250

Chapter 4 Arithmetic for Computers

Multiplication

Multiplication is vexation,
Division is as bad;

The rule of three doth puzzle me,
And practice drives me mad.

Anonymous, Elizabethan manuscript, 1570

With the construction of the ALU and explanation of addition, subtraction,
and shifts, we are ready to build the more vexing operation of multiply.

But first let’s review the multiplication of decimal numbers in longhand to
remind ourselves of the steps and the names of the operands. For reasons that
will become clear shortly, we limit this decimal example to using only the dig-
its 0 and 1. Multiplying 1000, by 1001,.:

Multiplicand 1000¢en
Multiplier X 1001en

1000
0000
0000
1000

Product 10010004y,

The first operand is called the multiplicand and the second the multiplier. The
final result is called the product. As you may recall, the algorithm learned in
grammar school is to take the digits of the multiplier one at a time from right
to left, multiplying the multiplicand by the single digit of the multiplier and
shifting the intermediate product one digit to the left of the earlier inter-
mediate products.

The first observation is that the number of digits in the product is consider-
ably larger than the number in either the multiplicand or the multiplier. In fact,
if we ignore the sign bits, the length of the multiplication of an n-bit multipli-
cand and an m-bit multiplier is a product that is 11 + m bits long. That is, 11 + m
bits are required to represent all possible products. Hence, like add, multiply
must cope with overflow because we frequently want a 32-bit product as the
result of multiplying two 32-bit numbers.

In this example we restricted the decimal digits to 0 and 1. With only two
choices, each step of the multiplication is simple:

1. Just place a copy of the multiplicand (1 x multiplicand) in the proper
place if the multiplier digitisa 1, or

2. Place 0 (0 x multiplicand) in the proper place if the digit is 0.

4.6 Multiplication 251

Although the decimal example above happened to use only 0 and 1, muliipli-
cation of binary numbers must always use 0 and 1, and thus always offers
only these two choices.

Now that we have reviewed the basics of multiplication, the traditional next
step is to provide the highly optimized multiply hardware. We break with tra-
dition in the belief that you will gain a better understanding by seeing the evo-
lution of the multiply hardware and algorithm through three generations. The
rest of this section presents successive refinements of the hardware and the
algorithm until we have a version used in some computers. For now, let's
assume that we are multiplying only positive numbers.

First Version of the Multiplication Algorithm and Hardware

The initial design mimics the algorithm we learned in grammar school; the
hardware is shown in Figure 4.25. We have drawn the hardware so that data
flows from top to bottom to more closely resemble the paper-and-pencil
method.

Let’s assume that the multiplier is in the 32-bit Multiplier register and that
the 64-bit Product register is initialized to 0. From the paper-and-pencil exam-
ple above, it's clear that we will need to move the multiplicand left one digit
each step as it may be added to the intermediate products. Over 32 steps a

—
Multiplicand
Shift left <
64 bits
y y ——
\—j/ / Multiplier

64-bit ALU / Shift right [«

32 bits

Product Wiite Con’tm——‘
64 bits

]
H

FIGURE 4.25 First version of the multiplication hardware. The Multiplicand register, ALU,
and Product register are all 64 bits wide, with only the Multiplier register containing 32 bits. The
32-bit multiplicand starts in the right half of the Multiplicand register, and is shifted left 1 bit on
each step. The multiplier is shifted in the opposite direction at each step. The algorithm starts
with the product initialized to 0. Control decides when to shift the Multiplicand and Multiplier
registers and when to write new values into the Product register.

252

Chapter 4 Arithmetic for Computers

32-bit multiplicand would move 32 bits to the left. Hence we need a 64-bit Mul-
tiplicand register, initialized with the 32-bit multiplicand in the right half anid
0 in the left half. This register is then shifted left 1 bit each step to align the mul-
tiplicand with the sum being accumulated in the 64-bit Product register.
Figure 4.26 shows the three basic steps needed for each bit. The least signif-
icant bit of the multiplier (Multiplier0) determines whether the multiplicand is

Muiltiplier0 = 1 Multiplier0 = 0

Y

~ place the result in Product register -

A v

. 2.'Shift the Multiplicand register left 1 bit

v

. 3. Shift the Multiplier register right 1 bit

No: < 32 repetitions

32nd repetition?

Yes: 32 repetitions

FIGURE 4.26 The first multiplication algorithm, using the hardware shown in Figure 4.25.
If the least significant bit of the multiplier is 1, add the multiplicand to the product. If not, go to
the next step. Shift the multiplicand left and the multiplier right in the next twvo steps. These three

-

steps are repeated 32 times.

4.6 WMultiplication 253

added to the Product register. The left shift in step 2 has the effect of moving
the intermediate operands to the left, just as when multiplying by hand. The
shift right in step 3 gives us the next bit of the multiplier to examine in the fol-
lowing iteration. These three steps are repeated 32 times to obtain the
product.

First Multiply Algorithm

Using 4-bit numbers to save space, multiply 2e; X 3ien, 0F 001040
% 0011 yyo-

Figure 4.27 shows the value of each register for each of the steps labeled
according to Figure 4.26, with the final value of 0000 0110, OF 6¢en. Color
is used to indicate the register values that change on that step, and the bit
circled is the one examined to determine the operation of the next step.

0 ‘| Initial values OOl@ 0000 0010 0000 0000
1 1a: 1 => Prod = Prod + Mcand 0011 0000 0010 0000 0010
2: Shift left Multiplicand 0011 0000 0100 0000 0010
3: Shift right Multiplier 000@ 0000 0100 0000 0010
2 1a: 1 => Prod = Prod + Mcand 0001 0000 0100 0000 0110
2: Shift left Multiplicand 0001 0000 1000 0000 0110
3: Shift right Multiplier 00009 0000 1000 0000 0110
3 1: 0 => no operation 0000 0000 1000 0000 0110
2: Shift left Multiplicand 0000 0001 0000 0000 0110
3: Shift right Multiplier 000@ 0001 0000 0000 0110
4 1: 0 = no operation 0000 0001 0000 0000 0110
2: Shift left Muitiplicand 0000 0010 0000 0000 0110
3: Shift right Muitiplier - 0000 . 0010 ¢000 0000 0110

FIGURE 4.27 Multiply example using first algorithm in Figure 4.26. The bit examined to
determine the next step is circled in color.

If each step took a clock cycle, this algorithm would require almost 100 clock
cycles to multiply. The relative importance of arithmetic operations like multi-
ply varies with the program, but addition and subtraction may be anywhere
from 5 to 100 times more popular than multiply. Accordingly, in many appli-
cations, multiply can take multiple clock cycles without significantly affecting
performance. Yet Amdahl’s law (see Chapter 2, page 75) reminds us that even
a moderate frequency for a slow operation can limit performance.

254 Chapter 4 Arithmetic for Computers

Multiplicand
32 bits
L2 v >
NV / Multiplier
32-bit ALU Shift right [«
32bits |

v —
Shift right |«
Proguct Write e

64 hits

FIGURE 4.28 Second version of the multiplication hardware. Compare with the first ver-
sion in Figure 4.25. The Multiplicand register, ALU, and Multiplier register are all 32 bits wide,
with only the Product register left at 64 bits. Now the product is shifted right. These changes are
highlighted in color.

Second Version of the Multiplication Algorithm
and Hardware '

Computer pioneers recognized that half of the bits of the multiplicand in the
first algorithm were always 0, so only half could contain useful bit values. A
full 64-bit ALU thus seemed wasteful and slow since half of the adder bits
were adding 0 to the intermediate sum.

The original algorithm shifts the multiplicand left with 0Os inserted in the
new positions, so the multiplicand cannot affect the least significant bits of the
product after they settle down. Instead of shifting the multiplicand left, they
wondered, what if we shift the product right? Now the multiplicand would be
fixed relative to the product, and since we are adding only 32 bits, the adder
need be only 32 bits wide. Figure 4.28 shows how this change halves the
widths of both the ALU and the multiplicand.

Figure 4.29 shows the multiply algorithm inspired by this observation. This
algorithm starts with the 32-bit Multiplicand and 32-bit Multiplier registers set
to their named values and the 64-bit Product register set to 0. This algorithm
only forms a 32-bit sum, so only the left half of the 64-bit Product register is
changed by the addition.

4.6 Multiplication 255

MultiplierO = 0

MuitiplierO

v
* 1. Add multiplicand to the left half of

_the product and place the resuit in’:
- the [eft haif of the Product register -

v v

St the Product regstor L0l

Y

3. Shift the Multiplier register right 1 bit

No: < 32 repetitions

Yes: 32 repetitions

FIGURE 4.29 The second multiplication algorithm, using the hardware in Figure 4.28. In
this version, the Product register is shifted right instead of shifting the multiplicand. Color type
shows the changes from Figure 4.26.

256

Chapter 4 Arithmetic for Computers

Second Multiply Algorithm

Multiply 00104y, % 0011,,,using the algorithm in Figure 4.29.

| Figure 4.30 shows the revised 4-bit example, again giving a-product of
0000 01104y0-

0 Initial values 001 0010 0000 0000
1 da: 1 => Prod = Prod + Mcand 0011 0010 0010 0000
2: Shift right Product 0011 0010 0001 0000
3: Shift right Multiplier . 000d) 0010 0001 0000
2 la: 1 =>Prod = Prod + Mcand’ 0001 0010 0011 0000
2: Shift right Product 0001 0010 0001 1000
3: Shift right Multiplier 0000 0010 0001 1000
3 1: 0 => no operation 0000 0010 0001 1000
2: Shift right Product 0000 © 0010 0000 1100
3: Shift right Multiplier 0009 0010 0000 1100
4 1: 0 => no operation 0000 0010 0000 1100
2: Shift right Product 0000 0010 0000 0110
3: Shift right Multiplier 0000 0010 0000 0110

FIGURE 4.30 Multiply example using second algorithm in Figure 4.29. The bit examined to
determine the next step is circled in color.

Final Version of the Muitiplication Algorithm and
Hardware

The final observation of the frugal computer pioneers was that the Product
register had wasted space that matched exactly the size of the multiplier: As
the wasted space in the product disappears, so do the bits of the multiplier. In
response, the third version of the multiplication algorithm combines the right-
most half of the product with the multiplier. Figure 4.31 shows the hardware.
The least significant bit of the 64-bit Product register (Product0) now is the bit
to be tested.

The algorithm starts by assigning the multiplier to the right half of the Prod-
uct register, placing 0 in the upper half. Figure 4.32 shows the new steps.

4.6 Multiplication 257

Multipticand

32 bits

7

N~/
32bit ALU /T

e

y

Shift right |«

Product Write |

64 bits

FIGURE 4.31 . Third version of the multiplication hardware. Comparing with the second ver-
sion in Figure 4.28 on page 254, the separate Multiplier register has disappeared. The multiplier
is placed instead in the right half of the Product register.

Third Multiply Algorithm

Multiply 00104, X 00114y, using the algorithm in Figure 4.32.

Figure 4.33 shows the revised 4-bit example for the final algorithm.

Signed Multiplication

Sofar we have dealt with positive numbers. The easiest way to understand
how to deal with signed numbers is to first convert the multiplier and multi-
plicand to positive numbers and then remember the original signs. The algo-
rithms should then be run for 31 iterations, leaving the signs out of the
calculation. As we learned in grammar school, we need negate the product
only if the original signs disagree.

It turns out that the last algorithm will work for signed numbers provided
that we remember that the numbers we are dealing with have infinite digits,
and that we are only representing them with 32 bits. Hence the shifting steps
would need to extend the sign of the product for signed numbers. When the
algorithm completes, the lower word would have the 32-bit product.

258

Chapter 4 Arithmetic for Computers

1 Test
:Product0

Product0 =1 ProductO = 0

A 4
1a. Add multiplicand to the left half of
- the product and place the result in

- the left half of the Product register .-

\4 v

2. Shift the Produst register right £ bit

No: < 32 repetitions

32nd repetition?

Yes: 32 repetitions

FIGURE 4.32 The third multiplication algorithm. It needs only two steps because the Product
and Multiplier registers have been combined. Color type shows changes from Figure 4.29.

0 Initial values 0010 0000 0013
1 ia: 1 => Prod = Prod + Mcand 0010 0010 0011
2: Shift right Product 0010 0001 00QJ)
2 la: 1 => Prod = Prod + Mcand 0010 0011 0001
2: Shift right Product 0010 0001 1005
3 1: 0 => no operation 0010 0001 1000
2: Shift right Product ; 0010 0000 1100
4 1: 0 => no operation 0010

2: Shift right Product 0010

FIGURE 4.33 HMultiply example using third algorithm in Figure 4.32. The bit examined to
determine the next step is circled in color.

4.6 Multiplication 259

P

Booth’s Algorithm

A more elegant approach to multiplying signed numbers than above is called
Booth's algorithm. It starts with the observation that with the ability to both
add and subtract there are multiple ways to compute a product. Suppose we
want to multiply 2, by 6ten, 07 00104, by 01104,

0010540
X OllOtwo

0000 shift (0 in multiplier)
0010 add (1 in multiplier)
0010 add (1 in multiplier)
0000 shift (0 in multiplier)

000011001:\40

Booth observed that an ALU that could add or subtract could get the same
result in more than one way. For example, since

+ o+

Bten = = 2ten T 8ten

or
01104y, = - 00104y, *+ 10004,
we could replace a string of 1s in the multiplier with an initial subtract when

we first see a 1 and then later add when we see the bit after the last 1. For
example,

00104y,
X 0110tw0
+ 0000 shift (0 in multiplier)
- 0010 sub (first 1 in multiplier)
+ 0000 shift (middle of string of 1s)
+ 0010 add (prior step had last 1)

000011004,

Booth invented this approach in a quest for speed because in machines of
his era shifting was faster than addition. Indeed, for some patterns his algo-
rithm would be faster; it’s our good fortune that it handles signed numbers as

260

Chapter 4 Arithmetic for Computers

well, and we’ll prove this later. The key to Booth’s insight is in his classifying
groups of bits into the beginning, the middle, or the end of a run of 1s: ‘

Middle of run

0(111 1)0

Of course, a string of 0s already avoids arithmetic, so we can leave these
alone.

If we are limited to looking at just 2 bits, we can then try to match the situ-
ation in the preceding drawing, according to the value of these 2 bits:

End of run Beginning of run

1 o Beginning of a run of 1s 00001111000y,
1 1 Middle of a run of 1s 1000011110004,
0 1 End of a run of 1s 00001111000y,
0 0 Middle of a run of Os 00001111000,

Booth’s algorithm changes the first step of the algorithm in Figure 4.32—
looking at 1 bit of the multiplier and then deciding whether to add the multi-
plicand—to looking at 2 bits of the multiplier. The new first step, then, has four
cases, depending on the values of the 2 bits. Let’s assume that the pair of bits
examined consists of the current bit and the bit to the right—which was the
current bit in the previous step. The second step is still to shift the product
right. The new algorithm is then the following:

1. Depending on the current and previous bits, do one of the following:
00: Middle of a string of Os, so no arithmetic operation.

01: End of a string of 1s, so add the multiplicand to the left half of the
product.

10: Beginning of a string of 1s, so subtract the multiplicand from the left
half of the product.

11: Middle of a string of 1s, so no arithmetic operation.
2. Asin the previous algorithm, shift the Product register right 1 bit.

Now we are ready to begin the operation, shown in Figure 4.34. It starts
with a 0 for the mythical bit to the right of the rightmost bit for the first stage.
Figure 4.34 compares the two algorithms, with Booth’s on the right. Note that

4.6 WMultiplication 261

0 ;0010 Initial values 0000 011@ Initial values 0000 Ol@
1 | 0010 1: O = no operation 0000 0110 1a: 00 => no operation Q000 0110 0
0010 | 2: Shift right Product 0000 0011) | 2: Shift right Product 0000 0014 O
2 0010 |1a:1 = Prod = Prod + Mcand 0010 0011 | 1c: 10 = Prod = Prod — Mcand 1110 0011 0
0010 | 2: Shift right Product 0001 00G) | 2: Shift right Product 1111 0004 1)
3 0010 | 1a:1 => Prod = Prod + Mcand 0011 0001 | 4d: 11 => no operation 11411 0001 1
0010 | 2: Shift right Product 0001 1000) | 2: Shift right Product 11111000 0D
4 0010 |1: 0 => no operation . 0001 1000 | 1b: 01 => Prod = Prod + Mcand 0001 1000 1
0010 | 2: Shift right Product 0000 1100 | 2: Shift right Product 0000 1100 0

FIGURE 4.34¢ Comparing algorithm in Figure 4.32 and Booth’s algorithm for positive numbers. The bit(s) examined
to determine the next step is circled in color.

Booth's operation isnow identified according to the values in the 2 bits. By the
fourth step, the two algorithms have the same values in the Product register.

The one other requirement is that shifting the product right must preserve
the sign of the intermediate result, since we are dealing with signed numbers.
The solution is to extend the sign when the product is shifted to the right. Thus,
step 2 of the second iteration turns 1110 0011 O, into 1111 0001 14, instead of
0111 0001 14y, This shift is called an arithmetic right shift to differentiate it from
a logical right shift.

Booth’s Algorithm

Let’s try Booth's algorithm with negative numbers: 25, X ~34en = —6¢ep, OF
001040 X 110141y = 1111 10104y0-

Figure 4.35 shows the steps.

Our example multiplies one bit at a time, but it is possible to generalize
Booth's algorithm to generate multiple bits for faster multiplies (see Exercise
4.53). '

262

Chapter 4 Arithmetic for Computers

Y Initial values 0010 0000 1104 0)
1 i¢: 10 = Prod = Prod — Mcand 0010 111011010
2: Shift right Product 0010 11110110 D
2 ib: 01 => Prod = Prod + Mcand 0010 000101101
2: Shift right Product 0010 0000 10140
3 1c: 10 = Prod = Prod ~ Mcand 0010 1141010110
2: Shift right Product 0010 13.11'"010@
4 1d: 11 = no operation 0010 1111 0101 1
2: Shift right Product 0010 1111 1010 1

FIGURE 4.35 Booth's algorithm with negative multiplier example. The bits examined to
determine the next step are circled in color.

Replacing arithmetic by shifts can also occur when multi-
plying by constants. Some compilers replace multiplies by
short constants with a series of shifts, adds, and subtracts.
Because one bit to the left represents a number twice as
large in base 2, shifting the bits left has the same effect as
multiplying by a power of 2, so almost every compiler will

substitute-a left shift for a multiply by a power of 2.

R R T

Multiply by 2/ via Shift

if we shift left 1 bit, we get

and

[1 _
5x2 ten ™ 1Oten

Hence the MIPS =7 instruction can be used for multiplies by posvers of 2.

Let’s multiply Siep, by 2¢en using a left shift by 1.

1010, =(1x2>) +(0x2D + (1 x2hH + 0 x 29
two ten
=8+ 042+ Oep = 10i0n

10T 4wo = (1X22)+(OX21)+(1X20)ten =4+ 0+ 1o, = Sten

4.6 Multiplication 263

Now that we have seen Booth's algorithm work, we are ready to see why it
works for two's complement signed integers. Let a be the multiplier and b be
the multiplicand and we'll use 4; to refer to bit / of a. Recasting Booth’s algo-
rithm in terms of the bit values of the multiplier yields this table:

0 0 Do nothing
0 1 Add b

1 0 Subtract b
1 1 Do nothing

Instead of representing Booth's algorithm in tabular form, we can represent it
as the expression

(@ -a)
where the Value of the expression means the following actions:
0: do nothing
+1:. addb
~1: subtractb

Since we know that shifting of the multiplicand left with respect to the Prod-
uct register can be considered multiplying by a power of 2, Booth's algorithm
can be written as the sum -

(aq-ag) xbx2°
+ (gg —) xbx2!
+ g —ay) xbx2?

+ (azg — a3 x b x 230
+ {agy - agpx b x 2%
We can simplify this sum by noting that
g x 24 g x 2P = (a4 20) x 2 = Qa;—a) x 2 = a; x 2
recalling that a_; = 0 and by factoring out b from each term:
b x ({agy X —231) + (239 X 239) + (a9 x 2% + . .. + (@ x 21) + (apx 2%))

The long formula in parentheses to the right of the first multiply operation is
simply the two’s complement representation of a (see page 213.) Thus the sum
is further simplified to

bxa

Hence Booth's algorithm does in fact perform two’s complement multiplica-
tion of 2 and b.

264

Chapter 4 Arithmetic for Computers

Multiply in MIPS

MIPS provides a separate pair of 32-bit registers to contain the 64-bit product,
called Hi and Lo. To produce a properly signed or unsigned product, MIPS
has two instructions: multiply (muTt) and multiply unsigned (multu). To
fetch the integer 32-bit product, the programmer uses move from lo (mf10). The
MIPS assembler generates a pseudoinstruction for multiply that specifies
three general-purpose registers, generating mflo and mfhi instructions to
place the product into registers. '

Both MIPS multiply instructions ignore overflow, so it is up
to the software to check to see if the product is too big to fit
in 32 bits. To avoid overflow, Hi must be 0 for multu or
must be the replicated sign of Lo for mult. The instruction
move from hi (nfhi) can be used to transfer Hi to a general-
purpose register to test for overflow.

Sumimary

Multiplication is accomplished by simple shift and add hardware, derived
from the paper-and-pencil method learned in grammar school. Compilers
even use shift instructions for multiplications by powers of two. Signed multi-
plication is more challenging, with Booth’s algorithm rising to the challenge
with essentially a clever factorization of the two’s complement number repre-
sentation of the multiplier.

Elaboration: The original reason for Booth's algorithm was speed because early
machines could shift faster than they could add. The hope was that this encoding
scheme would increase the number of shifts. This algorithm is sensitive to particular bit
patterns, however, and may actually increase the number of adds or subtracts. For
example, bit patterns that alternate O and 1, called isolated 1s, will cause the hard-
ware to add or subtract at each step. Looking at more bits to carefully avoid isolated 1s
can reduce the number of adds in the worst case. Greater advantage comes from per-
forming muitiple bits per step, which we explore in Exercise 4.53.

Even faster multiplications are possible by essentially providing one 32-bit adder for
each bit of the multiplier; one input is the multiplicand ANDed with a multiplier bit and
the other is the output of a prior adder. When adding such a large column of numbers,
a carry save adderis useful (see Exercises 4.49 {o 4.52).

Elakoration: The replacement of a multiply by a shift, as in the example on page
262. is an instance of a general compiler optimization strategy called strength reduc-
tion.

4.7 Division 265

Division

Divide et impera.

Latin for “Divide and rule,” ancient political maxim cited by Machiavelli, 1532

The reciprocal operation of multiply is divide, an operation that is even less
frequent and even more quirky. It even offers the opportunity to perform a
mathematically invalid operation: dividing by 0.

Let’s start with an example of long division using decimal numbers to recall
the names of the operands and the grammar school division algorithm. For
reasons similar to those in the previous section, we limit the decimal digits to
just 0 or 1. The example is dividing 1,001,010;e,, by 1000,¢,:

1001, Quotient
Divisor 1000, [1001010;,, Dividend
-1000 '

10

101

1010
=1000

104, Remainder

The two operands (dividend and divisor) and the result (quotient) of divide
are accompanied by a second result called the remainder. Here is another way
to express the relationship between the components: :

Dividend = Quotient X Divisor + Remainder

where the remainder is smaller than the divisor. Infrequently, programs use
the divide instruction just to get thé remainder, ignoring the quotient.

The basic grammar school division algorithm tries to see how big a number
can be subtracted, creating a digit of the quotient on each attempt. Our care-
fully selected decimal example uses only the numbers 0 and 1, so it's easy to
figure out- how many times the divisor goes into the portion of the
dividend: it's either 0 times or 1 time. Binary numbers contain only 0 or 1, so
binary division is restricted to these two choices, thereby simplifying binary
division. .

Let’s assume that both the dividend and divisor are positive and hence the
quotient and the remainder are nonnegative. The division operands and both
results are 32-bit values, and we will ignore the sign for now. Rather than make

266

Chapter 4 Arithmetic for Computers

B
Divisor
Shift right <
64 bits
v y ‘-—.
\/ /) Quotient
64-bit ALU Shift left f«

32 bits

Remainder m
Write tey

64 bits 4

FIGURE 4.36 First version of the division hardware. The Divisor register, ALU, and Remain-
der register are all 64 bits wide, with only the Quotient register being 32 bits. The 32-bit divisor
starts in the left half of the Divisor register and is shifted right 1 bit on each step. The remainder is
initialized with the dividend. Control decides when to shift the Divisor and Quotient registers
and when to write the new value into the Remainder register.

each of the three evolutionary steps explicit with drawings and examples, as
we did for multiply, we will save space by giving a sketch for the two inter-
mediate steps and then give the final algorithm in detail.

First Version of the Division Algorithm and Hardware

Figure 4.36 shows hardware to mimic our grammar school algorithm. We
start with the 32-bit Quotient register set to 0. Each step of the algorithm
needs to move the divisor to the right one digit, so we start with the divisor
placed in the left half of the 64-bit Divisor register and shift it right 1 bit each
step to align it with the dividend. The Remainder register is initialized with
the dividend.

Figure 4.37 shows three steps of the first division algorithm. Unlike a hu-
man, the computer isn’t smart enough to know in advance whether the divisor
is smaller than the dividend. It must first subtract the divisor in step 1; remem-
ber that this is how we performed the comparison in the set on less than in-
struction. If the result is positive, the divisor was smaller or equal to the
dividend, so we generate a 1 in the quotient (step 2a). If the result is negative,
the next step is to restore the original value by adding the divisor back to the
remainder and generate a 0 in the quotient (step 2b). The divisor is shifted right
and then we iterate again. The remainder and quotient will be found in their
namesake registers after the iterations are complete.

4.7 Division 267

1. Subtract the Divisor register from the
Remainder register and place the
result in the Remainder register

Remainder > 0 Remainder < O

Test Remainder

v A4

2a. Shift the Quotient register to the left, 2b.-Restore the original value by adding
- setting the new rightmost bitto 1" " the Divisor register to the Remainder.
, - “register and'place the sum:in the
- Remainder register. Also shift the =
Quotient register to the left, setting the
- new least significant bit to. 0

hA v

3. Shift the Divisor register right 1 bit -

No: < 33 repetitions

33rd repetition?

Yes: 33 repetitions

FIGURE 4.37 The first division algorithm, using the hardware in Figure 4.36. If the
Remainder is positive, the divisor did go into the dividend, so step 2a generates a 1 in the quo-
tient. A negative Remainder after step 1 means that the divisor did not go into the dividend, so
step 2b generates a 0 in the quotient and adds the divisor to the remainder, thereby reversing the
subtraction of step 1. The final shift, in step 3, aligns the divisor properly, relative to the dividend
for the next iteration. These steps are repeated 33 times; the reason for the apparent extra step will
become clear in the next version of the algorithm.

268

Chapter 4 Arithmetic for Computers

First Divide Algorithm

Using a 4-bit version of the algorithm to save pages, let's try dividing 7.,
by 2, or 0000 01114, by 00104

o

Figure 4.38 shows the value of each register for each of the steps, with the
quotient being 3., and the remainder 1. Notice that the test in step 2 of
whether the remainder is positive or negative simply tests whether the
sign bit of the Remainder registerisa 0 or 1. The surprising requirement of
this algorithm is that it takes n + 1 steps to get the proper quotient and
remainder.

0 Initial values 0000 0010 0000 | 0000 0111
1: Rem = Rem — Div 0000 0010 0000 | (DL100111

1 2b: Rem <0 => +Div, sll Q, Q0 = 0 0000 00100000 | 00000111
3: Shift Div right 0000 0001 0000 | 0000 0111

1: Rem = Rem — Div - 0000 0001 0000 | Q1110111

2 2b: Rem < 0 = +Div, sl Q, Q0 = 0 0000 0001 0000 | 0000 0111
|37 Shift Div right 0000 00001000 | 0000 0111

1: Rem = Rem - Div 0000 0000 1000 | @111 1114

3 2b: Rem < 0 => +Div, sl Q, Q0 = 0 0000 0000 1000 | 0000 0111
3: Shifi Div right : 0000 00000100 | 00GO 0111

1: Rem = Rem - Div 0000 0000 0100 | Q000 0011

4 2a: Rem20=sllQ,Q0=1 0001 0000 0100 0000 0011
3: Shift Div right 0001 | 0000 0010 | 0000 0011

1: Rem = Rem — Div 0001 0000 0010 | (©O00 0001

5 2a; Rem20=>3gl1Q, Q0 =1 0011 0000 0010 | 0000 0001
3: Shift Div right 0011 0000 0001 | (0000 0001

FIGURE 4.38 Division example using first algorithm in Figure 4.37. The bit examined to
determine the next step is circled in color.

Second Version of the Division Algorithm and
Hardware

Once again the frugal computer pioneers recognized that, at most, half of the
divisor has useful information, and so both the divisor and ALU could poten-
tially be cut in half. Shifting the remainder to the left instead of shifting the
divisor to the right produces the same alignment and accomplishes the goal of
simplifying the hardware necessary for the ALU and the divisor. Figure 4.39
shows the simplified hardware for the second version of the algorithm.

4.7 Division 269

Divisor
32 bits
v X e
i \/ / Quotient
32:hitALU /7 Shift left [«
32 bits
- <
Shift left
Remz?mder Write
64 bits

FIGURE 4.39 Second version of the division hardware. The Divisor register, ALU, and Quo-
Hent register are all 32 bits wide, with only the Remainder register left at 64 bits. Compared to
Figure 4.36, the ALU and Divisor reglsters are halved and the remainder is shifted left. These
changes are highlighted.

Another change comes from noticing that the first step of the current algo-
rithm cannot produce a 1 in the quotient bit; if it did, then the quotient would
be too large for the register. By switching the order of the operations to shift
and then subtract, one iteration of the algorithm can be removed. When the al-
gorithm terminates, the remainder will be found in the left half of the Remain-
der register.

Final Version of Division Algorithm and Hardware

With the same insight and motivation as in the third version of the multiplica-
tion algorithm, computer pioneers saw that the Quotient register could be
eliminated by shifting the bits of the quotient into the Remainder instead of
shifting in Os as in the preceding algonthm Figure 4.40 shows the third ver-
sion of the algorithm.

We start the algorithm by shifting the Remainder left as before. Thereafter,
the loop contains only two steps because the shifting of the Remainder register
shifts both the remainder in the left half and the quotient in the right half (see
Figure 4.41). The consequence of combining the two registers and the new or-
der of the operations in the loop is that-the remainder will be shifted left one
time too many. Thus the final correction step must shift back only the remain-
der in the left half of the register.

270 Chapter 4 Arithmetic for Computers

i. Shift the Remai_nder register 'Ie'ft"l bit

v

2. Subtract the Divisor register from the -
left half of the Remainder.register and.
piace the result in the left:half of the .

Remainder reglster o

Remainder> 0

L Remainder < 0
Jest Remainder

v L4

3a. Shift the Remainder register to the
- left, setting the new rightmost bit to 1

3b Restore the ongmal value by addmg
-.the Divisor reglster to the left half of the -
Remamder reg;ster and place the sum-
“in the left half of the Remainder register.

Also: shxft the Remainder register to the.-
“left, settmg the new nghtmost bitto.0

co No: < 32 repetitions
32nd repetition?

Yes: 32 repetitions

(Done. Shift left half of Remainder right 1 DD

FIGURE 4.40 The third division algorithm has just two steps. The Remainder register shifts
left.

4.7 Division 271

Divisor
32 bits
N
32-bit ALLV N

| R

| Shift right (e

| Remainder Shift left |« Control

: Write le——N_ €St
64 bits 1

FIGURE 4.41 Third version of the division hardware. This version combines the Quotient
register with the right half of the Remainder register.

Third Divide Algorithm

Use the third version of the algorithm to divide 0000 0111, by 00104,

Figure 4.42 shows how the quotient is created in the bottom of the Remain-
" der register and how both are shifted left in a single operation.

0 Initial values : 0010 0000 0141
Shift Rem left 0010 0000 1110

4 2: Rem = Rem — Div 0010 @10 1110
- 3h: Rem < Q0 = + Div, sllR, RO =0 0010 0001 1100
o 2: Rem = Rem ~ Div 0010 @111 1100
3b: Rem < Q= + Div, sli R, RO=0 0010 0011 1000

3 2: Rem = Rem - Div 0010 ©oo1 1000
3a: Rem20=>sllR,RO=1 0010 0011 0001

4 2: Rem = Rem — Div 0010 {oo1 0001
3a: Rem20=>sliR,RO=1 0010 00410 0011

Shift left half of Rem right 1 0010 0001 0011

FIGURE 4.42 Division example using third algorithm in Figure 4.40. The bit examined to
determine the next step is circled in color.

