2.7 Supporting Procedures in Computer Hardware

79

Supporting Procedures in Computer
Hardware

A procedure or function is one tool C or Java programmers use to structure pro-
grams, both to make them easier to understand and to allow code to be reused.
Procedures allow the programmer to concentrate on just one portion of the task
at a time, with parameters acting as a barrier between the procedure and the rest
of the program and data, allowing it to be passed values and return results. We
describe the equivalent in Java at the end of this section, but Java needs everything
from a computer that C needs.

You can think of a procedure like a spy who leaves with a secret plan, acquires
resources, performs the task, covers his tracks, and then returns to the point of
origin with the desired result. Nothing else should be perturbed once the mission
is complete. Moreover, a spy operates on only a “need to know” basis, so the spy
can’t make assumptions about his employer.

Similarly, in the execution of a procedure, the program must follow these six
steps:

1. Place parameters in a place where the procedure can access them.
Transfer control to the procedure.

Acquire the storage resources needed for the procedure.

Perform the desired task.

Place the result value in a place where the calling program can access it.

SR

Return control to the point of origin, since a procedure can be called from
several points in a program.

As mentioned above, registers are the fastest place to hold data in a computer,
so we want to use them as much as possible. MIPS software follows the following
convention in allocating its 32 registers for procedure calling:

B $a0-$a3: four argument registers in which to pass parameters
m $v0-$v1: two value registers in which to return values
B $ra: one return address register to return to the point of origin

In addition to allocating these registers, MIPS assembly language includes an
instruction just for the procedures: it jumps to an address and simultaneously
saves the address of the following instruction in register $ra. The jump-and-link
instruction (jal) is simply written

procedure A stored subroutine
that performs a specific task
based on the parameters with
which it is provided.

jump-and-link

instruction An instruction
that jumps to an address and
simultaneously saves the address
of the following instruction in a
register ($ra in MIPS).

80

Chapter 2 Instructions: Language of the Computer

return address A link to the
calling site that allows a proce-
dure to return to the proper
address; in MIPS it is stored in
register $ra.

program counter (PC) The
register containing the address
of the instruction in the pro-
gram being executed

caller The program that insti-
gates a procedure and provides
the necessary parameter values.

callee A procedure that executes
a series of stored instructions
based on parameters provided by
the caller and then returns con-
trol to the caller.

stack A data structure for spill-
ing registers organized as a last-
in-first-out queue.

stack pointer Avaluedenoting
the most recently allocated
address in a stack that shows
where registers should be spilled
or where old register values can

be found.

jal ProcedureAddress

The link portion of the name means that an address or link is formed that points to
the calling site to allow the procedure to return to the proper address. This “link,”
stored in register $ra, is called the return address. The return address is needed
because the same procedure could be called from several parts of the program.

Implicit in the stored-program idea is the need to have a register to hold the
address of the current instruction being executed. For historical reasons, this reg-
ister is almost always called the program counter, abbreviated PC in the MIPS
architecture, although a more sensible name would have been instruction address
register. The jal instruction saves PC + 4 in register $ra to link to the following
instruction to set up the procedure return.

To support such situations, computers like MIPS use a jump register instruction
(jr), meaning an unconditional jump to the address specified in a register:

jr $ra

The jump register instruction jumps to the address stored in register $ ra—which
is just what we want. Thus, the calling program, or caller, puts the parameter val-
ues in $a0-$a3 and uses jal X to jump to procedure X (sometimes named the
callee). The callee then performs the calculations, places the results in $v0-$v1,
and returns control to the caller using jr $ra.

Using More Registers

Suppose a compiler needs more registers for a procedure than the four argument
and two return value registers. Since we must cover our tracks after our mission is
complete, any registers needed by the caller must be restored to the values that
they contained before the procedure was invoked. This situation is an example in
which we need to spill registers to memory, as mentioned in the Hardware Soft-
ware Interface section on page 58.

The ideal data structure for spilling registers is a stack—a last-in-first-out
queue. A stack needs a pointer to the most recently allocated address in the stack
to show where the next procedure should place the registers to be spilled or where
old register values are found. The stack pointer is adjusted by one word for each
register that is saved or restored. Stacks are so popular that they have their own
buzzwords for transferring data to and from the stack: placing data onto the stack
is called a push, and removing data from the stack is called a pop.

MIPS software allocates another register just for the stack: the stack pointer
($sp), used to save the registers needed by the callee. By historical precedent,
stacks “grow” from higher addresses to lower addresses. This convention means
that you push values onto the stack by subtracting from the stack pointer. Adding
to the stack pointer shrinks the stack, thereby popping values off the stack.

2.7 Supporting Procedures in Computer Hardware 81

Compiling a C Procedure That Doesn’t Call Another Procedure

Let’s turn the example on page 51 into a C procedure:

int Teaf_example (int g, int h, int i, int Jj)
{
int f;

f=(0@+h) - 0+])
return f;
}

What is the compiled MIPS assembly code?

The parameter variables g, h, i, and j correspond to the argument registers m
$a0, $al, $a2, and $a3, and f corresponds to $s0. The compiled program
starts with the label of the procedure:

leaf_example:

The next step is to save the registers used by the procedure. The C assignment
statement in the procedure body is identical to the example on page 51,
which uses two temporary registers. Thus, we need to save three registers:
$s0, $t0, and $t1. We “push” the old values onto the stack by creating space
for three words on the stack and then store them:

addi $sp,$sp,-12 # adjust stack to make room for 3 jtems
sw $tl, 8($sp) # save register $tl for use afterwards
sw $t0, 4($sp) # save register $t0 for use afterwards
sw $s0, 0($sp) # save register $s0 for use afterwards

Figure 2.14 shows the stack before, during, and after the procedure call. The
next three statements correspond to the body of the procedure, which follows
the example on page 51:

add $t0,%a0,%al # register $t0 contains g +
add $t1,%a2,$a3 # register $tl contains 1 +
sub $s0,$t0,$t1 # f = $t0 - $t1, which is (g + h)-(i + j)

h
J

To return the value of f, we copy it into a return value register:

add $v0,%$s0,%zero # returns f ($v0 = $s0 + 0)

82

Chapter 2 Instructions: Language of the Computer

Before returning, we restore the three old values of the registers we saved by
“popping” them from the stack:

Tw $s0, 0($sp) # restore register $s0 for caller
Tw $t0, 4($sp) # restore register $t0 for caller
Tw $tl, 8($sp) # restore register $tl for caller
addi $sp,%sp,12 # adjust stack to delete 3 items

The procedure ends with a jump register using the return address:

jr %ra # jump back to calling routine

In the example above we used temporary registers and assumed their old values
must be saved and restored. To avoid saving and restoring a register whose value is
never used, which might happen with a temporary register, MIPS software sepa-
rates 18 of the registers into two groups:

B $t0-$t9:10 temporary registers that are not preserved by the callee
(called procedure) on a procedure call

B $50-$s7:8 saved registers that must be preserved on a procedure call
(if used, the callee saves and restores them)

This simple convention reduces register spilling. In the example above, since the
caller (procedure doing the calling) does not expect registers $t0 and $t1 to be
preserved across a procedure call, we can drop two stores and two loads from the
code. We still must save and restore $s0, since the callee must assume that the
caller needs its value.

High address
fsp— fsp—
Contents of register $t1
Contents of register $t0
$sp—| Contents of register $s0
Low address a. b. c.

FIGURE 2.14 The values of the stack pointer and the stack (a) before, (b) during, and (c)
after the procedure call. The stack pointer always points to the “top” of the stack, or the last word in
the stack in this drawing,

2.7 Supporting Procedures in Computer Hardware

Nested Procedures

Procedures that do not call others are called leaf procedures. Life would be
simple if all procedures were leaf procedures, but they aren’t. Just as a spy
might employ other spies as part of a mission, who in turn might use even
more spies, so do procedures invoke other procedures. Moreover, recursive
procedures even invoke “clones” of themselves. Just as we need to be careful
when using registers in procedures, more care must also be taken when invok-
ing nonleaf procedures.

For example, suppose that the main program calls procedure A with an
argument of 3, by placing the value 3 into register $a0 and then using jal A.
Then suppose that procedure A calls procedure B via jal B with an argument
of 7, also placed in $a0. Since A hasn’t finished its task yet, there is a conflict
over the use of register $a0. Similarly, there is a conflict over the return
address in register $ra, since it now has the return address for B. Unless we
take steps to prevent the problem, this conflict will eliminate procedure A’s
ability to return to its caller.

One solution is to push all the other registers that must be preserved onto the
stack, just as we did with the saved registers. The caller pushes any argument regis-
ters ($a0-$a3) or temporary registers ($t0-$t9) that are needed after the call.
The callee pushes the return address register $ra and any saved registers ($s0—
$57) used by the callee. The stack pointer $ sp is adjusted to account for the num-
ber of registers placed on the stack. Upon the return, the registers are restored
from memory and the stack pointer is readjusted.

Compiling a Recursive C Procedure, Showing Nested Procedure
Linking

Let’s tackle a recursive procedure that calculates factorial:

int fact (int n)
{
if (n < 1) return (1);
else return (n * fact(n-1));
}

What is the MIPS assembly code?

84

Chapter 2 Instructions: Language of the Computer

The parameter variable n corresponds to the argument register $a0. The
compiled program starts with the label of the procedure and then saves two
registers on the stack, the return address and $a0:

fact:
addi $sp,$sp,-8 # adjust stack for 2 items
sw $ra, 4($sp) # save the return address
SW $a0, 0($sp) # save the argument n

The first time fact is called, sw saves an address in the program that called
fact. The next two instructions test if n is less than 1, going to L1 if n > 1.

s1ti $t0,%a0,1 # test for n <1
beq $t0,$zero,L1 # if n >=1, go to L1

If nis less than 1, fact returns 1 by putting 1 into a value register: it adds 1
to 0 and places that sum in $v0. It then pops the two saved values off the
stack and jumps to the return address:

addi $v0,$zero,l # return 1
addi $sp,$sp.8 # pop 2 items off stack
jr $ra # return to after jal

Before popping two items off the stack, we could have loaded $a0 and $ra. Since
$a0and $ra don’t change when n is less than 1, we skip those instructions.

If n is not less than 1, the argument n is decremented and then fact is
called again with the decremented value:

L1: addi$a0,%a0,-1 # n >= 1: argument gets (n - 1)
jalfact # call fact with (n - 1)

The next instruction is where fact returns. Now the old return address and
old argument are restored, along with the stack pointer:

1w $a0, 0($sp) # return from jal:restore argument n
Tw $ra, 4($sp) # restore the return address
addi $sp, $sp.8 #f adjust stack pointer to pop 2 items

2.7 Supporting Procedures in Computer Hardware

Next, the value register $v0 gets the product of old argument $a0 and the
current value of the value register. We assume a multiply instruction is avail-

able, even though it is not covered until Chapter 3:
mul $v0,%a0,$v0 # return n * fact (n - 1)

Finally, fact jumps again to the return address:

jr $ra # return to the caller

A C variable is a location in storage, and its interpretation depends both on its type
and storage class. Types are discussed in detail in Chapter 3, but examples include
integers and characters. C has two storage classes: automatic and static. Automatic
variables are local to a procedure and are discarded when the procedure exits. Static
variables exist across exits from and entries to procedures. C variables declared out-
side all procedures are considered static, as are any variables declared using the key-
word static. The rest are automatic. To simplify access to static data, MIPS
software reserves another register, called the global pointer, or $gp.

Figure 2.15 summarizes what is preserved across a procedure call. Note that sev-
eral schemes preserve the stack. The stack above $ sp is preserved simply by making
sure the callee does not write above $sp; $sp is itself preserved by the callee adding
exactly the same amount that was subtracted from it, and the other registers are pre-
served by saving them on the stack (if they are used) and restoring them from there.
These actions also guarantee that the caller will get the same data back on a load
from the stack as it put into the stack on a store because the callee promises to pre-
serve $sp and because the callee also promises not to modify the caller’s portion of
the stack, that is, the area above the $sp at the time of the call.

Saved registers: $s0-$s7 Temporary registers: $10-$t9
Stack pointer register: $sp Argument registers: $a0-$a3
Return address register: $ra Retum value registers: $v0-$v1

Stack above the stack pointer Stack below the stack pointer

FIGURE 2.15 What is and what is not preserved across a procedure call. If the software
relies on the frame pointer register or on the global pointer register, discussed in the following sections,
they are also preserved.

Hardware
Software
Interface

global pointer The register
that is reserved to point to static
data.

