48

Chapter 2 Instructions: Language of the Computer

instruction set The vocabu-
lary of commands understood
by a given architecture.

Introduction

To command a computer’s hardware, you must speak its language. The words of a
computer's language are called instructions, and its vocabulary is called an
instruction set. In this chapter, you will see the instruction set of a real computer,
both in the form written by humans and in the form read by the computer. We
introduce instructions in a top-down fashion. Starting from a notation that looks
like a restricted programming language, we refine it step-by-step until you see the
real language of a real computer. Chapter 3 continues our downward descent,
unveiling the representation of integer and floating-point numbers and the hard-
ware that operates on them.

You might think that the languages of computers would be as diverse as those
of humans, but in reality computer languages are quite similar, more like regional
dialects than like independent languages. Hence, once you learn one, it is easy to
pick up others. This similarity occurs because all computers are constructed from
hardware technologies based on similar underlying principles and because there
are a few basic operations that all computers must provide. Moreover, computer
designers have a common goal: to find a language that makes it easy to build the
hardware and the compiler while maximizing performance and minimizing cost.
This goal is time-honored; the following quote was written before you could buy a
computer, and it is as true today as it was in 1947:

It is easy to see by formal-logical methods that there exist certain [instruction
sets| that are in abstract adequate to control and cause the execution of any se-
quence of operations. . . . The really decisive considerations from the present
point of view, in selecting an [instruction set], are more of a practical

nature: simplicity of the equipment demanded by the [instruction set], and the
clarity of its application to the actually important problems together with the
speed of its handling of those problems.

Burks, Goldstine, and von Neumann, 1947

The “simplicity of the equipment” is as valuable a consideration for comput-
ers of the 2000s as it was for those of the 1950s. The goal of this chapter is to
teach an instruction set that follows this advice, showing both how it is repre-
sented in hardware and the relationship between high-level programming lan-
guages and this more primitive one. Our examples are in the C programming
language; Section 2.14 shows how these would change for an object-oriented
language like Java.



2.2 Operations of the Computer Hardware

49

By learning how to represent instructions, you will also discover the secret of
computing: the stored-program concept. Moreover you will exercise your “for-
eign language” skills by writing programs in the language of the computer and
running them on the simulator that comes with this book. You will also see the
impact of programming languages and compiler optimization on performance.
We conclude with a look at the historical evolution of instruction sets and an
overview of other computer dialects.

The chosen instruction set comes from MIPS, which is typical of instruction
sets designed since the 1980s. Almost 100 million of these popular microproces-
sors were manufactured in 2002, and they are found in products from ATI Tech-
nologies, Broadcom, Cisco, NEC, Nintendo, Silicon Graphics, Sony, Texas
Instruments, and Toshiba, among others.

We reveal the MIPS instruction set a piece at a time, giving the rationale along
with the computer structures. This top-down, step-by-step tutorial weaves the
components with their explanations, making assembly language more palatable.
To keep the overall picture in mind, each section ends with a figure summarizing
the MIPS instruction set revealed thus far, highlighting the portions presented in
that section.

Operations of the Computer Hardware

Every computer must be able to perform arithmetic. The MIPS assembly language
notation

add a, b, c

instructs a computer to add the two variables b and ¢ and to put their sum in a.
This notation is rigid in that each MIPS arithmetic instruction performs only
one operation and must always have exactly three variables. For example, suppose
we want to place the sum of variables b, c, d, and e into variable a. (In this section
we are being deliberately vague about what a “variable” is; in the next section we’ll
explain in detail.)
The following sequence of instructions adds the four variables:

add a, b, c # The sum of b and ¢ is placed in a.
add a, a, d # The sum of b, ¢, and d is now in a.
add a, a, e # The sum of b, ¢, d, and e is now in a.

stored-program concept The
idea that instructions and data
of many types can be stored in
memory as numbers, leading to
the stored program computer.

There must certainly be
instructions for performing
the fundamental arithmetic
operations.

Burks, Goldstine, and von
Neumann, 1947



50

Chapter 2 Instructions: Language of the Computer

Thus, it takes three instructions to take the sum of four variables.

The words to the right of the sharp symbol (#) on each line above are comments
for the human reader, and the computer ignores them. Note that unlike other pro-
gramming languages, each line of this language can contain at most one instruction.
Another difference from C is that comments always terminate at the end of a line.

The natural number of operands for an operation like addition is three: the
two numbers being added together and a place to put the sum. Requiring every
instruction to have exactly three operands, no more and no less, conforms to the
philosophy of keeping the hardware simple: hardware for a variable number of
operands is more complicated than hardware for a fixed number. This situation
illustrates the first of four underlying principles of hardware design:

Design Principle 1: Simplicity favors regularity.
We can now show, in the two examples that follow, the relationship of pro-

grams written in higher-level programming languages to programs in this more
primitive notation.

Compiling Two C Assignment Statements into MIPS

This segment of a C program contains the five variables a, b, c, d, and e.
Since Java evolved from C, this example and the next few work for either
high-level programming language:

a=b+ c;
d=a - e;

The translation from C to MIPS assembly language instructions is per-
formed by the compiler. Show the MIPS code produced by a compiler.

A MIPS instruction operates on two source operands and places the result in
one destination operand. Hence, the two simple statements above compile
directly into these two MIPS assembly language instructions:

add a, b, c
sub d, a, e




2.2 Operations of the Computer Hardware 51

Compiling a Complex C Assighment into MIPS

A somewhat complex statement contains the five variables f, g, h, i, and j:

f=(g+h) - G+J);

What might a C compiler produce?

The compiler must break this statement into several assembly instructions m

since only one operation is performed per MIPS instruction. The first MIPS
instruction calculates the sum of g and h. We must place the result some-
where, so the compiler creates a temporary variable, called t0:

add t0,g9,h # temporary variable t0 contains g + h
Although the next operation is subtract, we need to calculate the sum of i

and j before we can subtract. Thus, the second instruction places the sum i
and J in another temporary variable created by the compiler, called t1:

add t1,1i,j # temporary variable tl contains i + j
Finally, the subtract instruction subtracts the second sum from the first and
places the difference in the variable f, completing the compiled code:

sub f,t0,t1 # f gets t0 - t1, which is (g + h)-(i + j)

Figure 2.1 summarizes the portions of MIPS assembly language described in
this section. These instructions are symbolic representations of what the MIPS
processor actually understands. In the next few sections, we will evolve this sym-
bolic representation into the real language of MIPS, with each step making the
symbolic representation more concrete.

MIPS assembly language

Arithmetic add a,b,c a=b+c Always three operands
subtract sub a,b,c a=b-c Always three operands

FIGURE 2.1 MIPS architecture revealed in Section 2.2. The real computer operands will be
unveiled in the next section. Highlighted portions in such summaries show MIPS assembly language struc-
tures introduced in this section; for this first figure, all is new.



52

Chapter 2 Instructions: Language of the Computer

Check
Yourself

word The natural unit of access
in a computer, usually a group
of 32 bits; corresponds to the
size of a register in the MIPS
architecture.

For a given function, which programming language likely takes the most lines of
code? Put the three representations below in order.

1. Java

2. C
3. MIPS assembly language

Elaboration: To increase portability, Java was originally envisioned as relying on a
software interpreter. The instruction set of this interpreter is called Java bytecodes,
which is quite different from the MIPS instruction set. To get performance close to the
equivalent C program, Java systems today typically compile Java bytecodes into the
native instruction sets like MIPS. Because this compilation is normally done much later
than for C programs, such Java compilers are often called Just-In-Time (JIT) compilers.
Section 2.10 shows how JITs are used later than C compilers in the startup process,
and Section 2.13 shows the performance consequences of compiling versus interpret-
ing Java programs. The Java examples in this chapter skip the Java bytecode step and
just show the MIPS code that are produced by a compiler.

Operands of the Computer Hardware

Unlike programs in high-level languages, the operands of arithmetic instructions
are restricted; they must be from a limited number of special locations built
directly in hardware called registers. Registers are the bricks of computer construc-
tion: registers are primitives used in hardware design that are also visible to the
programmer when the computer is completed. The size of a register in the MIPS
architecture is 32 bits; groups of 32 bits occur so frequently that they are given the
name word in the MIPS architecture.

One major difference between the variables of a programming language and
registers is the limited number of registers, typically 32 on current computers.
MIPS has 32 registers. (See Section 2.19 for the history of the number of regis-
ters.) Thus, continuing in our top-down, stepwise evolution of the symbolic
representation of the MIPS language, in this section we have added the restriction
that the three operands of MIPS arithmetic instructions must each be chosen
from one of the 32 32-bit registers.

The reason for the limit of 32 registers may be found in the second of our four
underlying design principles of hardware technology:



2.3 Operands of the Computer Hardware

Design Principle 2: Smaller is faster.

A very large number of registers may increase the clock cycle time simply because
it takes electronic signals longer when they must travel farther.

Guidelines such as “smaller is faster” are not absolutes; 31 registers may not be
faster than 32. Yet, the truth behind such observations causes computer designers
to take them seriously. In this case, the designer must balance the craving of pro-
grams for more registers with the designer’s desire to keep the clock cycle fast.
Another reason for not using more than 32 is the number of bits it would take in
the instruction format, as Section 2.4 demonstrates.

Chapters 5 and 6 show the central role that registers play in hardware construc-
tion; as we shall see in this chapter, effective use of registers is key to program per-
formance.

Although we could simply write instructions using numbers for registers, from
0 to 31, the MIPS convention is to use two-character names following a dollar sign
to represent a register. Section 2.7 will explain the reasons behind these names.
For now, we will use $s0, $s1,... for registers that correspond to variables in C
and Java programs and $t0, $t1,... for temporary registers needed to compile
the program into MIPS instructions.

Compiling a C Assighment Using Registers

It is the compiler’s job to associate program variables with registers. Take, for
instance, the assignment statement from our earlier example:

f=(g+h -G+

The variables f, g, h, i, and j are assigned to the registers $s0, $s1, §s2,
$53, and $s4, respectively. What is the compiled MIPS code?

The compiled program is very similar to the prior example, except we replace
the variables with the register names mentioned above plus two temporary
registers, $t0 and $t1, which correspond to the temporary variables above:

add $t0,%$s1,8s2 # register $t0 contains g + h
add $t1,$s3,$s4 # register $tl1 contains i + j
sub $s0,$t0,$t1 4 f gets $t0 - $t1, which is (g + h)-(i + j)




54

Chapter 2 Instructions: Language of the Computer

data transfer instruction A
command that moves data
between memory and registers.

address A value used to delin-
eate the location of a specific
data element within a memory
array.

Memory Operands

Programming languages have simple variables that contain single data elements as
in these examples, but they also have more complex data structures—arrays and
structures. These complex data structures can contain many more data elements
than there are registers in a computer. How can a computer represent and access
such large structures?

Recall the five components of a computer introduced in Chapter 1 and
depicted on page 47. The processor can keep only a small amount of data in regis-
ters, but computer memory contains millions of data elements. Hence, data struc-
tures (arrays and structures) are kept in memory.

As explained above, arithmetic operations occur only on registers in MIPS
instructions; thus, MIPS must include instructions that transfer data between
memory and registers. Such instructions are called data transfer instructions. To
access a word in memory, the instruction must supply the memory address.
Memory is just a large, single-dimensional array, with the address acting as the
index to that array, starting at 0. For example, in Figure 2.2, the address of the
third data element is 2, and the value of Memory[2] is 10.

The data transfer instruction that copies data from memory to a register is tra-
ditionally called load. The format of the load instruction is the name of the opera-
tion followed by the register to be loaded, then a constant and register used to
access memory. The sum of the constant portion of the instruction and the con-
tents of the second register forms the memory address. The actual MIPS name for
this instruction is 1w, standing for load word.

3 100
2 10
1 101
0 1
Address Data
Processor Memory

FIGURE 2.2 Memory addresses and contents of memory at those locations. This is a sim-
plification of the MIPS addressing; Figure 2.3 shows the actual MIPS addressing for sequential word
addresses in memory.



2.3 Operands of the Computer Hardware

Compiling an Assighment When an Operand Is in Memory

Let's assume that A is an array of 100 words and that the compiler has
associated the variables g and h with the registers $s1 and $s2 as before.
Let's also assume that the starting address, or base address, of the array is in
$53. Compile this C assignment statement:

g =h + A[8];

Although there is a single operation in this assignment statement, one of the
operands is in memory, so we must first transfer A[ 8] to a register. The ad-
dress of this array element is the sum of the base of the array A, found in reg-
ister $s3, plus the number to select element 8. The data should be placed in a
temporary register for use in the next instruction. Based on Figure 2.2, the
first compiled instruction is

Tw $t0,8(%s3) # Temporary reg $t0 gets A[8]

(On the next page we’ll make a slight adjustment to this instruction, but we’ll
use this simplified version for now.) The following instruction can operate on
the value in $t0 (which equals A[8]) since it is in a register. The instruction
must add h (contained in $52) to AL8] ($t0) and put the sum in the register
corresponding to g (associated with $s1):

add $s1,$s2,$t0 # g = h + A[8]

The constant in a data transfer instruction is called the offset, and the register
added to form the address is called the base register.

E E a



56

Chapter 2 Instructions: Language of the Computer

Hardware
Software
Interface

alignment restriction

A requirement that data be
aligned in memory on natural
boundaries

In addition to associating variables with registers, the compiler allocates data
structures like arrays and structures to locations in memory. The compiler can
then place the proper starting address into the data transfer instructions.

Since 8-bit bytes are useful in many programs, most architectures address indi-
vidual bytes. Therefore, the address of a word matches the address of one of the 4
bytes within the word. Hence, addresses of sequential words differ by 4. For exam-
ple, Figure 2.3 shows the actual MIPS addresses for Figure 2.2; the byte address of
the third word is 8.

In MIPS, words must start at addresses that are multiples of 4. This require-
ment is called an alignment restriction, and many architectures have it. (Chapter
5 suggests why alignment leads to faster data transfers.)

Computers divide into those that use the address of the leftmost or “big end”
byte as the word address versus those that use the rightmost or “little end” byte.
MIPS is in the Big Endian camp. (Appendix A, page A-43, shows the two options
to number bytes in a word.)

Byte addressing also affects the array index. To get the proper byte address in
the code above, the offset to be added to the base register $s3 must be 4 x 8, or 32,
so that the load address will select A[8] and not A[8/4]. (See the related pitfall
of page 144 of Section 2.17.)

12 100
8 10
< 101
0 1
Address Data
Processor Memory

FIGURE 2.3 Actual MIPS memory addresses and contents of memory for those words.
The changed addresses are highlighted to contrast with Figure 2.2. Since MIPS addresses each byte, word
addresses are multiples of four: there are four bytes in a word.




2.3 Operands of the Computer Hardware

57

The instruction complementary to load is traditionally called store; it copies
data from a register to memory. The format of a store is similar to that of a load:
the name of the operation, followed by the register to be stored, then offset to
select the array element, and finally the base register. Once again, the MIPS
address is specified in part by a constant and in part by the contents of a register.
The actual MIPS name is sw, standing for store word.

Compiling Using Load and Store

Assume variable h is associated with register $s2 and the base address of the
array A is in $s3. What is the MIPS assembly code for the C assignment state-
ment below?

A[12] = h + A[8];

Although there is a single operation in the C statement, now two of the oper-
ands are in memory, so we need even more MIPS instructions. The first two
instructions are the same as the prior example, except this time we use the
proper offset for byte addressing in the load word instruction to select A[81,
and the add instruction places the sum in $t0:

Tw $t0,32(%s3) 4 Temporary reg $t0 gets A[8]

add $t0,$s2,$t0 # Temporary reg $t0 gets h + A[8]

The final instruction stores the sum into A[ 12 ], using 48 as the offset and
register $ 53 as the base register.

sw  $t0,48($s3) j# Stores h + A[8] back into A[12]

Constant or Inmediate Operands

Many times a program will use a constant in an operation—for example, incre-
menting an index to point to the next element of an array. In fact, more than half
of the MIPS arithmetic instructions have a constant as an operand when running
the SPEC2000 benchmarks.



58

Chapter 2 Instructions: Language of the Computer

Hardware
Software
Interface

Many programs have more variables than computers have registers. Consequently,
the compiler tries to keep the most frequently used variables in registers and
places the rest in memory, using loads and stores to move variables between regis-
ters and memory. The process of putting less commonly used variables (or those
needed later) into memory is called spilling registers.

The hardware principle relating size and speed suggests that memory must be
slower than registers since registers are smaller. This is indeed the case; data
accesses are faster if data is in registers instead of memory.

Moreover, data is more useful when in a register. A MIPS arithmetic instruc-
tion can read two registers, operate on them, and write the result. A MIPS data
transfer instruction only reads one operand or writes one operand, without oper-
ating on it.

Thus, MIPS registers take both less time to access and have higher throughput
than memory—a rare combination—making data in registers both faster to
access and simpler to use. To achieve highest performance, compilers must use
registers efficiently.

Using only the instructions we have seen so far, we would have to load a con-
stant from memory to use one. (The constants would have been placed in mem-
ory when the program was loaded.) For example, to add the constant 4 to register
$53, we could use the code

Tw $t0, AddrConstant4($sl) # $t0 = constant 4
add $s3,%$s3,$t0 # $s3 = $s3 + $t0 ($t0 == 4)

assuming that AddrConstant4 is the memory address of the constant 4.

An alternative that avoids the load instruction is to offer versions of the arith-
metic instructions in which one operand is a constant. This quick add instruction
with one constant operand is called add immediate or addi. To add 4 to register
$53, we just write

addi $s3,%$s3,4 # $s3 = $s3 + 4

Immediate instructions illustrate the third hardware design principle, first
mentioned in the Fallacies and Pitfalls of Chapter 1:
Design Principle 3: Make the common case fast.

Constant operands occur frequently, and by including constants inside arithmetic
instructions, they are much faster than if constants were loaded from memory.



2.3 Operands of the Computer Hardware

MIPS operands

e _Jomwe ____Joomes _——_____________

$s0, $s1, . . Fast locations for data. In MIPS, data must be in registers to perform arithmetic.
32 registers

$t0, $t1,

Memory[0], Accessed only by data transfer instructions in MIPS. MIPS uses byte addresses, so
\?vordrzemory Memory(4], .. ., sequential word addresses differ by 4. Memory holds data structures, arrays, and

Memory[4294967292] spilled registers.

MIPS assembly Ianguage

add $s1,%$s2,$s3 $sl=9s2+ §s3 Three operands; data in registers
Arithmetic subtract sub $s1,$s2,$s3 $sl=4%s2-$s3 Three operands; data in registers
add immediate | addi $s1,$s2,100 $51=14%s2+ 100 Used to add constants
load word Tw $s51,100(%s2) $s1 =Memory[ $s2 +100] | Data from memory to register
Data transfer =
store word sw  $s51,100(%s2) Memory[$s2 + 100] = §s1 | Data from register to memory

FIGURE 2.4 MIPS architecture revealed through Section 2.3. Highlighted portions show MIPS assembly language
structures introduced in Section 2.3.

Figure 2.4 summarizes the portions of the symbolic representation of the MIPS
instruction set described in this section. Load word and store word are the
instructions that copy words between memory and registers in the MIPS architec-
ture. Other brands of computers use instructions along with load and store to
transfer data. An architecture with such alternatives is the Intel [A-32, described in
Section 2.16.

Given the importance of registers, what is the rate of increase in the number of Check
registers in a chip over time? Yourself

1. Very fast: They increase as fast as Moore’s law, which predicts doubling the
number of transistors on a chip every 18 months.

2. Very slow: Since programs are usually distributed in the language of the
computer, there is inertia in instruction set architecture, and so the number
of registers increases only as fast as new instruction sets become viable.

Elaboration: Although the MIPS registers in this book are 32 bits wide, there is a 64-
bit version of the MIPS instruction set with 32 64-bit registers. To keep them straight,
they are officially called MIPS-32 and MIPS-64. In this chapter, we use a subset of
MIPS-32. Appendix D shows the differences between MIPS-32 and MIPS-64.



60

Chapter 2 Instructions: Language of the Computer

binary digit Also called binary
bit. One of the two numbers in

base 2, 0 or 1, that are the com-

ponents of information.

The MIPS offset plus base register addressing is an excellent match to structures as
well as arrays, since the register can point to the beginning of the structure and the off-
set can select the desired element. We'll see such an example in Section 2.13.

The register in the data transfer instructions was originally invented to hold an
index of an array with the offset used for the starting address of an array. Thus, the
base register is also called the index register. Today’s memories are much larger
and the software model of data allocation is more sophisticated, so the base
address of the array is normally passed in a register since it won't fit in the offset,
as we shall see.

Section 2.4 explains that since MIPS supports negative constants, there is no need
for subtract immediate in MIPS.

Representing Instructions in the
Computer

We are now ready to explain the difference between the way humans instruct
computers and the way computers see instructions. First, let’s quickly review how
a computer represents numbers.

Humans are taught to think in base 10, but numbers may be represented in any
base. For example, 123 base 10 = 1111011 base 2.

Numbers are kept in computer hardware as a series of high and low electronic
signals, and so they are considered base 2 numbers. (Just as base 10 numbers are
called decimal numbers, base 2 numbers are called binary numbers.) A single digit
of a binary number is thus the “atom” of computing, since all information is com-
posed of binary digits or bits. This fundamental building block can be one of two
values, which can be thought of as several alternatives: high or low, on or off, true
or false, or 1 or 0,

Instructions are also kept in the computer as a series of high and low electronic
signals and may be represented as numbers. In fact, each piece of an instruction
can be considered as an individual number, and placing these numbers side by
side forms the instruction.

Since registers are part of almost all instructions, there must be a convention to
map register names into numbers. In MIPS assembly language, registers $s0 to
$s7 map onto registers 16 to 23, and registers $t0 to $t7 map onto registers 8 to
15. Hence, $50 means register 16, $s1 means register 17, $52 means register
18, ..., $t0 means register 8, $t1 means register 9, and so on. We’ll describe the
convention for the rest of the 32 registers in the following sections.



2.4 Representing Instructions in the Computer

61

Translating a MIPS Assembly Instruction into a Machine Instruction

Let’s do the next step in the refinement of the MIPS language as an example.
We’'ll show the real MIPS language version of the instruction represented
symbolically as

add $t0,%$s1,$s2

first as a combination of decimal numbers and then of binary numbers.

The decimal representation is

| 0 | 17 | 18 | 8 | 0 | 32 |

Each of these segments of an instruction is called a field. The first and last fields
(containing 0 and 32 in this case) in combination tell the MIPS computer that
this instruction performs addition. The second field gives the number of the reg-
ister that is the first source operand of the addition operation (17 = $51), and the
third field gives the other source operand for the addition (18 = $52).The fourth
field contains the number of the register that is to receive the sum (8 = $t0). The
fifth field is unused in this instruction, so it is set to 0. Thus, this instruction adds
register $s1 to register $s2 and places the sum in register $t0.

This instruction can also be represented as fields of binary numbers as op-
posed to decimal:

| 000000 | 10001 | 10010 | 01000 00000 | 100000 |
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

To distinguish it from assembly language, we call the numeric version of
instructions machine language and a sequence of such instructions machine code.

This layout of the instruction is called the instruction format. As you can see
from counting the number of bits, this MIPS instruction takes exactly 32 bits—
the same size as a data word. In keeping with our design principle that simplicity
favors regularity, all MIPS instructions are 32 bits long.

It would appear that you would now be reading and writing long, tedious strings of
binary numbers. We avoid that tedium by using a higher base than binary that con-

machine language Binary rep-
resentation used for communi-
cation within a computer
system.

instruction format A form of
representation of an instruction
composed of fields of binary
numbers.



62

Chapter 2 Instructions: Language of the Computer

Hexadecimal m Hexadecimal m Hexadecimal m Hexadecimal m

Ohex 0000y, 0100, 8o 1000,,,, Chex 1100,
e 0001, sm 0101, B\ 1001, Arex 1101,
2pe 0010,,, Bhex 0110, Bnex 1010,,, hex 1110y,
e 0011, Thex 0114,,, Brex 1011, foox 1114,

FIGURE 2.5 The hexadecimal-binary conversion table. Just replace one hexadecimal digit by the corresponding four binary
digits, and vice versa, If the length of the binary number is not a multiple of 4, go from right to left.

hexadecimal Numbers in
base 16.

verts easily into binary. Since almost all computer data sizes are multiples of 4, hexa-
decimal (base 16) numbers are popular. Since base 16 is a power of 2, we can trivially
convert by replacing each group of four binary digits by a single hexadecimal digit,
and vice versa. Figure 2.5 converts hexadecimal to binary, and vice versa.

Because we frequently deal with different number bases, to avoid confusion we
will subscript decimal numbers with fen, binary numbers with two, and hexadeci-
mal numbers with hex. (If there is no subscript, the default is base 10.) By the way,
C and Java use the notation Oxnnnn for hexadecimal numbers.

Binary-to-Hexadecimal and Back

Convert the following hexadecimal and binary numbers into the other base:
eca8 6420,

0001 0011 0101 0111 1001 1011 1101 1111,

Just a table lookup one way:

eca8 6420hex

it

' ~a
1110 1100 1010 1000 0110 0100 0910 00004,

And then the other direction too:
0001 0011 0101 0111 1001 1011 1101 11114,

Saf 5'? 3' % A~




2.4 Representing Instructions in the Computer

MIPS Fields

MIPS fields are given names to make them easier to discuss:

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Here is the meaning of each name of the fields in MIPS instructions:
m op: Basic operation of the instruction, traditionally called the opcode.
m rs: The first register source operand.
m rt: The second register source operand.
m rd: The register destination operand. It gets the result of the operation.
|

shamt: Shift amount. (Section 2.5 explains shift instructions and this term;
it will not be used until then, and hence the field contains zero.)

B funct: Function. This field selects the specific variant of the operation in the
op field and is sometimes called the function code.

A problem occurs when an instruction needs longer fields than those shown
above. For example, the load word instruction must specify two registers and a
constant. If the address were to use one of the 5-bit fields in the format above, the
constant within the load word instruction would be limited to only 2° or 32. This
constant is used to select elements from arrays or data structures, and it often
needs to be much larger than 32. This 5-bit field is too small to be useful.

Hence, we have a conflict between the desire to keep all instructions the same
length and the desire to have a single instruction format. This leads us to the final
hardware design principle:

Design Principle 4: Good design demands good compromises.

The compromise chosen by the MIPS designers is to keep all instructions the
same length, thereby requiring different kinds of instruction formats for different
kinds of instructions. For example, the format above is called R-type (for register)
or R-format. A second type of instruction format is called I-fype (for immediate)
or I-format and is used by the immediate and data transfer instructions. The fields
of [-format are

‘ op ‘ rs rt constant or address
6 bits 5 bits 5 bits 16 bits

opcode The field that denotes
the operation and format of an
instruction.



64

Chapter 2 Instructions: Language of the Computer

The 16-bit address means a load word instruction can load any word within a
region of + 2% 0r 32,768 bytes (+21 or 8192 words) of the address in the base reg-
ister rs. Similarly, add immediate is limited to constants no larger than +2%.
(Chapter 3 explains how to represent negative numbers.) We see that more than
32 registers would be difficult in this format, as the rs and rt fields would each
need another bit, making it harder to fit everything in one word.

Let’s look at the load word instruction from page 57:

Tw  $t0,32($s3) # Temporary reg $t0 gets A[8]

Here, 19 (for $53) is placed in the rs field, 8 (for $t0) is placed in the rt field, and
32 is placed in the address field. Note that the meaning of the rt field has changed
for this instruction: in a load word instruction, the rt field specifies the destina-
tion register, which receives the result of the load.

Although multiple formats complicate the hardware, we can reduce the com-
plexity by keeping the formats similar. For example, the first three fields of the R-
type and I-type formats are the same size and have the same names; the fourth
field in I-type is equal to the length of the last three fields of R-type.

In case you were wondering, the formats are distinguished by the values in the
first field: each format is assigned a distinct set of values in the first field (op) so
that the hardware knows whether to treat the last half of the instruction as three
fields (R-type) or as a single field (I-type). Figure 2.6 shows the numbers used in
each field for the MIPS instructions covered through Section 2.3.

nsructon | Format | op | rs | vt | ri | shamt | runct | suiross
add o] reg reg reg 0 n.a

R 324y
sub (subtract) R 0 reg reg reg 0 34, n.a.
add immediate 1 8ion reg reg | n.a. n.a. n.a. constant
Tw (load word) I 35, reg reg n.a. n.a. n.a. address
SW (store word) I 43¢ reg reg n.a. n.a. n.a. address

FIGURE 2.6 MIPS instruction encoding. In the table above, “reg” means a register number between
0 and 31, “address” means a 16-bit address, and “n.a.” (not applicable) means this field does not appear in
this format. Note that add and s ub instructions have the same value in the op field; the hardware uses the
funct field to decide the variant of the operation: add (32) or subtract (34).



2.4 Representing Instructions in the Computer 65

Translating MIPS Assembly Language into Machine Language

We can now take an example all the way from what the programmer writes to m
what the computer executes. If $t1 has the base of the array A and $52 corre-
sponds to h, the assignment statement

A[300] = h + A[300];
is compiled into

Tw  $t0,1200($t1) {# Temporary reg $t0 gets A[300]
add $t0,$s2,%t0 f# Temporary reg $t0 gets h + A[300]

SW $t0,1200(%t1) 4 Stores h + A[300] back into A[300]

What is the MIPS machine language code for these three instructions?

For convenience, let’s first represent the machine language instructions using m
decimal numbers. From Figure 2.6, we can determine the three machine lan-

guage instructions:

address/
shamt
35 9 8

1200
0 18 8 8 | 0 | 32
43 9 8 1200

The 1w instruction is identified by 35 (see Figure 2.6) in the first field
(op). The base register 9 ($t1) is specified in the second field (rs), and the
destination register 8 ($t0) is specified in the third field (rt). The offset to
select AL3007 (1200 = 300 x 4) is found in the final field (address).

The add instruction that follows is specified with 0 in the first field (op)
and 32 in the last field (funct). The three register operands (18, 8, and 8) are
found in the second, third, and fourth fields and correspond to $s2, $t0,
and $t0.




66

Chapter 2

Instructions: Language of the Computer

Check
Yourself

the BIG

Picture

The sw instruction is identified with 43 in the first field. The rest of this
final instruction is identical to the Tw instruction.

The binary equivalent to the decimal form is the following (1200 in base
10 is 0000 0100 1011 0000 base 2):

100011 01001 01000 0000 0100 1011 0000
000000 10010 01000 01000 | 00000 | 100000
101011 01001 01000 0000 0100 1011 0000

Note the similarity of the binary representations of the first and last in-
structions. The only difference is in the third bit from the left.

Figure 2.7 summarizes the portions of MIPS assembly language described in
this section. As we shall see in Chapters 5 and 6, the similarity of the binary repre-
sentations of related instructions simplifies hardware design. These instructions
are another example of regularity in the MIPS architecture.

Why doesn’t MIPS have a subtract immediate instruction?

1.

Negative constants appear much less frequently in C and Java, so they are

not the common case and do not merit special support.

Since the immediate field holds both negative and positive constants, add

immediate with a negative number is equivalent to subtract immediate
with a positive number, so subtract immediate is superfluous.

Today’s computers are built on two key principles:

1. Instructions are represented as numbers.

2. Programs are stored in memory to be read or written, just like numbers.

These principles lead to the stored-program concept; its invention let the
computing genie out of its bottle. Figure 2.8 shows the power of the concept;
specifically, memory can contain the source code for an editor program, the
corresponding compiled machine code, the text that the compiled program
is using, and even the compiler that generated the machine code.

One consequence of instructions as numbers is that programs are often
shipped as files of binary numbers. The commercial implication is that
computers can inherit ready-made software provided they are compatible
with an existing instruction set. Such “binary compatibility” often leads
industry to align around a small number of instruction set architectures.



2.4 Representing Instructions in the Computer

67

MIPS operands

oo Jerompie ———— Joummems

32 $s0, $s1, ..., $s7 Fast locations for data. In MIPS, data must be in registers to perform arithmetic.
registers $t0,6t1, ..., $t7 Registers $s0-$s7 map to 16-23 and $t0-$t7 map to 8-15.
230 Memory[0], Accessed only by data transfer instructions in MIPS. MIPS uses byte addresses, so
memory Memory[4], ..., sequential word addresses differ by 4. Memory holds data structures, arrays, and
words Memory[4294967292] spilled registers.
MIPS assembly language
Py add $s1,%s2,9$s3 $s1 = $s52 + $s3 Three operands; data in registers
rithmetic

subtract sub $s1,$s2,$s3 $51 = $s2 - $s3 Three operands; data in registers
Data load word Tw  $s1,100(%s2) |$s1l=Memory[$s2+ 100] Data from memory to register
transfer store word sw  $s51,100($s2) |[Memory[$s52+100]=%$s1 Data from register to memory

MIPS machine language

vone_Lroma ] peewe —_loomen___

add R add $s1,$s52,%s3

sub R 0 18 19 17 0 34 sub $s1,$s52,%$s3

addi I 8 18 17 100 addi $s1,$s2,100

Tw I 35 18 17 100 Tw $s51,100(%s2)

SW I 43 18 17 100 sw  $s1,100(%s2)

Field size 6 bits | 5 bits 5 bits 5 bits 5 bits 6 bits | All MIPS instructions 32 bits
R-format R op rs rt rd shamt funct Arithmetic instruction format
I-format | op rs rt address Data transfer format

FIGURE 2.7 MIPS architecture revealed through Section 2.4. Highlighted portions show MIPS machine language structures
introduced in Section 2.4. The two MIPS instruction formats so far are R and L. The first 16 bits are the same: both contain an op field, giv-
ing the base operation; an rs field, giving one of the sources; and the rt field, which specifies the other source operand, except for load word,
where it specifies the destination register. R-format divides the last 16 bits into an rd field, specifying the destination register; shamt field,
which Section 2.5 explains; and the funct field, which specifies the specific operation of R-format instructions. I-format keeps the last 16
bits as a single address field.

Elaboration: Representing decimal numbers in base 2 gives an easy way to represent
positive integers in computer words. Chapter 3 explains how to represent negative num-
bers, but for now take it on faith that a 32bit word can represent integers between il
and +2°1 -1 or —-2,147,483,648 to +2,147,483,647, and the 16bit constant field really
holds —2%° to +21% — 1 or 32,768 to 32,767. Such integers are called two's complement
numbers. Chapter 3 shows how we would encode addi $t0,%$t0,-1or 1w $t0, -4($s0),
which require negative numbers in the constant field of the immediate format.



Chapter 2 Instructions: Language of the Computer

“Contrariwise,” continued
Tweedledee, “if it was so, it
might be; and if it were so, it
would be; but as it isn’t, it
ain’t. That’s logic.”

Lewis Carroll, Alice’s Adven-
tures in Wonderland, 1865

Accounting program |
(machine code) :

l Editor program |
| (machine code) :

: C compiler |
Processor | (machine code) :

for editor program

Source code in C |
|
1

FIGURE 2.8 The stored-program concept. Stored programs allow a computer that performs
accounting to become, in the blink of an eye, a computer that helps an author write a book. The switch hap-
pens simply by loading memory with programs and data and then telling the computer to begin executing
at a given location in memory. Treating instructions in the same way as data greatly simplifies both the
memory hardware and the software of computer systems. Specifically, the memory technology needed for
data can also be used for programs, and programs like compilers, for instance, can translate code written in
a notation far more convenient for humans into code that the computer can understand.

Logical Operations

Although the first computers concentrated on full words, it soon became clear that
it was useful to operate on fields of bits within a word or even on individual bits.
Examining characters within a word, each of which are stored as 8 bits, is one exam-
ple of such an operation. It follows that instructions were added to simplify, among
other things, the packing and unpacking of bits into words. These instructions are
called logical operations. Figure 2.9 shows logical operations in C and Java.



2.5 Logical Operations

69

Logical operations MIPS instructions
<< <<

Shift left 511

Shift right > b srl
Bit-by-bit AND & & and, andi
Bit-by-bit OR | | or, ori
Bit-by-bit NOT 63 6= nor

FIGURE 2.9 C and Java logical operators and their corresponding MIPS instructions.

The first class of such operations is called shifts. They move all the bits in a
word to the left or right, filling the emptied bits with 0s. For example, if register
$50 contained

00000000 000000000 000 0000 0000 0000 10014,,= 9sep

and the instruction to shift left by 4 was executed, the new value would look like
this:

0000 0000000000000000000000001001 00004ye= 144icn

The dual of a shift left is a shift right. The actual name of the two MIPS shift
instructions are called shift left logical (s11) and shift right logical (sr1). The fol-
lowing instruction performs the operation above, assuming that the result should
go in register $t2:

s11 $t2,$s0,4  # reg $t2 = reg $s0 << 4 bits

We delayed explaining the shamt field in the R-format. It stands for shift
amount and is used in shift instructions. Hence, the machine language version of
the instruction above is

op rs rt rd shamt funct

The encoding of s11 is 0 in both the op and funct fields, rd contains $t2, rt con-
tains $s0, and shamt contains 4. The rs field is unused, and thus is set to 0.

Shift left logical provides a bonus benefit. Shifting left by 7 bits gives the
same result as multiplying by 2’ (Chapter 3 explains why). For examgle, the
above s11 shifts by 4, which gives the same result as multiplying by 2% or 16.



70

Chapter 2 Instructions: Language of the Computer

NOT A logical bit-by-bit oper-
ation with one operand that
inverts the bits; that is, it
replaces every 1 with a 0, and
every 0 with a 1.

NOR A logical bit-by-bit oper-
ation with two operands that
calculates the NOT of the OR of
the two operands.

The first bit pattern above represents 9, and 9 X 16 = 144, the value of the sec-
ond bit pattern.

Another useful operation that isolates fields is AND. (We capitalize the word to
avoid confusion between the operation and the English conjunction.) AND is a
bit-by-bit operation that leaves a 1 in the result only if both bits of the operands
are 1. For example, if register $1 2 still contains

00000000000000000000110100000000+,,

and register $t1 contains

000000000000000000111100000000004,,

then, after executing the MIPS instruction

and $t0,$t1,%t2 # reg $t0 = reg $tl & reg $t2
the value of register $t0 would be

000000000000000000001100000000004,,

As you can see, AND can apply a bit pattern to a set of bits to force Os where there
is a 0 in the bit pattern. Such a bit pattern in conjunction with AND is tradition-
ally called a mask, since the mask “conceals” some bits.

To place a value into one of these seas of 0s, there is the dual to AND, called OR.
It is a bit-by-bit operation that places a 1 in the result if either operand bit is a 1.
To elaborate, if the registers $t1 and $t2 are unchanged from the preceding
example, the result of the MIPS instruction

or $t0,$t1,$t2 # reg $t0 = reg $t1 | reg $t2

is this value in register $t0:

000000000000000000111101000000004,,

The final logical operation is a contrarian. NOT takes one operand and places a
1 in the result if one operand bit is a 0, and vice versa. In keeping with the two-
operand format, the designers of MIPS decided to include the instruction NOR
(NOT OR) instead of NOT. If one operand is zero, then it is equivalent to NOT.
For example, A NOR 0 = NOT (A OR 0) = NOT (A).

If the register $t1 is unchanged from the preceding example and register $t3
has the value 0, the result of the MIPS instruction

nor $t0,$t1,$t3 # reg $t0 = ~ (reg $t1 | reg $t3)



2.5 Logical Operations

71

is this value in register $t0:

111111111111111111000011111111114,,

Figure 2.9 above shows the relationship between the C and Java operators and
the MIPS instructions. Constants are useful in AND and OR logical operations as
well as in arithmetic operations, so MIPS also provides the instructions and
immediate (andi) and or immediate (ori). Constants are rare for NOR, since its
main use is to invert the bits of a single operand; thus, the hardware has no imme-
diate version. Figure 2.10, which summarizes the MIPS instructions seen thus far,
highlights the logical instructions.

MIPS operands

ameoampte———— Jcomments ]

32 $s0, $s1,..., $s57 Fast locations for data. In MIPS, data must be in registers to perform arithmetic.
registers $t0,$t1,..., $t7 Registers $50-%57 map to 16-23 and $t0-$t7 map to 8-15.

230 Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so
memory Memory[4], .. ., sequential word addresses differ by 4. Memory holds data structures, arrays, and
words Memory[4294967292] spilled registers.

MIPS assembly Ianguage

$s1,%s52,$s3 $sl=19%s52+ $s3 Three operands; overflow detected

Arithmetic | subtract 3 ub $s51.$52,853 §sl=19%s52 - $s3 Three operands; overflow detected

add immediate addi $s1,%s2,100 $s1 =$s2 +100 + constant; overflow detected

and and  $s1,$s2,$s3 $s1=%$52 & $53 Three reg. operands; bit-by-bit AND

or or $s1,$s2,$s3 $s51=$s52| $s3 Three reg. operands; bit-by-bit OR

nor nor  $s1,$s2,$s3 $s1=~($s2 |$s3) Three reg. operands; bit-by-bit NOR
Logical and immediate andi  $s1,$s2,100 $s1=$52 & 100 Bit-by-bit AND reg with constant

or immediate oti $s1,$s2,100 $s1=$s52| 100 Bit-by-bit OR reg with constant

shift left logical sll $s1,%$s2,10 $s1=9%s52 << 10 Shift left by constant

shift right logical srl $$s1,$s2,10 $s1=$s2>>10 Shift right by constant
Data load word Tw $51,100(%s2) $s1 = Memory[$s2 + 100] | Word from memory to register
transfer store word SW $51,100(4$s2) Memory[$s2 + 100] = $s1 | Word from register to memory

FIGURE 2.10 MIPS architecture revealed thus far. Color indicates the portions introduced since Figure 2.7 on page 67. The back
endpapers of this book also list the MIPS machine language.



72

Chapter 2 Instructions: Language of the Computer

The utility of an automatic
computer lies in the possibility
of using a given sequence of
instructions repeatedly, the
number of times it is iterated
being dependent upon the
results of the computation.
When the iteration is com-
pleted a different sequence of
[instructions] is to be followed,
50 we muist, in 110st cases, give
two parallel trains of [instruc-
tions| preceded by an instruc-
tion as to which routine is to be
followed. This choice can be
made to depend upon the sign
of a number (zero being reck-
oned as plus for machine pur-
poses). Consequently, we
introduce an [instruction] (the
conditional transfer [instruc-
tion]) which will, depending
on the sign of a given number,
cause the proper one of two
routines to be executed.

Burks, Goldstine, and von
Neumann, 1947

Instructions for Making Decisions

What distinguishes a computer from a simple calculator is its ability to make
decisions. Based on the input data and the values created during com-
putation, different instructions execute. Decision making is commonly rep-
resented in programming languages using the if statement, sometimes
combined with go to statements and labels. MIPS assembly language includes
two decision-making instructions, similar to an if statement with a go to. The
first instruction is

beq registerl, register2, L1

This instruction means go to the statement labeled L1 if the value in registerl
equals the value in register2. The mnemonic beq stands for branch if equal.
The second instruction is

bne registerl, register2, L1

It means go to the statement labeled L1 if the value in register]l does not equal
the value in register2. The mnemonic bne stands for branch if not equal.
These two instructions are traditionally called conditional branches.

Compiling if-then-else into Conditional Branches

In the following code segment, f, g, h, 1, and j are variables. If the five vari-
ables f through j correspond to the five registers $s0 through $s4, what is
the compiled MIPS code for this C if statement?

if (i==73)f=qg+h; else f =g - h;

Figure 2.11 is a flowchart of what the MIPS code should do. The first expres-
sion compares for equality, so it would seem that we would want beq. In gen-
eral, the code will be more efficient if we test for the opposite condition to
branch over the code that performs the subsequent then part of the if (the la-
bel E1se is defined below):.

bne $s53,%s4,Else  # go to Else if i # ]



2.6 Instructions for Making Decisions

73

The next assignment statement performs a single operation, and if all the op-
erands are allocated to registers, it is just one instruction:

add $s0,%$s1,§s2 # f =9+ h (skipped if i #j)

We now need to go to the end of the if statement. This example introduces
another kind of branch, often called an unconditional branch. This instruc-
tion says that the processor always follows the branch. To distinguish between
conditional and unconditional branches, the MIPS name for this type of in-
struction is jump, abbreviated as j (the label Exi t is defined below).

j Exit # go to Exit

The assignment statement in the else portion of the if statement can again be
compiled into a single instruction. We just need to append the label ET1se to
this instruction. We also show the label Exit that is after this instruction,
showing the end of the if-then-else compiled code:

Else:sub $s0,%$s1,$s2 # f =g - h (skipped if i = j)
Exit:

Notice that the assembler relieves the compiler and the assembly language pro-

grammer from the tedium of calculating addresses for branches, just as it does for
calculating data addresses for loads and stores (see Section 2.10).

Else:

f=g+h f=g-h

Exit:l

FIGURE 2.11 [lustration of the options in the if statement above. The left box corresponds
to the then part of the if statement, and the right box corresponds to the else part.

conditional branch An
instruction that requires the
comparison of two values and
that allows for a subsequent
transfer of control to a new
address in the program based on
the outcome of the comparison.



74

Chapter 2 Instructions: Language of the Computer

Hardware
Software
Interface

Compilers frequently create branches and labels where they do not appear in the
programming language. Avoiding the burden of writing explicit labels and
branches is one benefit of writing in high-level programming languages and is a
reason coding is faster at that level.

Loops

Decisions are important both for choosing between two alternatives—found in if
statements—and for iterating a computation—found in loops. The same assem-
bly instructions are the building blocks for both cases.

|
Compiling a while Loop in C

Here is a traditional loop in C:

while (savel[i] == k)
i+=1;

Assume that i and k correspond to registers $s3 and $s5 and the base of the
array save is in $s6. What is the MIPS assembly code corresponding to this
C segment?

The first step is to load save[i] into a temporary register. Before we can
load save[ 1] into a temporary register, we need to have its address. Before
we can add 1 to the base of array save to form the address, we must multi-
ply the index i by 4 due to the byte addressing problem. Fortunately, we can
use shift left logical since shifting left by 2 bits multiplies by 4 (see page 69 in
Section 2.5). We need to add the label Loop to it so that we can branch back
to that instruction at the end of the loop:

Loop:s11 $t1,$s3,2 # Temp reg $t1 = 4 * 3
To get the address of save[ 1 ], weneed toadd $t1 and the base of save in $s6:

add $t1,$t1,$s6 # $tl = address of savel[il]

Now we can use that address to load save[ i ] into a temporary register:

Tw $t0,0(%t1) # Temp reg $t0 = save[i]



2.6 Instructions for Making Decisions

75

The next instruction performs the loop test, exiting if save[i] = k:

bne $t0,%$s5, Exit # go to Exit if savel[i] # k
The next instruction adds 1 to i:

add $s3,$s3,1 #i=1+1

The end of the loop branches back to the while test at the top of the loop. We
just add the Ex it label after it, and we’re done:

J Loop # go to Loop
Exit:

(See Exercise 2.33 for an optimization of this sequence.)

Such sequences of instructions that end in a branch are so fundamental to compil-
ing that they are given their own buzzword: a basic block is a sequence of instruc-
tions without branches, except possibly at the end, and without branch targets or
branch labels, except possibly at the beginning. One of the first early phases of
compilation is breaking the program into basic blocks

The test for equality or inequality is probably the most popular test, but some-
times it is useful to see if a variable is less than another variable. For example, a for
loop may want to test to see if the index variable is less than 0. Such comparisons are
accomplished in MIPS assembly language with an instruction that compares two
registers and sets a third register to 1 if the first is less than the second; otherwise, it
is set to 0. The MIPS instruction is called set on less than, or s1t. For example,

slt $t0, $s3, $s4

means that register $t0 is set to 1 if the value in register $s3 is less than the value
in register $s4; otherwise, register $t0 is set to 0.

Constant operands are popular in comparisons. Since register $zero always
has 0, we can already compare to 0. To compare to other values, there is an imme-
diate version of the set on less than instruction. To test if register $52 is less than
the constant 10, we can just write

slti $t0,%$s2,10 ## $t0 =1 if $s2 < 10

Heeding von Neumann’s warning about the simplicity of the “equipment,” the
MIPS architecture doesn’t include branch on less than because it is too compli-
cated; either it would stretch the clock cycle time or it would take extra clock
cycles per instruction. Two faster instructions are more useful.

Hardware
Software
Interface

basic block A sequence of
instructions without branches
(except possibly at the end) and
without branch targets or
branch labels (except possibly at
the beginning).



76

Chapter 2 Instructions: Language of the Computer

Hardware
Software
Interface

jump address table Also
called jump table. A table of
addresses of alternative instruc-
tion sequences.

MIPS compilers use the s1t, s1ti, beq, bne, and the fixed value of 0 (always
available by reading register $zero) to create all relative conditions: equal, not
equal, less than, less than or equal, greater than, greater than or equal. (As you
might expect, register $zero maps to register 0.)

Case/Switch Statement

Most programming languages have a case or switch statement that allows the pro-
grammer to select one of many alternatives depending on a single value. The sim-
plest way to implement switch is via a sequence of conditional tests, turning the
switch statement into a chain of if-then-else statements.

Sometimes the alternatives may be more efficiently encoded as a table of
addresses of alternative instruction sequences, called a jump address table, and
the program needs only to index into the table and then jump to the appropriate
sequence. The jump table is then just an array of words containing addresses that
correspond to labels in the code. See the In More Depth exercises in Section 2.20
for more details on jump address tables.

To support such situations, computers like MIPS include a jump register
instruction (jr), meaning an unconditional jump to the address specified in a
register. The program loads the appropriate entry from the jump table into a reg-
ister, and then it jumps to the proper address using a jump register. This instruc-
tion is described in Section 2.7.

Hardware
Software
Interface

Although there are many statements for decisions and loops in programming lan-
guages like C and Java, the bedrock statement that implements them at the next
lower level is the conditional branch.

Figure 2.12 summarizes the portions of MIPS assembly language described in
this section, and Figure 2.13 summarizes the corresponding MIPS machine lan-
guage. This step along the evolution of the MIPS language has added branches
and jumps to our symbolic representation, and fixes the useful value 0 perma-
nently in a register.

Elaboration: If you have heard about delayed branches, covered in Chapter 6,
don’t worry: The MIPS assembler makes them invisible to the assembly language
programmer.



