2-P1-GO)+(P2-P1-P0-c0)

C4 = G3+(P3-G2)+(P3-P2-G1) + (P3- P2-P1-GO)
+(P3-P2-P1-P0- c0)

Figure 4.24 shows 4-bit adders connected with such a carry lookahead unit.
Exercises 4.44 through 4.48 explore the speed differences between these carry
schemes, different notations for multibit propagate and generate signals, and
the design of a 64-bit adder.

Both Levels of the Propagate and Generate

| Determine the gi, pi, Pi, and Gi values of these two 16-bit numbers:

a: 0001 1010 0011 001lgye
b: 1110 0101 1110 1011y,

Also, what is CarryOutl5 (C4)?

Aligning the bits makes it easy to see the values of generate gi (ai - bi) and
propagate pi (ai + bi):

a: 0001 1010 0011 Q011
b: 1110 0101 1110 1011
gi: 0000 0000 0010 Q011
pi: 1111 1111 1111 1011

where the bits are numbered 15 to 0 from left to right. Next, the “super”
propagates (P3, P2, P1, P0) are simply the AND of the lower-level propa-

gates: :
P3=1-1-1-1=1
P2=1-1-1-1=1
Pil=1-1-1-1=1
PO0=1-0-1-1=0

&+
248 Chapter 4 Arithmetic for Computers

The “super” generates are more complex, so use the followinge quations:

GO =g3+(p3-82)+(p3-p2-gl)+ (p3-p2-pl-gl)
O0+1-0+0-0-D+(1-0-1-1)=0+0+0+0=0

Gl = g7+ (p7-g6) +(p7-p6-gd) + (p7 - p6 - p5 - g4)
O+(1-0)+(1-1-1)+(1'1-41‘0)=0+O+1+O=1

G2 = gll+(pll-gl0) + (pll-pl0-g9) + (pll-pl0- p9 - g8)
=0+(1-0+1-1-0+1-1-1-00=0+40+0+0=0 -

G3 = gl5+(p15-gld) + (pl5- pld- g13) + (pI5- pl4 - p13- g12)
=0+(1-0+(1-1-0)+(1-1-1-00=04+0+0+0=0

Finally, CarryOutl15 is

C4 G3+(P3-G2)+ (P3-P2-G1) + (P3-P2-P1- GO)
+(P3-P2-P1-P0-c)

=0+1-00+1-1-D+Q-1-1:00+1-1-1-0-0)
=0+0+1+0+0=1

Hence there is a carry out when adding these two 16-bit numbers.

It

The reason carry lookahead can make carries faster is that all logic begins
evaluating the moment the clock cycle begins, and the result will not change .
once the output of each gate stops changing. By taking a shortcut of going
through fewer gates to send the carry in signal, the output of the gates will
stop changing sooner, and hence the time for the adder can be less.

To appreciate the importance of carry lookahead, we need to calculate the
relative performance between it and ripple carry adders.

Speed of Ripple Carry versus Carry Lookahead

ngw 1{ One simple way to model time for logic is to assume each AND or OR gate

et

takes the same time for a signal to pass through it. Time is estimated by
simply counting the number of gates along the longest path through a
piece of logic. Compare the number of gate delays for the critical paths of
two 16-bit adders, one using ripple carry and one using two-level carry
lookahead.

Figure 4.13 on page 233 shows that the carry out signal takes two gate de-
lays per bit. Then the number of gate delays between a carry in to the least
significant bit and the carry out of the most significantis 16 x 2 = 32,

4.5 Constructing an Arithmetic Logic Unit 249

For carry lookahead, the carry out of the most significant bit is just C4,
defined in the example. It takes two levels of logic to specify C4 in terms
of Pi and Gi (the OR of several AND terms). Pi is specified in one level of
logic (AND) using pi, and Gi is specified in two levels using pi and gi, so
the worst case for this next level of abstraction is two levels of logic. pi and
gi are each one level of logic, defined in terms of ai and bi. If we assume
one gate delay for each level of logic in these equations, the worst case is
2+2+1 = 5 gate delays.

Hence for 16-bit addition a carry-lookahead adder is six times faster,
using this simple estimate of hardware speed.

Summary

The primary point of this section is that the traditional ALU can be con-
structed from a multiplexor and a few gates that are replicated 32 times. To
make it more useful to the MIPS architecture, we expand the traditional ALU
with hardware to test if the result is 0, detect overflow, and perform the basic -
operation for set on less than.

Carry lookahead offers a faster path than waiting for the carries to ripple
through all 32 1-bit adders. This faster path is paved by two signals, generate
and propagate. The former creates a carry regardless of the carry input, and the
other passes a carry along. Carry lookahead also gives another example of how
abstraction is important in computer design to cope with complexity.

Elaboration: We have now accounted for all but one of the arithmetic and logical
operations for the core MIPS instruction set: the ALU in Figure 4.21 omits support of
shift instructions. It would be possible to widen the ALU multiplexor to include a left
shift by 1 bit or right shift by 1 bit. But hardware designers have created a circuit called
a barrel shifter, which can shift from- 1 to 31 bits in no more time than it takes to add
two 32-bit numbers, so shifting is normally done outside the ALU. :

Elaboration: The logic equation for the Sum output of the full adder on page 234 can
be expressed more simply by using a more powerful gate than AND and OR. An exclu-
sive OR gate is true if the two operands disagree; that is,

xxy=>dlandx==y=0

In some technologies, exclusive OR is more efficient than two levels of AND and OR
gates. Using the symbol @ to represent exclusive OR, here is the new equation:

Sum = a®b®Carryin

Also, we have drawn the ALU the traditional way, using gates. Computers are
designed today in CMOS transistors, which are basically switches. CMOS ALU and bar-
rel shifters take advantage of these switches and have many fewer multipiexors than
shown in our designs, but the design principles are similar.

