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ABSTRACT. This is a set of lecture notes for a series of introductory courses in

topology for undergraduate students at the University of Science, Ho Chi Minh

City. It is written to be delivered by myself, tailored to my students. I did not write

it with other lecturers or self-study readers in mind.

In writing these notes I intend that more explanations and discussions will

be carried out in class. I hope by presenting only the essentials these notes will be

more suitable for classroom use. Some details are left for students to fill in or to be

discussed in class.

A sign
√

in front of a problem notifies the reader that this is an important

one although it might not appear to be so initially. A sign * indicates a relatively

more difficult problem.

The latest version of this set of notes is available at

http://www.math.hcmus.edu.vn/∼hqvu/teaching/n.pdf, and the source file is

at

http://www.math.hcmus.edu.vn/∼hqvu/teaching/n.tar.gz. This work is releashed

to Public Domain (CC0) wherever applicable, see

http://creativecommons.org/publicdomain/zero/1.0/, otherwise it is licensed un-

der the Creative Commons Attribution 4.0 International License, see

http://creativecommons.org/licenses/by/4.0/.

September 16, 2016.
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INTRODUCTION 1

Introduction

Topology is a mathematical subject that studies shapes. A set becomes a topo-
logical space when each element of the set is given a collection of neighborhoods.
Operations on topological spaces must be continuous, bringing certain neighbor-
hoods into neighborhoods.

Unlike geometry, there is no notion of distance. So topology is “more general”
than geometry. But usually people do not classify geometry as a subfield of topol-
ogy. On the other hand, if one forgets the distance from geometrical objects, one
gets topological space. This is a more prevalent point of view: topology is the part
of geometry that does not concern distance.

FIGURE 0.1. How to make a closed trip such that every bridge
(a blue arc) is crossed exactly once? This is the problem Seven
Bridges of Konigsberg, studied by Leonard Euler in the 18th cen-
tury. It does not depend on the size of the bridges.

Characteristics of topology. Operations on topological objects are more re-
laxed: beside moving around (allowed in geometry), stretching or bending are
allowed in topology (not allowed in geometry). For example, in topology circles -
big or small, anywhere - are same. Ellipses and circles are same.

On the other hand in topology tearing or breaking are not allowed: circles are
still different from lines.

While topological operations are more flexible they still retain some essential
properties of spaces.

Contributions of topology. Topology provides basic notions to areas of math-
ematics where continuity appears.

Topology focuses on some essential properties of spaces. It can be used in
qualitative study. It can be useful where metrics or coordinates are not available,
not natural, or not necessary.

Topology often does not stand alone: there are fields such as algebraic topol-
ogy, differential topology, geometric topology, combinatorial topology, quantum
topology, . . .

Topology often does not solve a problem by itself, but contributes important
understanding, settings, and tools. Topology features prominently in differential
geometry, global analysis, algebraic geometry, theoretical physics . . .
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General Topology

1. Infinite sets

General Topology is the part of Topology that studies basic settings, also called
Point-set Topology.

In General Topology we often work in very general settings, in particular we
often deal with infinite sets.

We will not define what a set is. In other words, we will work on the level of
“naive set theory”, pioneered by Georg Cantor in the late 19th century. We will use
familiar notions such as maps, Cartesian product of two sets, . . . without recalling
definitions. We will not go back to definitions of the natural numbers or the real
numbers.

Still, we should be aware of certain problems in naive set theory.

EXAMPLE (Russell’s paradox). Consider the set S = {x | x /∈ x} (the set of
all sets which are not members of themselves). Then whether S ∈ S or not is
undecidable, since answering yes or no to this question leads to contradiction. 1

Axiomatic systems for the theory of sets have been developed since then. In
the Von Neumann-Bernays-Godel system a more general notion than set, called
class (lớp), is used. In this course, we do not distinguish set, class, or collection
(họ), but in occasions where we deal with “set of sets” we often prefer the term
collection. For more one can read [End77, p. 6], [Dug66, p. 32].

Indexed collection. Suppose that A is a collection, I is a set and f : I → A
is a map. The map f is called an indexed collection, or indexed family (họ được đánh
chỉ số). We often write fi = f (i), and denote the indexed collection f by ( fi)i∈I

{ fi}i∈I . Notice that it can happen that fi = f j for some i 6= j.

EXAMPLE. A sequence of elements in a set A is a collection of elements of A
indexed by the set Z+ of positive integer numbers, written as (an)n∈Z+ .

Relation. A relation (quan hệ) R on a set S is a non-empty subset of the set
S× S.

When (a, b) ∈ R we often say that a is related to b and often write a ∼R b.
A relation said to be:

1Discovered in 1901 by Bertrand Russell. A famous version of this paradox is the barber paradox: In
a village there is a barber; his job is to do hair cut for a villager if and only if the villager does not cut
his hair himself. Consider the set of all villagers who had their hairs cut by the barber. Is the barber
himself a member of that set?

3
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4 GENERAL TOPOLOGY

(a) reflexive (phản xạ) if ∀a ∈ S, (a, a) ∈ R.
(b) symmetric (đối xứng) if ∀a, b ∈ S, (a, b) ∈ R⇒ (b, a) ∈ R.
(c) antisymmetric (phản đối xứng) if ∀a, b ∈ S, ((a, b) ∈ R ∧ (b, a) ∈ R) ⇒

a = b.
(d) transitive (bắc cầu) if ∀a, b, c ∈ S, ((a, b) ∈ R ∧ (b, c) ∈ R)⇒ (a, c) ∈ R.

An equivalence relation on S is a relation that is reflexive, symmetric and transitive.
If R is an equivalence relation on S then an equivalence class (lớp tương đương)

represented by a ∈ S is the subset [a] = {b ∈ S | (a, b) ∈ R}. Two equivalence
classes are either coincident or disjoint. The set S is partitioned (phân hoạch) into
the disjoint union of its equivalence classes.

Countable sets. Two sets are said to be set-equivalent if there is a bijection
from one set to the other set. A set is said to be finite if it is equivalent to a subset
{1, 2, 3, . . . , n} of all positive integers Z+ for some n ∈ Z+. If a set is not finite we
say that it is infinite.

DEFINITION. A set is called countably infinite (vô hạn đếm được) if it is equiv-
alent to the set of all positive integers. A set is called countable if it is either finite
or countably infinite.

Intuitively, a countably infinite set can be “counted” by the positive integers.
The elements of such a set can be indexed by the set of all positive integers as a
sequence a1, a2, a3, . . . .

EXAMPLE. The set Z of all integer numbers is countable.

PROPOSITION. A subset of a countable set is countable.

PROOF. The statement is equivalent to the statement that a subset of Z+ is
countable. Suppose that A is an infinite subset of Z+. Let a1 be the smallest
number in A. Let an be the smallest number in A \ {a1, a2, . . . , an−1}. Then an−1 <

an and the set B = {an| n ∈ Z+} is a countably infinite subset of A.
We show that any element m of A is an an for some n, and therefore B = A.
Let C = {an | an ≥ m}. Then C 6= ∅ since B is infinite. Let an0 = min C.

Then an0 ≥ m. Further, since an0−1 < an0 we have an0−1 < m. This implies
m ∈ A \ {a1, a2, . . . , an0−1}. Since an0 = min

(
A \ {a1, a2, . . . , an0−1}

)
we must

have an0 ≤ m. Thus an0 = m. �

COROLLARY. If there is an injective map from a set S to Z+ then S is countable.

PROPOSITION 1.1. If there is a surjective map from Z+ to a set S then S is countable.

PROOF. Suppose that there is a surjective map φ : Z+ → S. For each s ∈ S the
set φ−1(s) is non-empty. Let ns = min φ−1(s). The map s 7→ ns is an injective map
from S to a subset of Z+, therefore S is countable. �

PROPOSITION. Z+ ×Z+ is countable.
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1. INFINITE SETS 5

PROOF. We can enumerate Z+ ×Z+ by the method shown in the following
diagram:

(1, 1) // (1, 2)

{{

(1, 3)

{{

(1, 4)

{{
(2, 1)

55

(2, 2)

{{

(2, 3)

{{
(3, 1)

77

(3, 2)

{{

. . .

(4, 1)

To prove in the detail we can derive the explicit formula by counting along the
diagonals:

(m, n) 7→ (1 + 2 + · · ·+ ((m + n− 1)− 1)) + m =
(m + n− 2)(m + n− 1)

2
+ m.

We will check that this map is injective. Let k = m + n. Suppose that (k−2)(k−1)
2 +

m = (k′−2)(k′−1)
2 + m′. If k = k′ then the equation certainly leads to m = m′ and

n = n′. If k < k′ then

(k− 2)(k− 1)
2

+ m ≤ (k− 2)(k− 1)
2

+ (k− 1) =
(k− 1)k

2
<

<
(k− 1)k

2
+ 1 ≤ (k′ − 2)(k′ − 1)

2
+ m′,

a contradiction. �

THEOREM 1.2. The union of a countable collection of countable sets is a countable
set.

PROOF. The collection can be indexed as A1, A2, . . . , Ai, . . . (if the collection
is finite we can let Ai be the same set for all i starting from a certain index). The
elements of each set Ai can be indexed as ai,1, ai,2, . . . , ai,j, . . . (if Ai is finite we can
let ai,j be the same element for all j starting from a certain index). This means
there is a surjective map from the index set Z+ × Z+ to the union

⋃
i∈I Ai by

(i, j) 7→ ai,j. �

THEOREM. The set Q of all rational numbers is countable.

PROOF. One way to prove this result is to write Q =
⋃∞

q=1
{ p

q | p ∈ Z
}

, then
use 1.2.

Another way is to observe that if we write each rational number in the form
p
q with q > 0 and gcd(p, q) = 1 then the map p

q 7→ (p, q) from Q to Z ×Z is
injective. �

THEOREM 1.3. The set R of all real numbers is uncountable.
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6 GENERAL TOPOLOGY

PROOF. The proof uses the Cantor diagonal argument.
Suppose that set of all real numbers in decimal form in the interval [0, 1] is

countable, and is enumerated as a sequence {ai | i ∈ Z+}. Let us write

a1 = 0.a1,1a1,2a1,3 . . .

a2 = 0.a2,1a2,2a2,3 . . .

a3 = 0.a3,1a3,2a3,3 . . .

...

There are real numbers whose decimal presentations are not unique, such as
1
2 = 0.5000 . . . = 0.4999 . . . . Choose a number b = 0.b1b2b3 . . . such that bn 6=
0, 9 and bn 6= an,n. Choosing bn differing from 0 and 9 will guarantee that b 6=
an for all n (see more at 1.14). Thus the number b is not in the above table, a
contradiction. �

EXAMPLE. Two intervals [a, b] and [c, d] on the real number line are equivalent.
The bijection can be given by a linear map x 7→ d−c

b−a (x − a) + c. Similarly, two
intervals (a, b) and (c, d) are equivalent.

The interval (−1, 1) is equivalent to R via a map related to the tan function:

x 7→ x√
1− x2

.

1

1

−1

0

x

REMARK. Whether there is a set which is “more” than Z but “less” than R

cannot be answered. That there is no such set can be accepted as an axiom, called
the Continuum hypothesis.

Given a set S the set of all subsets of S is denoted by P(S) or 2S.

THEOREM 1.4. Any non-empty set is not equivalent to the set of all of its subsets.
Given a set S there is no surjective map from S to 2S.

PROOF. Let S 6= ∅. Let φ be any map from S to 2S. Let X = {a ∈ S | a /∈ φ(a)}.
Suppose that there is x ∈ S such that φ(x) = X. Then the truth of the statement
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1. INFINITE SETS 7

x ∈ X (whether it is true or false) is undecidable, a contradiction. Therefore there
is no x ∈ S such that φ(x) = X, so φ is not surjective. �

This result implies that any set is “smaller” than the set of all of its subsets.
So there can not be a set that is “larger” than any other set. There is no “universal
set”, “set which contains everything”, or “set of all sets”.

REMARK. There is a notion of “sizes” of sets, called cardinality, but we will
not present it here.

Order. An order (thứ tự) on a set S is a relation R on S that is reflexive, anti-
symmetric and transitive.

Note that two arbitrary elements a and b do not need to be comparable; that is,
the pair (a, b) may not belong to R. For this reason an order is often called a partial
order.

When (a, b) ∈ R we often write a ≤ b. When a ≤ b and a 6= b we write a < b.
If any two elements of S are related then the order is called a total order (thứ tự

toàn phần) and (S,≤) is called a totally ordered set.

EXAMPLE. The set R of all real numbers with the usual order ≤ is totally
ordered.

EXAMPLE. Let S be a set. Denote by 2S the collection of all subsets of S. Then
(2S,⊆) is a partially ordered set, but is not totally ordered if S has more than one
element.

EXAMPLE (dictionary order). Let (S1,≤1) and (S2,≤2) be two ordered sets.
The following is an order on S1 × S2: (a1, b1) ≤ (a2, b2) if (a1 < a2) or ((a1 =

a2) ∧ (b1 ≤ b2)). This is called the dictionary order (thứ tự từ điển).

In an ordered set, the smallest element (phần tử nhỏ nhất) is the element that is
smaller than all other elements. More concisely, if S is an ordered set, the smallest
element of S is an element a ∈ S such that ∀b ∈ S, a ≤ b. The smallest element, if
exists, is unique.

A minimal element (phần tử cực tiểu) is an element which no element is smaller
than. More concisely, a minimal element of S is an element a ∈ S such that ∀b ∈
S, b ≤ a⇒ b = a. There can be more than one minimal element.

A lower bound (chặn dưới) of a subset of an ordered set is an element of the set
that is smaller than or equal to any element of the subset. More concisely, if A ⊂ S
then a lower bound of A in S is an element a ∈ S such that ∀b ∈ A, a ≤ b.

The definitions of largest element, maximal element, and upper bound are
similar.

The Axiom of choice.

THEOREM. The following statements are equivalent:
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8 GENERAL TOPOLOGY

(a) Axiom of choice: Given a collection of non-empty sets, there is a function defined
on this collection, called a choice function, associating each set in the collection
with an element of that set.

(b) Zorn lemma: If any totally ordered subset of an ordered set X has an upper bound
then X has a maximal element.

Zorn lemma is often a convenient form of the Axiom of choice.
Intuitively, a choice function “chooses” an element from each set in a given

collection of non-empty sets. The Axiom of choice allows us to make infinitely
many arbitrary choices. 2 This is also often used in constructions of functions,
sequences, or nets, see one example at 5.4. One common application is the use of
the product of an infinite family of sets – the Cartesian product, discussed below.

The Axiom of choice is needed for many important results in mathematics,
such as the Tikhonov theorem in Topology, the Hahn-Banach theorem and Banach-
Alaoglu theorem in Functional analysis, the existence of a Lebesgue unmeasurable
set in Real analysis, . . . .

There are cases where this axiom could be avoided. For example in the proof
of 1.1 we used the well-ordered property of Z+ instead. See for instance [End77,
p. 151] for further material on this subject.

Cartesian product. Let (Ai)i∈I be a collection of sets indexed by a set I. The
Cartesian product (tích Decartes) ∏i∈I Ai of this indexed collection is defined to be
the collection of all maps a : I → ⋃

i∈I Ai such that a(i) ∈ Ai for every i ∈ I. The
existence of such a map is a consequence of the Axiom of choice. An element a
of ∏i∈I Ai is often denoted by (ai)i∈I , with ai = a(i) ∈ Ai being the coordinate of
index i, in analog to the finite product case.

Problems.

1.5. Let f be a function. Show that:

(a) f (
⋃

i Ai) =
⋃

i f (Ai).
(b) f (

⋂
i Ai) ⊂

⋂
i f (Ai). If f is injective (one-one) then equality happens.

(c) f−1(
⋃

i Ai) =
⋃

i f−1(Ai).
(d) f−1(

⋂
i Ai) =

⋂
i f−1(Ai).

1.6. Let f be a function. Show that:

(a) f ( f−1(A)) ⊂ A. If f is surjective (onto) then equality happens.
(b) f−1( f (A)) ⊃ A. If f is injective then equality happens.

1.7. If A is countable and B is infinite then A ∪ B is equivalent to B.

1.8. Give another proof of 1.2 by checking that the map Z+ ×Z+ → Z+, (m, n) 7→
2m3n is injective.

2Bertrand Russell said that choosing one shoe from each pair of shoes from an infinite collection of pairs
of shoes does not need the Axiom of choice (because in a pair of shoes the left shoe is different from
the right one so we can define our choice), but usually in a pair of socks the two socks are identical, so
choosing one sock from each pair of socks from an infinite collection of pairs of socks needs the Axiom
of choice.
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1. INFINITE SETS 9

1.9. Show that the set of points in Rn with rational coordinates is countable.

1.10. Show that if A has n elements then |2A| = 2n.

1.11. Show that the set of all functions f : A→ {0, 1} is equivalent to 2A.

1.12. A real number α is called an algebraic number if it is a root of a polynomial with
integer coefficients. Show that the set of all algebraic numbers is countable.

A real number which is not algebraic is called transcendental. For example it is known
that π and e are transcendental. Show that the set of all transcendental numbers is uncount-
able.

1.13. A continuum set is a set which is equivalent to R. Show that a countable union
of continuum sets is a continuum set.

1.14. Show that any real number could be written in base d with any d ∈ Z, d ≥ 2.
However two forms in base d could represent the same real number, as seen in 1.3. This
happens only if starting from certain digits, all digits of one form are 0 and all digits of the
other form are d− 1. (This result is used in 1.3.)

1.15 (2ℵ0 = c). * We prove that 2N is equivalent to R.

(a) Show that 2N is equivalent to the set of all sequences of binary digits.
(b) Using 1.14, deduce that |[0, 1]| ≤ |2N|.
(c) Consider a map f : 2N → [0, 2], for each binary sequence a = a1a2a3 · · · define

f (a) as follows. If starting from a certain digit, all digits are 1, then let f (a) =

1.a1a2a3 · · · . Otherwise let f (a) = 0.a1a2a3 · · · . Show that f is injective.

Deduce that |2N| ≤ |[0, 2]|.

1.16 (R2 is equivalent to R). * Here we prove that R2 is equivalent to R, in other words,
a plane is equivalent to a line. As a corollary, Rn is equivalent to R.

(a) First method: Construct a map from [0, 1)× [0, 1) to [0, 1) as follows. In view of
1.14, we only allow decimal presentations in which not all digits are 9 starting
from a certain digit. The pair of two real numbers 0.a1a2 . . . and 0.b1b2 . . . corre-
sponds to the real number 0.a1b1a2b2 . . .. Check that this map is injective.

(b) Second method: Construct a map from 2N × 2N to 2N as follows. The pair of
two binary sequences a1a2 . . . and b1b2 . . . corresponds to the binary sequence
a1b1a2b2 . . .. Check that this map is injective. Then use 1.15.

1.17 (Cantor set). Deleting the open interval ( 1
3 , 2

3 ) from the interval of real numbers
[0, 1], one gets a space consisting of two intervals [0, 1

3 ] ∪ [ 2
3 , 1]. Continuing, delete the in-

tervals ( 1
9 , 2

9 ) and ( 7
9 , 8

9 ). In general on each of the remaining intervals, delete the middle
open interval of 1

3 the length of that interval. The Cantor set is the set of remaining points.
It can be described as the set of real numbers ∑∞

n=1
an
3n , an = 0, 2. In other words, it is the set

of real numbers in [0, 1] which in base 3 could be written without the digit 1.
Show that the total length of the deleted intervals is 1. Is the Cantor set countable?

1.18 (transfinite induction principle). An ordered set S is well-ordered (được sắp tốt) if
every non-empty subset A of S has a smallest element, i.e. ∃a ∈ A, ∀b ∈ A, a ≤ b. For
example with the usual order, N is well-ordered while R is not. Notice that a well-ordered
set must be totally ordered. Ernst Zermelo proved in 1904, based on the Axiom of choice,
that any set can be well-ordered.
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10 GENERAL TOPOLOGY

Prove the following generalization of the principle of induction. Let A be a well-
ordered set. Let P(a) be a statement whose truth depends on a ∈ A. Suppose that if
P(a) is true for all a < b then P(b) is true. Then P(a) is true for all a ∈ A.
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2. TOPOLOGICAL SPACE 11

2. Topological space

The reason we study topological space is that this is a good setting for discus-
sions on continuity of maps. Briefly, a topology is a system of open sets.

DEFINITION. A topology on a set X is a collection τ of subsets of X satisfying:

(a) The sets ∅ and X are elements of τ.
(b) A union of elements of τ is an element of τ.
(c) A finite intersection of elements of τ is an element of τ.

Elements of τ are called open sets of X in the topology τ.

In short, a topology on a set X is a collection of subsets of X which includes ∅
and X and is “closed” under unions and finite intersections.

EXAMPLE. On any set X there is the trivial topology (tôpô hiển nhiên) {∅, X}.
There is also the discrete topology (tôpô rời rạc) whereas any subset of X is open.
Thus on a set there can be many topologies.

A set X together with a topology τ is called a topological space, denoted by(X, τ)

or X alone if we do not need to specify the topology. An element of X is often called
a point.

A neighborhood (lân cận) of a point x ∈ X is a subset of X which contains an
open set containing x. Note that a neighborhood does not need to be open.3

REMARK. The statement “intersection of finitely many open sets is open” is
equivalent to the statement “intersection of two open sets is open”.

Metric space. Recall that, briefly, a metric space is a set equipped with a
distance between every two points. Namely, a metric space is a set X with a map
d : X× X 7→ R such that for all x, y, z ∈ X:

(a) d(x, y) ≥ 0 (distance is non-negative),
(b) d(x, y) = 0 ⇐⇒ x = y (distance is zero if and only if the two points

coincide),
(c) d(x, y) = d(y, x) (distance is symmetric),
(d) d(x, y) + d(y, z) ≥ d(x, z) (triangular inequality).

A ball is a set of the form B(x, r) = {y ∈ X | d(y, x) < r} where r ∈ R, r > 0.
In the theory of metric spaces, a subset U of X is said to be open if for all x in

U there is ε > 0 such that B(x, ε) is contained in U. This is equivalent to saying
that a non-empty open set is a union of balls.

To check that this is indeed a topology, we only need to check that the in-
tersection of two balls is a union of balls. Let z ∈ B(x, rx) ∩ B(y, ry), let rz =

min{rx − d(z, x), ry − d(z, y)}. Then the ball B(z, rz) will be inside both B(x, rx)

and B(y, ry).

3Be careful that not everyone uses this convention. For instance Kelley [Kel55] uses this convention but
Munkres [Mun00] requires a neighborhood to be open.
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12 GENERAL TOPOLOGY

Thus a metric space is canonically a topological space with the topology gen-
erated by the metric. When we speak about topology on a metric space we mean this
topology.

EXAMPLE (normed spaces). Recall that a normed space (không gian định
chuẩn) is briefly a vector spaces equipped with lengths of vectors. Namely, a
normed space is a set X with a structure of vector space over the real numbers
and a real function X → R, x 7→ ||x||, called a norm (chuẩn), satisfying:

(a) ||x|| ≥ 0 and ||x|| = 0⇐⇒ x = 0 (length is non-negative),
(b) ||cx|| = |c|||x|| for c ∈ R (length is proportionate to vector),
(c) ||x + y|| ≤ ||x||+ ||y|| (triangle inequality).

A normed space is canonically a metric space with metric d(x, y) = ||x− y||.
Therefore a normed space is canonically a topological space with the topology
generated by the norm.

EXAMPLE (Euclidean topology). In Rn = {(x1, x2, . . . , xn) | xi ∈ R}, the Eu-
clidean norm of a point x = (x1, x2, . . . , xn) is ‖x‖ =

[
∑n

i=1 x2
i
] 1/2. The topology

generated by this norm is called the Euclidean topology (tôpô Euclid) of Rn.

A complement of an open set is called a closed set.

PROPOSITION (dual description of topology). In a topological space X:

(a) ∅ and X are closed.
(b) A finite union of closed sets is closed.
(c) An intersection of closed sets is closed.

Interior – Closure – Boundary. Let X be a topological space and let A be a
subset of X. A point x in X is said to be:

• an interior point (điểm trong) of A in X if there is an open set of X contain-
ing x that is contained in A.
• a contact point (điểm dính) (or point of closure) of A in X if any open set

of X containing x contains a point of A.
• a limit point (điểm tụ) (or cluster point, or accumulation point) of A in X

if any open set of X containing x contains a point of A other than x. Of
course a limit point is a contact point. We can see that a contact point of
A which is not a point of A is a limit point of A.

• a boundary point (điểm biên) of A in X if every open set of X containing x
contains a point of A and a point of the complement of A. In other words,
a boundary point of A is a contact point of both A and the complement
of A.

With these notions we define:

• The set of all interior points of A is called the interior (phần trong) of A in
X, denoted by Å or int(A).
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2. TOPOLOGICAL SPACE 13

• The set of all contact points of A in X is called the closure (bao đóng) of A
in X, denoted by A or cl(A).
• The set of all boundary points of A in X is called the boundary (biên) of A

in X, denoted by ∂A.

EXAMPLE. On the Euclidean line R, consider the subset A = [0, 1) ∪ {2}.
Its interior is intA = (0, 1), the closure is clA = [0, 1] ∪ {2}, the boundary is
∂A = {0, 1, 2}, the set of all limit points is [0, 1].

Bases of a topology.

DEFINITION. Given a topology, a collection of open sets is a basis (cơ sở) for
that topology if every non-empty open set is a union of members of that collection.

More concisely, let τ be a topology of X, then a collection B ⊂ τ is called a
basis for τ if for any ∅ 6= V ∈ τ there is C ⊂ B such that V =

⋃
O∈C O.

So a basis of a topology is a subset of the topology that generates the entire
topology via unions. Specifying a basis is a more “efficient” way to give a topology.

EXAMPLE. In a metric space the collection of all balls is a basis for the topology.

EXAMPLE. The Euclidean plane has a basis consisting of all open disks. It also
has a basis consisting of all open rectangles.

DEFINITION. A collection S ⊂ τ is called a subbasis (tiền cơ sở) for the topology
τ if the collection of all finite intersections of members of S is a basis for τ.

Clearly a basis for a topology is also a subbasis for that topology. Briefly, given
a topology, a subbasis is a subset of the topology that can generate the entire topol-
ogy by unions and finite intersections.

EXAMPLE. Let X = {1, 2, 3}. The topology τ = {∅, {1, 2}, {2, 3}, {2}, {1, 2, 3}}
has a basis {{1, 2}, {2, 3}, {2}} and a subbasis {{1, 2}, {2, 3}}.

EXAMPLE 2.1. The collection of all open rays, that are, sets of the forms (a, ∞)

and (−∞, a), is a subbasis for the Euclidean topology of R.

Comparing topologies.

DEFINITION. Let τ1 and τ2 be two topologies on X. If τ1 ⊂ τ2 we say that τ2 is
finer (mịn hơn) (or stronger, bigger) than τ1 and τ1 is coarser (thô hơn) (or weaker,
smaller) than τ2.

EXAMPLE. On a set the trivial topology is the coarsest topology and the dis-
crete topology is the finest one.

Generating topologies. Suppose that we have a set and we want a topology
such that certain subsets of that set are open sets, how do find a topology for that
purpose?
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14 GENERAL TOPOLOGY

THEOREM. Let S be a collection of subsets of X. The collection τ consisting of ∅,
X, and all unions of finite intersections of members of S is the coarsest topology on X that
contains S, called the topology generated by S. The collection S ∪ {X} is a subbasis for
this topology.

REMARK. In several textbooks to avoid adding the element X to S it is required
that the union of all members of S is X.

PROOF. Let B be the collection of all finite intersections of members of S, that
is, B = {⋂O∈I O | I ⊂ S, |I| < ∞}. Let τ be the collection of all unions of members
of B, that is, τ = {⋃U∈F U | F ⊂ B}. We check that τ is a topology.

First we check that τ is closed under unions. Let σ ⊂ τ, consider
⋃

A∈σ A. We
write

⋃
A∈σ A =

⋃
A∈σ

(⋃
U∈FA

U
)
, where FA ⊂ B. Since

⋃
A∈σ

 ⋃
U∈FA

U

 =
⋃

U∈(⋃A∈σ FA)

U,

and since
⋃

A∈σ FA ⊂ B, we conclude that
⋃

A∈σ A ∈ τ.
We only need to check that τ is closed under intersections of two elements. Let⋃

U∈F U and
⋃

V∈G V be two elements of τ, where F, G ⊂ B. We can write

(
⋃

U∈F
U) ∩ (

⋃
V∈G

V) =
⋃

U∈F,V∈G
(U ∩V).

Let J = {U ∩V | U ∈ F, V ∈ G}. Then J ⊂ B, and we can write

(
⋃

U∈F
U) ∩ (

⋃
V∈G

V) =
⋃

W∈J
W,

showing that (
⋃

U∈F U) ∩ (
⋃

V∈G V) ∈ τ. �

By this theorem, given a set, any collection of subsets generates a topology.

EXAMPLE. Let X = {1, 2, 3, 4}. The set {{1}, {2, 3}, {3, 4}} generates the topol-
ogy {∅, {1}, {3}, {1, 3}, {2, 3}, {3, 4}, {1, 2, 3}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}. A ba-
sis for this topology is {{1}, {3}, {2, 3}, {3, 4}}.

EXAMPLE (ordering topology). Let (X,≤) be a totally ordered set. The collec-
tion of subsets of the forms {β ∈ X | β < α} and {β ∈ X | β > α} generates a
topology on X, called the ordering topology.

EXAMPLE. The Euclidean topology on R is the ordering topology with respect
to the usual order of real numbers. (This is just a different way to state 2.1.)

Problems.

2.2 (finite complement topology). The finite complement topology on X consists of the
empty set and all subsets of X whose complements are finite. Check that this is indeed a
topology. Is it true if “finite” is replaced by “countable”?

2.3. Let X be a set and p ∈ X. Show that the collection consisting of ∅ and all subsets
of X containing p is a topology on X. This topology is called the Particular Point Topology
on X, denoted by PPXp. Describe the closed sets in this space.
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2. TOPOLOGICAL SPACE 15

2.4. (a) The interior of A in X is the largest open subset of X that is contained in
A. A subset is open if all of its points are interior points.

(b) The closure of A in X is the smallest closed subset of X containing A. A subset is
closed if and only if it contains all of its contact points.

2.5. Show that A is the disjoint union of Å and ∂A. Show that X is the disjoint union
of Å, ∂A, and X \ A.

2.6. The set {x ∈ Q | −
√

2 ≤ x ≤
√

2} is both closed and open in Q under the
Euclidean topology of R.

2.7. In a metric space X, a point x ∈ X is a limit point of the subset A of X if and only
if there is a sequence in A \ {x} converging to x. (This is not true in general topological
spaces, see 5.4. )

2.8. (a) In a normed space, show that the boundary of the ball B(x, r) is the
sphere {y | ‖x− y‖ = r}, and so the ball B′(x, r) = {y | ‖x− y‖ ≤ r} is the
closure of B(x, r).

(b) In a metric space, show that the boundary of the ball B(x, r) is a subset of the
sphere {y | d(x, y) = r}. Is the ball B′(x, r) = {y | d(x, y) ≤ r} the closure of
B(x, r)?

2.9. Let On = {k ∈ Z+ | k ≥ n}. Check that {∅} ∪ {On | n ∈ Z+} is a topology on
Z+. Find the closure of the set {5}. Find the closure of the set of all even positive integers.

2.10. Show that an open set in R is a countable union of open intervals.

2.11. In the real number line with the Euclidean topology, is the Cantor set (see 1.17)
closed or open, or neither? Find the boundary and the interior of the Cantor set (see 2.11).

2.12. Show that the intersection of a collection of topologies on a set X is a topology
on X. If S is a subset of X, then the intersection of all topologies of X containing S is the
smallest topology that contains S. Show that this is exactly the topology generated by S.

2.13. A collection B of open sets is a basis if for each point x and each open set O
containing x there is a U in B such that U contains x and U is contained in O.

2.14. Show that two bases generate the same topology if and only if each member of
one basis is a union of members of the other basis.

2.15. Let B be a collection of subsets of X. Then B ∪ {X} is a basis for a topology on
X if and only if the intersection of two members of B is either empty or is a union of some
members of B. (In several textbooks to avoid adding the element X to B it is required that
the union of all members of B is X.)

2.16. In a metric space the set of all balls with rational radii is a basis for the topology.
The set of all balls with radii 1

2m , m ≥ 1 is another basis.

2.17 (Rn has a countable basis).
√

The set of all balls each with rational radius whose
center has rational coordinates forms a basis for the Euclidean topology of Rn.

2.18. Let d1 and d2 be two metrics on X. If there are α, β > 0 such that for all x, y ∈ X,
αd1(x, y) ≤ d2(x, y) ≤ βd1(x, y) then the two metrics are said to be equivalent. Show that
two equivalent metrics generate same topologies.
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16 GENERAL TOPOLOGY

2.19 (all norms in Rn generate the Euclidean topology). In Rn denote by ‖·‖2 the Eu-
clidean norm, and let ‖·‖ be any norm.

(a) Check that the map x 7→ ‖x‖ from (Rn, ‖·‖2) to (R, ‖·‖2) is continuous.
(b) Let Sn be the unit sphere under the Euclidean norm. Show that the restriction

of the map above to Sn has a maximum value β and a minimum value α. Hence

α ≤
∥∥∥ x
‖x‖2

∥∥∥ ≤ β for all x 6= 0.
(c) Deduce that any two norms in Rn generate equivalent metrics, hence all norms in

Rn generate the Euclidean topology.

2.20. Let (X, d) be a metric space.

(a) Let d1(x, y) = min{d(x, y), 1}. Show that d1 is a metric on X generating the same
topology as that generated by d. Is d1 equivalent to d?

(b) Let d2(x, y) = d(x,y)
1+d(x,y) . Show that d2 is a metric on X generating the same topol-

ogy as the topology generated by d. Is d2 equivalent to d?

2.21. Is the Euclidean topology on R2 the same as the ordering topology on R2 with
respect to the dictionary order? If it is not the same, can the two be compared?

2.22 (the Sorgenfrey’s line). The collection of all intervals of the form [a, b) generates a
topology on R. Is it the Euclidean topology?

2.23. * On the set of all integer numbers Z, consider arithmetic progressions

Sa,b = a + bZ,

where a ∈ Z and b ∈ Z+.

(a) Show that these sets form a basis for a topology on Z.
(b) Show that with this topology each set Sa,b is closed.
(c) Show that if there are only finitely many prime numbers then the set {±1} is

open.
(d) Conclude that there are infinitely many prime numbers. (This proof was given by

Hillel Furstenberg in 1955.)
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3. CONTINUITY 17

3. Continuity

Continuous maps. Previously in metric spaces a function f is considered
continuous at x if f (y) can be arbitrarily close to f (x) provided that y is sufficiently
close to x. This notion is generalized to the following:

DEFINITION. Let X and Y be topological spaces. We say a map f : X → Y is
continuous at a point x in X if for any open set U of Y containing f (x) there is an
open set V of X containing x such that f (V) is contained in U.

We say that f is continuous (on X) if it is continuous at every point in X.

THEOREM. A map is continuous if and only if the inverse image of an open set is an
open set.

PROOF. (⇒) Suppose that f : X → Y is continuous. Let U be an open set in Y.
Let x ∈ f−1(U). Since f is continuous at x and U is an open neighborhood of f (x),
there is an open set Vx containing x such that Vx is contained in f−1(U). Therefore
f−1(U) =

⋃
x∈ f−1(U) Vx is open.

(⇐) Suppose that the inverse image of any open set is an open set. Let x ∈
X. Let U be an open neighborhood of f (x). Then V = f−1(U) is an open set
containing x, and f (V) is contained in U. Therefore f is continuous at x. �

EXAMPLE. Let X and Y be topological spaces.

(a) The identity function, idX : X → X, x 7→ x, is continuous.
(b) The constant function, with a given a ∈ Y, x 7→ a, is continuous.
(c) If Y has the trivial topology then any map f : X → Y is continuous.
(d) If X has the discrete topology then any map f : X → Y is continuous.

EXAMPLE (metric space). Let (X, d1) and (Y, d2) be metric spaces. Recall that
in the theory of metric spaces, a map f : (X, d1) → (Y, d2) is continuous at x ∈ X
if and only if

∀ε > 0, ∃δ > 0, d1(y, x) < δ⇒ d2( f (y), f (x)) < ε.

In other words, given any ball B( f (x), ε) centered at f (x), there is a ball B(x, δ)

centered at x such that f brings B(x, δ) into B( f (x), ε). It is apparent that this
definition is equivalent to the definition of continuity in topological spaces where
the topologies are generated by the metrics. In other words, if we look at a met-
ric space as a topological space with the topology generated by the metric then
continuity in the metric space is the same as continuity in the topological space.
Therefore we inherit all results concerning continuity in metric spaces.

Homeomorphism. A map from one topological space to another is said to be
a homeomorphism (phép đồng phôi) if it is a bijection, is continuous and its inverse
map is also continuous. Two spaces are said to be homeomorphic (đồng phôi) if
there is a homeomorphism from one to the other. This is a basic relation among
topological spaces.
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18 GENERAL TOPOLOGY

PROPOSITION. A homeomorphism between two spaces induces a bijection between
the two topologies.

PROOF. A homeomorphism f : X → Y induces a bijection

f̃ : τX → τY

O 7→ f (O).

�

Roughly speaking, in the field of Topology, when two spaces are homeomor-
phic they are considered the same. For example a “topological sphere” means a
topological space which is homeomorphic to a sphere.

Topology generated by maps. Let (X, τX) be a topological space, Y be a set,
and f : X → Y be a map, we want to find a topology on Y such that f is continu-
ous. The requirement for such a topology τY is that if U ∈ τY then f−1(U) ∈ τX .
The trivial topology on Y satisfies that requirement. It is the coarsest topology sat-
isfying that requirement. On the other hand the collection {U ⊂ Y | f−1(U) ∈ τX}
is actually a topology on Y. This is the finest topology satisfying that requirement.

In another situation, let X be a set, (Y, τY) be a topological space, and f : X →
Y be a map, we want to find a topology on X such that f is continuous. The re-
quirement for such a topology τX is that if U ∈ τY then f−1(U) ∈ τX . The discrete
topology on X is the finest topology satisfying that requirement. The collection
τX = { f−1(U) | U ∈ τY} is the coarsest topology satisfying that requirement. We
can observe further that if the collection SY generates τY then τX is generated by
the collection { f−1(U) | U ∈ SY}.

Subspace. Let (X, τ) be a topological space and let Y be a subset of X. We
want to define a topology on Y that can be naturally considered as being “inher-
ited” from X. Thus any open set of X that is contained in Y should be considered
open in Y. If an open set of X is not contained in Y then its restriction to Y should
be considered open in Y. We can easily check that the collection of restrictions of
the open sets in X to Y is a topology on Y.

DEFINITION. Let Y be a subset of the topological space X. The subspace topology
on Y, also called the relative topology (tôpô tương đối) with respect to X is defined
to be the collection of restrictions of the open sets of X to Y, that is, the set {O ∩
Y | O ∈ τ}. With this topology we say that Y is a subspace (không gian con) of X.

In brief, a subset of a subspace Y of X is open in Y if and only if it is a restriction
of a open set of X to Y.

REMARK. An open or a closed subset of a subspace Y of a space X is not
necessarily open or closed in X. For example, under the Euclidean topology of R,
the set [0, 1

2 ) is open in the subspace [0, 1], but is not open in R. When we say that a
set is open, we must know which topology we are using.
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3. CONTINUITY 19

PROPOSITION. Let X be a topological space and let Y ⊂ X. The subspace topology
on Y is the coarsest topology on Y such that the inclusion map i : Y ↪→ X, x 7→ x is
continuous. In other words, the subspace topology on Y is the topology generated by the
inclusion map from Y to X.

PROOF. If O is a subset of X then i−1(O) = O ∩ Y. Thus the topology gener-
ated by i is {O ∩Y | O ∈ τX}, exactly the subspace topology of Y. �

EXAMPLE (Subspaces of a metric space). It’s not hard to see that the notion
of topological subspaces is compatible with the earlier notion of metric subspaces.
Let (X, d) be a metric space and Y ⊂ X. Then Y is a metric space with the metric
inherited from X. A ball in Y is a set of the form, for a ∈ Y, r > 0:

BY(a, r) = {y ∈ Y | d(y, a) < r} = {x ∈ X | d(x, a) < r} ∩Y = BX(a, r) ∩Y.

Any open set A in Y is the union of a collection of balls in Y, i.e.

A =
⋃

i∈I, ai∈Y
BY(ai, ri) =

⋃
i∈I

(BX(ai, ri) ∩Y) =

(⋃
i∈I

BX(ai, ri)

)
∩Y,

thus A is the intersection of an open set of X with Y. Conversely, if B is open in X,
then for each x ∈ B there is rx > 0 such that BX(x, rx) ⊂ B, so

B ∩Y =

(⋃
x∈B

BX(x, rx)

)
∩Y =

( ⋃
x∈B∩Y

BX(x, rx)

)
∩Y

=
⋃

x∈B∩Y
(BX(x, rx) ∩Y) =

⋃
x∈B∩Y

BY(x, rx).

This implies that B ∩Y is an open set in Y.

EXAMPLE. For n ∈ Z+ define the sphere Sn to be the subspace of the Euclidean
space Rn+1 given by {(x1, x2, . . . , xn+1) ∈ Rn+1 | x2

1 + x2
2 + · · ·+ x2

n+1 = 1}.

Embedding. An embedding (or imbedding) (phép nhúng) from a topological
space X to a topological space Y is a homeomorphism from X to a subspace of Y,
i.e. it is a map f : X → Y such that the restriction f̃ : X → f (X) is a homeomor-
phism. If there is an imbedding from X to Y then we say that X can be embedded in
Y.

EXAMPLE. With the subspace topology the inclusion map is an embedding.

EXAMPLE. The Euclidean line R can be embedded in the Euclidean plane R2

as a line in the plane.

EXAMPLE. Suppose that f : R → R is continuous under the Euclidean topol-
ogy. Then R can be embedded into the plane as the graph of f .

EXAMPLE (stereographic projection). The space Sn \ {(0, 0, . . . , 0, 1)} is home-
omorphic to the Euclidean space Rn via the stereographic projection (phép chiếu
nổi). Each point x on the sphere minus the North Pole corresponds to the inter-
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20 GENERAL TOPOLOGY

FIGURE 3.1. The stereographic projection.

section between the straight line from the North Pole to x with the plane through
the equator. By solving an equation intersection we can find the formula for this
projection to be:

Sn \ {(0, 0, . . . , 0, 1)} → Rn × {0}
(x1, x2, . . . , xn+1) 7→ (y1, y2, . . . , yn, 0)

where yi =
1

1− xn+1
xi. The inverse map is given by xi =

2yi

1 + ∑n
i=1 y2

i
, 1 ≤ i ≤ n,

and xn+1 =
−1 + ∑n

i=1 y2
i

1 + ∑n
i=1 y2

i
. Both maps are continuous, thus the Euclidean space

Rn can be embedded onto the n-sphere minus one point.

Problems.

3.2. If f : X → Y and g : Y → Z are continuous then g ◦ f is continuous.

3.3. A map is continuous if and only if the inverse image of a closed set is a closed set.

3.4.
√

Suppose that f : X → Y and S is a subbasis for the topology of Y. Show that f
is continuous if and only if the inverse image of any element of S is an open set in X.

3.5. Define an open map to be a map such that the image of an open set is an open
set. A closed map is a map such that the image of a closed set is a closed set. Show that a
homeomorphism is an open map and is also a closed map.

3.6. Show that a continuous bijection is a homeomorphism if and only if it is an open
map.

3.7. Show that (X, PPXp) and (X, PPXq) (see 2.3) are homeomorphic.

3.8.
√

Let X be a set and (Y, τ) be a topological space. Let fi : X → Y, i ∈ I be
a collection of maps. Find the coarsest topology on X such that all maps fi, i ∈ I are
continuous.

In Functional Analysis this construction is used to construct the weak topology on a
normed space. It is the coarsest topology such that all linear functionals which are continu-
ous under the norm are still continuous under the topology. See for instance [Con90].

3.9. Suppose that X is a normed space. Prove that the topology generated by the norm
is exactly the coarsest topology on X such that the norm and the translations (maps of the
form x 7→ x + a) are continuous.
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3. CONTINUITY 21

3.10 (isometry). An isometry (phép đẳng cấu metric, phép đẳng cấu hình học, hay
phép đẳng cự) from a metric space X to a metric space Y is a surjective map f : X → Y that
preserves distance, that is d( f (x), f (y)) = d(x, y) for all x, y ∈ X. If there exists such an
isometry then X is said to be isometric to Y.

(a) Show that an isometry is a homeomorphism.
(b) Show that being isometric is an equivalence relation among metric spaces.
(c) Show that (R2, ‖ · ‖∞) and (R2, ‖ · ‖1) are isometric, but they are not isometric to

(R2, ‖ · ‖2), although the three spaces are homeomorphic (see 2.19). (For higher
dimensions one may use the Mazur-Ulam theorem.)

3.11.
√

Verify the formulas for the stereographic projection and its inverse. Check that
the stereographic projection is indeed a homeomorphism.

3.12.
√

Show that a subset of a subspace Y of X is closed in Y if and only if it is a
restriction of a closed set in X to Y.

3.13.
√

Suppose that X is a topological space and Z ⊂ Y ⊂ X. Then the relative
topology of Z with respect to Y is the same as the relative topology of Z with respect to X.

3.14.
√

Let X and Y be topological spaces and let f : X → Y.

(a) If Z is a subspace of X, denote by f |Z the restriction of f to Z. Show that if f is
continuous then f |Z is continuous.

(b) Let Z be a space containing Y as a subspace. Consider f as a function from X to
Z, that is, let f̃ : X → Z, f̃ (x) = f (x). Show that f is continuous if and only if f̃ is
continuous.

3.15 (gluing continuous functions).
√

Let X = A ∪ B where A and B are both open or
are both closed in X. Suppose f : X → Y, and f |A and f |B are both continuous. Then f is
continuous.

Another way to phrase this is the following. Let g : A → Y and h : B → Y be continu-
ous and g(x) = h(x) on A ∩ B. Define

f (x) =

g(x), x ∈ A

h(x), x ∈ B.

Then f is continuous.
Is it still true if the restriction that A and B are both open or are both closed in X is

removed?

3.16.
√

Any two balls in a normed space are homeomorphic. Any ball in a normed
space is homeomorphic to the whole space.

Is it true that any two balls in a metric space are homeomorphic?

3.17. Any two finite-dimensional normed spaces of same dimensions are homeomor-
phic.

3.18. In the Euclidean plane an ellipse x2

a2 +
y2

b2 = 1 is homeomorphic to a circle.

3.19. In the Euclidean plane the upper half-plane {(x, y) ∈ R2 | y > 0} is homeomor-
phic to the plane.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


22 GENERAL TOPOLOGY

3.20. Deduce that in Rn balls with respect to different norms are homemorphic (see
2.19). In particular a Euclidean n-dimensional ball is homemorphic to an n-dimensional
rectangle.

3.21.
√

If f : X → Y is a homeomorphism and Z ⊂ X then X \ Z and Y \ f (Z) are
homeomorphic.

3.22. On the Euclidean plane R2, show that:

(a) R2 \ {(0, 0)} and R2 \ {(1, 1)} are homeomorphic.
(b) R2 \ {(0, 0), (1, 1)} and R2 \ {(1, 0), (0, 1)} are homeomorphic.

Can you generalize these results?

3.23. Show that N and Z are homeomorphic under the Euclidean topology. Further,
prove that any two set-equivalent discrete spaces are homeomorphic.

3.24. Among the following spaces, which one is homeomorphic to another? Z, Q, R,
each with the Euclidean topology, and R with the finite complement topology.

3.25. Show that any homeomorphism from Sn−1 onto Sn−1 can be extended to a home-
omorphism from the unit disk Dn = B′(0, 1) onto Dn.

3.26. Under the Euclidean topology the map ϕ : [0, 2π)→ S1 given by t 7→ (cos t, sin t)
is a bijection but is not a homeomorphism.

3.27. Find the closures, interiors and the boundaries of the interval [0, 1) under the
Euclidean, discrete and trivial topologies of R.
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4. CONNECTEDNESS 23

4. Connectedness

A topological space is said to be connected (liên thông) if it is not a union of two
non-empty disjoint open subsets.

Equivalently, a topological space is connected if and only if its only subsets
which are both closed and open are the empty set and the space itself.

REMARK. When we say that a subset of a topological space is connected we
mean that the subset under the subspace topology is a connected space.

EXAMPLE. A space containing only one point is connected.

EXAMPLE. The Euclidean real number line minus a point is not connected.

PROPOSITION (continuous image of connected space is connected). If f : X →
Y is continuous and X is connected then f (X) is connected.

PROOF. Suppose that U and V are non-empty disjoint open subset of f (X).
Since f : X → f (X) is continuous (see 3.14), f−1(U) and f−1(V) are open in X,
and are non-empty and disjoint. This contradicts the connectedness of X. �

Connected component.

PROPOSITION 4.1. If a collection of connected subspaces of a space has non-empty
intersection then its union is connected.

PROOF. Consider a topological space and let F be a collection of connected
subspaces whose intersection is non-empty. Let A be the union of the collection,
A =

⋃
D∈F D. Suppose that C is subset of A that is both open and closed in A.

If C 6= ∅ then there is D ∈ F such that C ∩ D 6= ∅. Then C ∩ D is a subset of
D, both open and closed in D (we are using 3.13 here). Since D is connected and
C ∩ D 6= ∅, we must have C ∩ D = D. This implies C contains the intersection of
F. Therefore C ∩ D 6= ∅ for all D ∈ F. The argument above shows that C contains
all D in F, that is, C = A. We conclude that A is connected. �

Let X be a topological space. Define a relation on X whereas two points are
related if both belong to a connected subspace of X (we say that the two points are
connected). Then this relation is an equivalence relation, by 4.1.

PROPOSITION. Under the above equivalence relation the equivalence class containing
a point x is equal to the union of all connected subspaces containing x, thus it is the largest
connected subspace containing x.

PROOF. Consider the equivalence class [a] represented by a point a. By the
definition, b ∈ [a] if and only if there is a connected set Ob containing both a and
b. Thus [a] =

⋃
b∈[a] Ob. By 4.1, [a] is connected. �

DEFINITION. Under the above equivalence relation, the equivalence classes
are called the connected components of the space.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


24 GENERAL TOPOLOGY

Thus a space is a disjoint union of its connected components.

THEOREM. If two spaces are homeomorphic then there is a bijection between the col-
lections of connected components of the two spaces.

PROOF. Let f : X → Y be a homeomorphism. Since f ([x]) is connected, we
have f ([x]) ⊂ [ f (x)]. For the same reason, f−1([ f (x)]) ⊂ [ f−1( f (x))] = [x]. Ap-
ply f to both sides we get [ f (x)] ⊂ f ([x]). Therefore f ([x]) = [ f (x)]. Similarly
f−1([ f (x)]) = [x]. Thus f brings connected components to connected compo-
nents, inducing a bijection on the collections of connected components. �

For the above reason we say that connectedness is a topological property. We also
say that the number of connected components is a topological invariant. If two spaces
have different numbers of connected components then they must be different (not
homeomorphic).

EXAMPLE (line not homeomorphic to plane). Suppose that R and R2 under
the Euclidean topologies are homeomorphic via a homeomorphism f . Delete any
point x from R. By 3.21 the subspaces R \ {x} and R2 \ { f (x)} are homeomorphic.
But R \ {x} is not connected while R2 \ { f (x)} is connected (see 4.24).

PROPOSITION 4.2. A connected subspace with a limit point added is still connected.
Consequently the closure of a connected subspace is connected, and any connected compo-
nent is closed.

PROOF. Let A be a connected subspace of a space X and let a /∈ A be a limit
point of A, we show that A ∪ {a} is connected. Suppose that A ∪ {a} = U ∪ V
where U and V are non-empty disjoint open subsets of A ∪ {a}. Suppose that
a ∈ U. Then a /∈ V, so V ⊂ A. Since a is a limit point of A, U ∩ A is non-
empty. Then U ∩ A and V are open subsets of A, by 3.13, which are non-empty
and disjoint. This contradicts the assumption that A is connected. �

Connected sets in the Euclidean real number line.

THEOREM. A subspace of the Euclidean real number line is connected if and only if
it is an interval.

PROOF. Suppose that a subset A of R is connected. Suppose that x, y ∈ A and
x < y. If x < z < y we must have z ∈ A, otherwise the set {a ∈ A | a < z} = {a ∈
A | a ≤ z} will be both closed and open in A. Thus A contains the interval [x, y].

Let a = inf A if A is bounded from below and a = −∞ otherwise. Similarly
let b = sup A if A is bounded from above and b = ∞ otherwise. Suppose that A
contains more than one element. There are sequences {an}n∈Z+ and {bn}n∈Z+ of
elements in A such that a < an < bn < b, and an → a while bn → b. By the above
argument, [an, bn] ⊂ A for all n. So (a, b) =

⋃∞
n=1[an, bn] ⊂ A ⊂ [a, b]. It follows

that A is either (a, b) or [a, b) or (a, b] or [a, b].
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4. CONNECTEDNESS 25

We prove that any interval is connected. By homeomorphisms we just need to
consider the intervals (0, 1), (0, 1], and [0, 1]. Since [0, 1] is the closure of (0, 1), and
(0, 1] = (0, 3/4) ∪ [1/2, 1], it is sufficient to prove that (0, 1) is connected. Instead
we prove that R is connected.

Suppose that R contains a non-empty, proper, open and closed subset C. Let
x /∈ C and let D = C ∩ (−∞, x) = C ∩ (−∞, x]. Then D is both open and closed in
R, and is bounded from above.

If D 6= ∅, consider s = sup D. Since D is closed and s is a contact point of D,
s ∈ D. Since D is open s must belong to an open interval contained in D. But then
there are points in D which are bigger than s, a contradiction.

If D = ∅ we let E = C ∩ (x, ∞), consider t = inf E and proceed similarly. �

EXAMPLE. Since the Euclidean Rn is the union of all lines passing through the
origin, it is connected.

Below is a simple application, a form of Intermediate value theorem (4.8):

THEOREM (Borsuk-Ulam theorem). For any continuous real function on the sphere
Sn there must be antipodal (i.e. opposite) points where the values of the function are same.
4

PROOF. Let f : Sn → R be continuous. Let g(x) = f (x)− f (−x). Then g is
continuous and g(−x) = −g(x). If there is an x such that g(x) 6= 0 then g(x) and
g(−x) have opposite signs. Since Sn is connected (see 4.7), the range g(Sn) is a
connected subset of the Euclidean R, and so is an interval, containing the interval
between g(x) and g(−x). Therefore 0 is in the range of g. �

Path-connected space. Path-connectedness is a more intuitive notion than
connectedness. Shortly, a space is path-connected if for any two points there is a
path connecting them.

DEFINITION. A path (đường đi) in a topological space X from a point x to a
point y is a continuous map α : [a, b]→ X such that α(a) = x and α(b) = y, where
the interval of real numbers [a, b] has the Euclidean topology. The space X is said
to be path-connected (liên thông đường) if for any two different points x and y in X
there is a path in X from x to y.

EXAMPLE. A normed space is path-connected, and so is any convex subspace
of that space: any two points x and y are connected by a straight line segment
x + t(y− x), t ∈ [0, 1].

EXAMPLE. In a normed space, the sphere S = {x | ‖x‖ = 1} is path-connected.
One way to show this is as follow. If two points x and y are not opposite then they
can be connected by the arc x+t(y−x)

||x+t(y−x)|| , t ∈ [0, 1]. If x and y are opposite, we can
take a third point z, then compose a path from x to z with a path from z to y.

4On the surface of the Earth at any moment there two opposite places where temperatures are same!
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26 GENERAL TOPOLOGY

LEMMA. The relation on a topological space X whereas a point x is related to a point
y if there is a path in X from x to y is an equivalence relation.

PROOF. If α is a path defined on [a, b] then there is a path β defined on [0, 1]
with the same images (also called the traces of the paths): we can just use the linear
homeomorphism (1− t)a + tb from [0, 1] to [a, b] and let β(t) = α((1− t)a + tb).
For convenience we can assume that the domains of paths is the interval [0, 1].

If there is a path α : [0, 1] → X from x to y then there is a path from y to x, for
example β : [0, 1]→ X, β(t) = α(1− t).

If α : [0, 1] → X is a path from x to y and β : [0, 1] → X is a path from y to z
then there is a path from x to z, for example

γ(t) =

α(2t), 0 ≤ t ≤ 1
2 ,

β(2t− 1), 1
2 ≤ t ≤ 1.

This path follows α at twice the speed, then follow β at twice the speed and at half
of a unit time later. It is continuous by 3.15. �

An equivalence class under the above equivalence relation is called a path-
connected component.

THEOREM (path-connected⇒ connected). Any path-connected space is connected.

PROOF. This is a consequence of the fact that an interval on the Euclidean real
number line is connected. Let X be path-connected. Let x, y ∈ X. There is a path
from x to y. The image of this path is a connected subspace of X. That means every
point y belongs to the connected component containing x. Therefore X has only
one connected component. �

A topological space is said to be locally path-connected if every neighborhood of
a point contains an open path-connected neighborhood of that point.

EXAMPLE. Open sets in a normed space are locally path-connected.

PROPOSITION 4.3. A connected, locally path-connected space is path-connected.

PROOF. Suppose that X is connected and is locally path-connected. Let C be
a path-connected component of X. If x ∈ X is a contact point of C then there is a
path-connected neighborhood U in X of x such that U ∩ C 6= ∅. By 4.20, U ∪ C is
path-connected , thus U ⊂ C. This implies that C is both open and closed in X.
Hence C = X. �

Topologist’s sine curve. The closure in the Euclidean plane of the graph of
the function y = sin 1

x , x > 0 is often called the Topologist’s sine curve. This is a
classic example of a space which is connected but is not path-connected.

Denote A = {(x, sin 1
x ) | x > 0} and B = {0} × [−1, 1]. Then the Topologist’s

sine curve is X = A ∪ B.
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FIGURE 4.4. Topologist’s sine curve.

PROPOSITION (connected 6= path-connected). The Topologist’s sine curve is con-
nected but is not path-connected.

PROOF. By 4.9 the set A is connected. Each point of B is a limit point of A, so
by 4.2 X is connected.

Suppose that there is a path γ(t) = (x(t), y(t)), t ∈ [0, 1] from the origin (0, 0)
on B to a point on A, we show that there is a contradiction.

Let t0 = sup{t ∈ [0, 1] | x(t) = 0}. Then x(t0) = 0, t0 < 1, and x(t) > 0 for
all t > t0. Thus t0 is the moment when the path γ departs from B. We can see
that the path jumps immediately when it departs from B. Thus we will show that
γ(t) cannot be continuous at t0 by showing that for any δ > 0 there are t1, t2 ∈
(t0, t0 + δ) such that y(t1) = 1 and y(t2) = −1.

To find t1, note that the set x([t0, t0 +
δ
2 ]) is an interval [0, x0] where x0 > 0.

There exists an x1 ∈ (0, x0) such that sin 1
x1

= 1: we just need to take x1 = 1
π
2 +k2π

with sufficiently large k. There is t1 ∈ (t0, t0 +
δ
2 ] such that x(t1) = x1. Then

y(t1) = sin 1
x(t1)

= 1. We can find t2 similarly. �

Problems.

4.5. A space is connected if whenever it is a union of two non-empty disjoint subsets,
then at least one set must contain a contact point of the other set.

4.6. Here is a different proof that any interval of real numbers is connected. Suppose
that A and B are non-empty, disjoint subsets of (0, 1) whose union is (0, 1). Let a ∈ A and
b ∈ B. Let a0 = a, b0 = b, and for each n ≥ 1 consider the middle point of the segment from
an to bn. If an+bn

2 ∈ A then let an+1 = an+bn
2 and bn+1 = bn; otherwise let an+1 = an and

bn+1 = an+bn
2 . Then:

(a) The sequence {an | n ≥ 1} is a Cauchy sequence, hence is convergent to a number
a.

(b) The sequence {bn | n ≥ 1} is also convergent to a. This implies that (0, 1) is
connected.

4.7. Show that the sphere Sn is connected.
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28 GENERAL TOPOLOGY

4.8 (intermediate value theorem). If X is a connected space and f : X → R is continu-
ous, where R has the Euclidean topology, then the image f (X) is an interval.

A consequence is the following familiar theorem in Calculus: Let f : [a, b] → R be
continuous under the Euclidean topology. If f (a) and f (b) have opposite signs then the
equation f (x) = 0 has a solution.

4.9.
√

If f : R → R is continuous under the Euclidean topology then its graph is
connected in the Euclidean plane. Moreover the graph is homeomorphic to R.

4.10. Let X be a topological space and let Ai, i ∈ I be connected subspaces. If Ai ∩ Aj 6=
∅ for all i, j ∈ I then

⋃
i∈I Ai is connected.

4.11. Let X be a topological space and let Ai, i ∈ Z+ be connected subsets. If Ai ∩
Ai+1 6= ∅ for all i ≥ 1 then

⋃∞
i=1 Ai is connected.

4.12. Let A be a subspace of X with the particular point topology (X, PPXp) (see 2.3).
Find the connected components of A.

4.13. Let X be connected and let f : X → Y be continuous. If f is locally constant on
X (meaning that every point has a neighborhood on which f is a constant map) then f is
constant on X.

4.14. Let X be a topological space. A map f : X → Y is called a discrete map if Y has the
discrete topology and f is continuous. Show that X is connected if and only if all discrete
maps on X are constant.

4.15. What are the connected components of N and Q under the Euclidean topology?

4.16. What are the connected components of Q2 as a subspace of the Euclidean plane?

4.17. Find the connected components of the Cantor set (see 2.11).

4.18. Show that if a space has finitely many components then each component is both
open and closed. Is it still true if there are infinitely many components?

4.19. Suppose that a space X has finitely many connected components. Show that a
map defined on X is continuous if and only if it is continuous on each components. Is it still
true if X has infinitely many components?

4.20. If a collection of path-connected subspaces of a space has non-empty intersection
then its union is path-connected.

4.21. If f : X → Y is continuous and X is path-connected then f (X) is path-connected.

4.22. The path-connected component containing a point x is the union of all path-
connected subspaces containing x, thus it is the largest path-connected subspace containing
x.

4.23. If two space are homeomorphic then there is a bijection between the collections of
path-connected components of the two spaces. In particular, if one space is path-connected
then the other space is also path-connected.

4.24. The plane with countably many points removed is path-connected under the Eu-
clidean topology.
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4. CONNECTEDNESS 29

4.25. Show that R with the finite complement topology and R2 with the finite comple-
ment topology are homeomorphic.

4.26. Find as many ways as you can to prove that Sn is path-connected.

4.27. A topological space is locally path-connected if and only if the collection of all
open path-connected subsets is a basis for the topology.

4.28. Let X = {(x, x sin 1
x ) | x > 0} ∪ {(0, 0)}, that is, the graph of the function x sin 1

x ,
x > 0 with the origin added. Under the Euclidean topology of the plane, is the space X
connected or path-connected?
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0.2

0.4

0.6

0.8
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0 0.2 0.4 0.6 0.8 1

si
n(

1/
x)

*x

x

4.29. The Topologist’s sine curve is not locally path-connected.

4.30. * Classify the alphabetical characters up to homeomorphisms, that is, which of
the following characters are homeomorphic to each other as subspaces of the Euclidean
plane? Try to provide rigorous arguments.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Note that the result depends on the font you use!

Do the same for the Vietnamese alphabetical characters:

A Ă Â B C D Đ E Ê G H I K L M N O Ô Ơ P Q R S T U Ư V X Y
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30 GENERAL TOPOLOGY

5. Convergence

Separation. In this section we begin to put restrictions on topologies in terms
of separation properties.

For example, we know that any metric on a set induces a topology on that set.
If a topology can be induced from a metric, we say that the topological space is
metrizable. Is there anything special about a metrizable space?

EXAMPLE. On any set X, the discrete topology is generated by the following
metric:

d(x, y) =

1, x 6= y

0, x = y.

Indeed for any x ∈ X, the set containing one point {x} = B(x, 1) is open, therefore
any subset of X is open. On the other hand no metric can generate the trivial
topology on X if X has more than one element. Indeed, if X has two different
elements x and y then the ball B(x, d(x,y)

2 ) is a non-empty open proper subset of X.

DEFINITION. We define:

T1: A topological space is called a T1-space if for any two points x 6= y there
is an open set containing x but not y and an open set containing y but not
x.

T2: A topological space is called a T2-space or Hausdorff if for any two points
x 6= y there are disjoint open sets U and V such that x ∈ U and y ∈ V.

T3: A T1-space is called a T3-space or regular (chính tắc) if for any point x
and a closed set F not containing x there are disjoint open sets U and V
such that x ∈ U and F ⊂ V. 5

T4: A T1-space is called a T4-space or normal (chuẩn tắc) if for any two dis-
joint closed sets F and G there are disjoint open sets U and V such that
F ⊂ U and G ⊂ V.

These definitions are often called separation axioms because they involve “sep-
arating” certain sets by open sets.

PROPOSITION. A space is a T1 space if and only if any subset containing exactly one
point is a closed set.

If a space is T1, given x ∈ X, for any y 6= x there is an open set Uy that does
not contain x. Then X \ {x} = ⋃

y 6=x Uy

COROLLARY (T4 ⇒ T3 ⇒ T2 ⇒ T1). If a space is Ti then it is Ti−1, for 2 ≤ i ≤ 4.

EXAMPLE. Any space with the discrete topology is normal.

Any metric space is clearly a Hausdorff space. In other words, if a space is not
a Hausdorff space then it cannot be metrizable. We have a stronger result:

5We include T1 requirement for regular and normal spaces, as in Munkres [Mun00]. Some authors
such as Kelley [Kel55] do not include the T1 requirement.
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5. CONVERGENCE 31

PROPOSITION. Any metric space is normal.

PROOF. Let (X, d) be a metric space. For x ∈ X and A ⊂ X we define the
distance from x to A to be d(x, A) = inf{d(x, y) | y ∈ A}. This is a continuous
function with respect to x, see 5.12.

Suppose that A and B are disjoint closed subsets of X. Let U = {x | d(x, A) <

d(x, B)} and V = {x | d(x, A) > d(x, B)}. Then A ⊂ U, B ⊂ V (using the fact that
A and B are closed, see 5.12), U ∩V = ∅, and both U and V are open. �

EXAMPLE 5.1. The set of all real number under the finite complement topology
is T1 but is not T2.

There are examples of a T2-space which is not T3, and a T3-space which is not
T4, but they are rather difficult, see 5.11, 8.14, [Mun00, p. 197] and [SJ70].

PROPOSITION 5.2. A T1-space X is normal if and only if given a closed set C and an
open set U containing C there is an open set V such that C ⊂ V ⊂ V ⊂ U.

PROOF. Suppose that X is normal. Since X \U is closed and disjoint from C
there is an open set V containing C and an open set W containing X \U such that
V and W are disjoint. Then V ⊂ (X \W), so V ⊂ (X \W) ⊂ U.

In the reverse direction, given a closed set F and a closed set G disjoint from
F, let U = X \ G. There is an open set V containing F such that V ⊂ V ⊂ U. Then
V and X \V separate F and G. �

Sequence. Recall that a sequence in a set X is a map Z+ → X, a countably
indexed family of elements of X. Given a sequence x : Z+ → X the element x(n)
is often denoted as xn, and sequence is often denoted by (xn)n∈Z+ or {xn}n∈Z+ .

When X is a metric space, the sequence is said to be convergent to x if xn can
be as closed to x as we want provided n is sufficiently large, i.e.

∀ε > 0, ∃N ∈ Z+, n ≥ N =⇒ d(xn, x) < ε.

It is easy to see that this statement is equivalent to:

∀U open 3 x, ∃N ∈ Z+, n ≥ N =⇒ xn ∈ U.

This definition can be used in topological spaces.
However, in general topological spaces we need to use a notion more general

than sequence. Roughly speaking, sequences (having countable indexes) might
not be sufficient for describing the neighborhood systems at a point, we need
something of arbitrary index (see 5.21).

Net. A directed set (tập được định hướng) is a (partially) ordered set such that
for any two indices there is an index greater than or equal to both. In symbols:
∀i, j ∈ I, ∃k ∈ I, k ≥ i ∧ k ≥ j.

A net (lưới) (also called a generalized sequence) in a space is a map from a
directed set to that space. In symbols, a net on a space X with index set a directed
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32 GENERAL TOPOLOGY

set I is a map x : I → X. It is an element of the Cartesian product set ∏i∈I X.
Writing xi = x(i) we often denote the net as (xi)i∈I or {xi}i∈I .

EXAMPLE. Nets with index set I = N with the usual order are exactly se-
quences.

EXAMPLE. Let X be a topological space and x ∈ X. Let I be the collection of
all open neighborhoods of x. Define an order on I by U ≤ V ⇐⇒ U ⊃ V. Then I
becomes a directed set.

DEFINITION. A net (xi)i∈I is said to be convergent (hội tụ) to x ∈ X if for each
neighborhood U of x there is an index i ∈ I such that if j ≥ i then xj belongs to U.
The point x is called a limit of the net (xi)i∈I and we often write xi → x.

EXAMPLE. Convergence of nets with index set I = N with the usual order is
exactly convergence of sequences.

EXAMPLE. Let X = {x1, x2, x3} with topology {∅, X, {x1, x3}, {x2, x3}, {x3}}.
The net (x3) converges to x1, x2, x3. The net (x1, x2) converges to x2.

EXAMPLE. If X has the trivial topology then any net in X is convergent to any
point in X.

PROPOSITION 5.3. A space is a Hausdorff space if and only if any net has at most
one limit.

PROOF. Suppose the space is a Hausdorff space. Suppose that a net (xi) is
convergent to two different limits x and y. Since the space is Hausdorff, there are
disjoint open neighborhoods U and V of x and y. There is i ∈ I such that for γ ≥ i
we have xγ ∈ U, and there is j ∈ I such that for γ ≥ j we have xγ ∈ U. Since there
is a γ ∈ I such that γ ≥ i and γ ≥ j, the point xγ will be in U ∩V, a contradiction.

Suppose that the space is not a Hausdorff space, then there are two points x
and y that could not be separated by open sets. Consider the index set I whose ele-
ments are pairs (U, V) of open neighborhoods of x and y, with the order (U1, V1) ≤
(U2, V2) if U1 ⊃ U2 and V1 ⊃ V2. With this order the index set is directed. Since
U ∩ V 6= ∅, take z(U,V) ∈ U ∩ V. Then the net

(
z(U,V)

)
(U,V)∈I

is convergent to

both x and y, contradicting the uniqueness of limit. �

PROPOSITION 5.4. A point x ∈ X is a contact point of a subset A ⊂ X if and only if
there is a net in A convergent to x. Consequently a subset is closed if and only if any limit
of any net in that set belongs to that set. A subset is open if and only if no limit of a net
outside of that set belong to that set.

This proposition allows us to describe topologies in terms of convergences.
With it many statements about convergence in metric spaces could be carried to
topological spaces by simply replacing sequences by nets.
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5. CONVERGENCE 33

PROOF. (⇐) Suppose that there is a net (xi)i∈I in A convergent to x. Let U be
an open neighborhood of x. There is an i ∈ I such that for j ≥ i we have xj ∈ U, in
particular xi ∈ U ∩ A. Thus x is a contact point of A.

(⇒) Suppose that x is a contact point of A. Consider the directed set I consist-
ing of all the open neighborhoods of x with the partial order U ≤ V if U ⊃ V. For
any open neighborhood U of x there is an element xU ∈ U ∩ A. For any V ≥ U,
xV ∈ V ⊂ U. Thus {xU}U∈I is a net in A convergent to x. (This construction of the
net {xU}U∈I involves the Axiom of choice.) �

REMARK. When can nets be replaced by sequences? By examining the above
proof we can see that the term net can be replaced by the term sequence if there
is a countable collection F of neighborhoods of x such that any neighborhood of
x contains a member of F. In this case the point x is said to have a countable
neighborhood basis. A space having this property at every point is said to be a first
countable space. A metric space is such a space, where for example each point has a
neighborhood basis consisting of balls of rational radii. See also 5.21.

PROPOSITION 5.5. Let τ1 and τ2 be two topologies on X. If convergence in τ1 implies
convergence in τ2 then τ1 is finer than τ2. In symbols: if for all nets xi and all points
x, xi

τ1→ x ⇒ xi
τ2→ x, then τ2 ⊂ τ1. As a consequence, if convergences are same then

topologies are same.

PROOF. If convergence in τ1 implies convergence in τ2 then contact points in
τ1 are contact points in τ2. Therefore closed sets in τ2 are closed sets in τ1, and so
are open sets. �

Similarly to the case of metric spaces, we have:

THEOREM. A function f is continuous at x if and only if for all nets (xi), xi → x ⇒
f (xi)→ f (x).

PROOF. The proof is simply a repeat of the proof for the case of metric spaces.
(⇒) Suppose that f is continuous at x. Let U is a neighborhood of f (x). Then

f−1(U) is a neighborhood of x in X. Since (xi) is convergent to x, there is an i ∈ I
such that for all j ≥ i we have xj ∈ f−1(U), which implies f (xj) ∈ U.

(⇐) We will show that if U is an open neighborhood in Y of f (x) then f−1(U)

is a neighborhood in X of x. Suppose the contrary, then x is not an interior point of
f−1(U), so it is a limit point of X \ f−1(U). By 5.4 there is a net (xi) in X \ f−1(U)

convergent to x. Since f is continuous, f (xi) ∈ Y \U is convergent to f (x) ∈ U.
This contradicts the assumption that U is open. �

Problems.

5.6. If a finite set is a T1-space then the topology is the discrete topology.

5.7. Is the space (X, PPXp) (see 2.3) a Hausdorff space?

5.8. A T1-space X is regular if and only if given a point x and an open set U containing
x there is an open set V such that x ∈ V ⊂ V ⊂ U.
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34 GENERAL TOPOLOGY

5.9. Show that a subspace of a Hausdorff space is a Hausdorff space.

5.10. Show that a closed subspace of a normal space is normal.

5.11 (T2 but not T3). Show that the set R with the topology generated by all the subsets
of the form (a, b) and (a, b) ∩Q is a Hausdorff space but is not a regular space.

5.12. Let (X, d) be a metric space. For x ∈ X and A ⊂ X we define the distance from
x to A to be d(x, A) = inf{d(x, y) | y ∈ A}. More generally, for two subsets A and B of X,
define d(A, B) = inf {d(a, b) | a ∈ A, b ∈ B}.

(a) Check that d(x, A) is a continuous function with respect to x.
(b) Check that d(x, A) = 0⇐⇒ x ∈ A.
(c) Check that d(A, B) = inf{d(a, B) | a ∈ A} = inf{d(A, b) | b ∈ B}.
(d) When is d(A, B) = 0? Is d a metric?

5.13 (Hausdorff distance). The Hausdorff distance between two bounded subsets A
and B of a metric space X is defined to be dH(A, B) = max{supx∈A d(x, B), supy∈B d(y, A)}.
Show that dH is a metric on the set of all closed bounded subsets of X. (For more, see [BBI01,
Chapter 7].)

5.14. Let X be a normal space. Suppose that U1 and U2 are open sets in X satisfying
U1 ∪U2 = X. Show that there is an open sets V1 such that V1 ⊂ U1 and V1 ∪U2 = X.

5.15. * Let X be normal, let f : X → Y be a surjective, continuous, and closed map.
Prove that Y is a normal space.

5.16. Let I = (0, ∞) ⊂ R. For i, j ∈ I, define i ≤I j if i ≥R j (i is less than or is equal
to j as indexes if i is greater than or is equal to j as real numbers). On R with the Euclidean
topology, consider the net (xi = i)i∈I . Is this net convergent?

5.17. On R with the finite complement topology and the usual order, consider the net
(xi = i)i∈R. Where does this net converge to?

5.18. Reconsider Problems 2.18, 2.20 using 5.5.

5.19. Let Y be a T1-space, and let f : X → Y be continuous. Suppose that A ⊂ X and
f (x) = c on A, where c is a constant. Show that f (x) = c on A, by:

(a) using nets.
(b) not using nets.

5.20. Let Y be a Hausdorff space and let f , g : X → Y be continuous. Show that the set
{x ∈ X | f (x) = g(x)} is closed in X, by:

(a) using nets.
(b) not using nets.

Show that, as a consequence, if f and g agree on a dense (trù mật) subspace of X (meaning
the closure of that subspace is X) then they agree on X.

5.21 (sequence is not adequate for convergence). * Let (A,≤) be a well-ordered un-
countable set (see 1.18). The smallest element of A is be denoted by 0. If A does not have
a biggest element then add an element to A and define that element to be the biggest one,
denoted by ∞. For a, b ∈ A denote [a, b] = {x ∈ A | a ≤ x ≤ b} and [a, b) = {x ∈ A | a ≤
x < b}. Thus we can write A = [0, ∞].
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5. CONVERGENCE 35

Let Ω be the smallest element of the set {a ∈ A | [0, a] is uncountable} (this set is non-
empty since it contains ∞).

(a) Show that [0, Ω) is uncountable, and for all a ∈ A, a < Ω the set [0, a] is countable.
(b) Consider [0, Ω] with the order topology. Show that Ω is a limit point of [0, Ω].
(c) Show that every countable subset of [0, Ω) is bounded in [0, Ω), therefore a se-

quence in [0, Ω) cannot converge to Ω.

5.22 (filter). A filter (lọc) on a set X is a collection F of non-empty subsets of X such
that:

(a) if A, B ∈ F then A ∩ B ∈ F,
(b) if A ⊂ B and A ∈ F then B ∈ F.

For example, given a point, the collection of all neighborhoods of that point is a filter.
A filter is said to be convergent to a point if every neighborhood of that point is an

element of the filter.
A filter-base (cơ sở lọc) is a collection G of non-empty subsets of X such that if A, B ∈ G

then there is C ∈ G such that G ⊂ (A ∩ B).
If G is a filter-base in X then the filter generated by G is defined to be the collection of

all subsets of X each containing an element of G: {A ⊂ X | ∃B ∈ G, B ⊂ A}.
For example, in a metric space, the collection of all open balls centered at a point is the

filter-base for the filter consisting of all neighborhoods of that point.
A filter-base is said to be convergent to a point if the filter generated by it converges to

that point.

(a) Show that a filter-base is convergent to x if and only if every neighborhood of x
contains an element of the filter-base.

(b) Show that a point x ∈ X is a limit point of a subset A of X if and only if there is a
filter-base in A \ {x} convergent to x.

(c) Show that a map f : X → Y is continuous at x if and only if for any filter-base F
that is convergent to x, the filter-base f (F) is convergent to f (x).

Filter gives an alternative way to net for describing convergence. For more see [Dug66, p.
209], [Eng89, p. 49], [Kel55, p. 83].
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36 GENERAL TOPOLOGY

6. Compact space

A cover (phủ) of a set X is a collection of subsets of X whose union is X. A
subset of a cover which is itself a cover is called a subcover (phủ con). A cover is
said to be an open cover if each member of the cover is an open subset of X.

DEFINITION. A space is compact if every open cover has a finite subcover. In
symbols: a space (X, τ) is compact if

(I ⊂ τ,
⋃

O∈I
O = X) =⇒ (∃J ⊂ I, |J| < ∞,

⋃
O∈J

O = X).

EXAMPLE. Any finite space is compact. Any space whose topology is finite
(that is, the space has finitely many open sets) is compact.

EXAMPLE. On the Euclidean line R the collection {(−n, n) | n ∈ Z+} is an
open cover without a finite subcover. Therefore the Euclidean line R is not com-
pact.

REMARK. Let A be a subspace of a topological space X. Let I be an open cover
of A. Each O ∈ I is an open set of A, so it is the restriction of an open set UO of X.
Thus we have a collection {UO | O ∈ I} of open sets of X whose union contains A.
On the other hand if we have a collection I of open sets of X whose union contains
A then the collection {U ∩ A | U ∈ I} is an open cover of A. For this reason we
often use the term open cover of a subspace A of X in both senses: either as an
open cover of A or as a collection of open subsets of the space X whose union
contains A.

THEOREM (continuous image of compact space is compact). If X is compact and
f : X → Y is continuous then f (X) is compact.

PROOF. Let I be a cover of f (X) by open sets of Y (see the above remark).
Then { f−1(O) | O ∈ I} is an open cover of X. Since X is compact there is a finite
subcover, so there is a finite set J ⊂ I such that { f−1(O) | O ∈ J} covers X. This
implies f−1(

⋃
O∈J O) = X, so

⋃
O∈J O ⊃ Y, hence J is a subcover of I. �

In particular, compactness is preserved under homeomorphism. We say that
compactness is a topological property.

PROPOSITION. Any closed subspace of a compact space is compact.

PROOF. Suppose that X is compact and A ⊂ X is closed. Let I be an open
cover of A by open set of X. By adding the open set X \ A to I we get an open
cover of X. This open cover has a finite subcover. This subcover of X must contain
X \ A, thus omitting this set we get a finite subcover of A from I. �

PROPOSITION 6.1. Any compact subspace of a Hausdorff space is closed.
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6. COMPACT SPACE 37

PROOF. Let A be a compact set in a Hausdorff space X. We show that X \ A is
open.

Let x ∈ X \ A. For each a ∈ A there are disjoint open sets Ua containing x
and Va containing a. The collection {Va | a ∈ A} covers A, so there is a finite
subcover {Vai | 1 ≤ i ≤ n}. Let U =

⋂n
i=1 Uai and V =

⋃n
i=1 Vai . Then U is an open

neighborhood of x disjoint from V, a neighborhood of A. �

EXAMPLE. Any subspace of R with the finite complement topology is com-
pact. Note that this space is not Hausdorff (5.1).

Characterization of compact spaces in terms of closed subsets. In the
definition of compact spaces by writing open sets as complements of closed sets,
we get a dual statement: A space is compact if for every collection of closed subsets
whose intersection is empty there is a a finite subcollection whose intersection is
empty. We will say that a collection of subsets of a set is having the finite intersection
property (tính giao hữu hạn) if the intersection of every finite subcollection is non-
empty. We get:

PROPOSITION 6.2. A space is compact if and only if every collection of closed subsets
with the finite intersection property has non-empty intersection.

Compact metric spaces. A space is called sequentially compact (compắc dãy)
if every sequence has a convergent subsequence.

LEMMA 6.3 (Lebesgue’s number). In a sequentially compact metric space, for any
open cover there exists a number ε > 0 such that any ball of radius ε is contained in an
element of the cover.

PROOF. Let O be a cover of a sequentially compact metric space X. Suppose
the opposite of the conclusion, that is for any number ε > 0 there is a ball B(x, ε)

not contained in any of the element of O. Take a sequence of such balls B(xn, 1/n).
The sequence {xn}n∈Z+ has a subsequence {xnk}k∈Z+ converging to x. There is
ε > 0 such that B(x, 2ε) is contained in an element U of O. Take k sufficiently large
such that nk > 1/ε and xnk is in B(x, ε). Then B(xnk , 1/nk) ⊂ B(xnk , ε) ⊂ U, a
contradiction. �

THEOREM. A metric space is compact if and only if it is sequentially compact.

PROOF. (⇒) Let {xn}n∈Z+ be a sequence in a compact metric space X. Sup-
pose that this sequence has no convergent subsequence. This implies that for any
point x ∈ X there is an open neighborhood Ux of x and Nx ∈ Z+ such that if
n ≥ Nx then xn /∈ Ux. Because the collection {Ux | x ∈ X} covers X, it has a finite
subcover {Uxk | 1 ≤ k ≤ m}. Let N = max{Nxk | 1 ≤ k ≤ m}. If n ≥ N then
xn /∈ Uxk for all k, a contradiction.

(⇐) First we show that for any ε > 0 the space X can be covered by finitely
many balls of radii ε (a property called total boundedness or pre-compact (tiền com-
pắc)). Suppose the contrary. Let x1 ∈ X, and inductively let xn+1 /∈ ⋃1≤i≤n B(xi, ε).
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38 GENERAL TOPOLOGY

Since d(xm, xn) ≥ ε if m 6= n, the sequence (xn)n≥1 cannot have any convergent
subsequence, a contradiction.

Now let O be any open cover of X. By 6.3 there is a corresponding Lebesgue’s
number ε such that a ball of radius ε is contained in an element of O. The space X
is covered by finitely many balls of radii ε. The collection of finitely many corre-
sponding elements of O covers X. Thus O has a finite subcover. �

The above theorem shows that compactness in metric space as defined in pre-
vious courses agrees with compactness in topological spaces. We inherit all results
obtained previously on compactness in metric spaces.

In particular we have the following results, which were proved using sequen-
tial compactness (it should be helpful to review the previous proofs).

PROPOSITION. If a subspace of a metric space is compact then it is closed and bounded.

PROOF. We give a proof using compactness. Suppose that X is a metric space
and suppose that Y is a compact subspace of X. Let x ∈ Y. Consider the open
cover of Y by balls centered at x, that is, {B(x, r} | r > 0}. Since there is a finite
subcover, there is an r > 0 such that Y ⊂ B(x, r), thus Y is bounded. That Y is
closed in X follows from 6.1. �

The following result is well-known from previous courses, we include it here
for convenience, with a proof using open covering compactness.

THEOREM (Heine-Borel). A subspace of the Euclidean space Rn is compact if and
only if it is closed and bounded.

PROOF. It is sufficient to prove that the unit rectangle I = [0, 1]n is compact.
Suppose that O is an open cover of I. Suppose that no finite subset of O can cover I.
Divide each dimension of I by half, we get 2n subrectangles. Let I1 be one of these
rectangles that cannot be covered by a finite subset of O. Inductively, divide Ik to
2n equal subrectangles and let Ik+1 be a subrectangle that is not covered by a finite
subset of O. We have a family of descending rectangles (Ik)k∈Z+ . The dimension
of Ik is 1/2k, going to 0 as k goes to infinity.

We claim that the intersection of this family is non-empty. Let Ik = ∏n
i=1[a

i
k, bi

k].
For each i, the sequence {ak

i }k∈Z+ is increasing and is bounded from above. Let
xi = limk→∞ ai

k = sup{ai
k | k ∈ Z+}. Then ai

k ≤ xi ≤ bi
k for all k ≥ 1. Thus the

point x = (xi)1≤i≤n is in the intersection of (Ik)k∈Z+ .
There is U ∈ O that contains x. There is a number ε > 0 such that B(x, ε) ⊂ U.

Then for k sufficiently large Ik ⊂ B(x, ε) ⊂ U. This is a contradiction. �

In general topological spaces compactness and sequentially compactness are
different notions, none implies the other. An example of a compact space which is
not sequentially compact can be constructed based on the spaces in problem 5.21.
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6. COMPACT SPACE 39

Compactification. A compactification (compắc hóa) of a space X is a compact
space Y such that X is homeomorphic to a dense subspace of Y.

EXAMPLE. A compactification of the Euclidean interval (0, 1) is the Euclidean
interval [0, 1]. Another is the circle S1. Yet another is the Topologist’s sine curve
{(x, sin 1

x ) | 0 < x ≤ 1} ∪ {(0, y) | − 1 ≤ y ≤ 1} (see 4.4).

EXAMPLE. A compactification of the Euclidean plane R2 is the sphere S2.
When R2 is identified with the complex plane C then S2 is often called the Rie-
mann sphere.

In some cases it is possible to compactify a non-compact space by adding just
one point, obtaining a one-point compactification. For example the Euclidean inter-
val [0, 1] is a one-point compactification of the Euclidean interval [0, 1).

Let X be a non-empty space. Since the set P(X) of all subsets of X cannot
be contained in X there is an element of P(X) that is not in X. Let us denote that
element by ∞, and let X∞ = X ∪ {∞}. Let us see what a topology on X∞ should be
in order for X∞ to contain X as a subspace and to be compact. If an open subset U
of X∞ does not contain ∞ then U is contained in X, therefore U is an open subset
of X in the subspace topology of X, which is the same as the original topology of
X. If U contains ∞ then its complement X∞ \U must be a closed subset of X∞,
hence is compact, furthermore X∞ \U is contained in X and is therefore a closed
subset of X.

THEOREM (Alexandroff compactification). The collection consisting of all open
subsets of X and all complements in X∞ of closed compact subsets of X is the finest topol-
ogy on X∞ such that X∞ is compact and contains X as a subspace. If X is not compact
then X is dense in X∞, and X∞ is called the Alexandroff compactification of X.6

PROOF. We go through several steps.

(a) We check that we really have a topology.
Let I be a collection of closed compact sets in X. Then

⋃
C∈I(X∞ \

C) = X∞ \⋂C∈I C, where
⋂

C∈I C is closed compact.
If O is open in X and C is closed compact in X then O ∪ (X∞ \ C) =

X∞ \ (C \O), where C \O is a closed and compact subset of X.
Also O ∩ (X∞ \ C) = O ∩ (X \ C) is open in X.
If C1 and C2 are closed compact in X then (X∞ \ C1) ∩ (X∞ \ C2) =

X∞ \ (C1 ∪ C2), where C1 ∪ C2 is closed compact.
So we do have a topology. With this topology X is a subspace of X∞.

(b) We show that X∞ is compact. Let F be an open cover of X∞. Then an
element O ∈ F will cover ∞. The complement of O in X∞ is a closed
compact set C in X. Then F \ {O} is an open cover of C. From this cover

6Proved in the early 1920s by Pavel Sergeyevich Alexandrov. Alexandroff is another way to spell his
name.
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40 GENERAL TOPOLOGY

there is a finite cover. This finite cover together with O is a finite cover of
X∞.

(c) Since X is not compact and X∞ is compact, X cannot be closed in X∞,
therefore the closure of X in X∞ is X∞.

�

A space X is called locally compact if every point has a compact neighborhood.

EXAMPLE. The Euclidean space Rn is locally compact.

PROPOSITION. The Alexandroff compactification of a locally compact Hausdorff space
is Hausdorff.

PROOF. Suppose that X is locally compact and is Hausdorff. We check that
∞ and x ∈ X can be separated by open sets. Since X is locally compact there is a
compact set C containing an open neighborhood O of x. Since X is Hausdorff, C
is closed in X. Then X∞ \ C is open in the Alexandroff compactification X∞. So O
and X∞ \ C separate x and ∞. �

The need for the locally compact assumption is discussed in 6.26.

PROPOSITION. If X is homeomorphic to Y then a Hausdorff one-point compactifica-
tion of X is homeomorphic to a Hausdorff one-point compactification of Y.

In particular, Hausdorff one-point compactification is unique up to homeo-
morphisms. For this reason we can talk about the one-point compactification of a
locally compact Hausdorff space.

PROOF. Suppose that h : X → Y is a homeomorphism. Let X ∪ {a} and Y ∪
{b} be Hausdorff one-point compactifications of X and Y. Let h̃ : X ∪ {a} →
Y ∪ {b} be defined by h̃(x) = h(x) if x 6= a and h̃(a) = b. We show that h̃ is
a homeomorphism. We will prove that h̃ is continuous, that the inverse map is
continuous is similar, or we can use 6.10 instead.

Let U be an open subset of Y ∪ {b}. If U does not contain b then U is open
in Y, so h−1(U) is open in X, and so is open in X ∪ {a}. If U contains b then
(Y ∪ {b}) \U is closed in Y ∪ {b}, which is compact, so (Y ∪ {b}) \U = Y \U is
compact. Then h̃−1((Y ∪ {b}) \U) = h−1(Y \U) is a compact subspace of X and
therefore of X ∪ {a}. Since X ∪ {a} is a Hausdorff space, h̃−1((Y ∪ {b}) \ U) is
closed in X ∪ {a}. Thus h̃−1(U) must be open in X ∪ {a}. �

EXAMPLE. The Euclidean line R is homeomorphic to the circle S1 minus a
point. The circle is of course a Hausdorff one-point compactification of the circle
minus a point. Thus a Hausdorff one-point compactification (in particular, the
Alexandroff compactification) of the Euclidean line is homeomorphic to the circle.
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6. COMPACT SPACE 41

Problems.

6.4. Any discrete compact topological space is finite.

6.5. In a topological space a finite unions of compact subsets is compact.

6.6. In a Hausdorff space an intersection of compact subsets is compact.

6.7 (extension of Cantor lemma in Calculus). Let X be compact and X ⊃ A1 ⊃ A2 ⊃
· · · ⊃ An ⊃ . . . be a descending sequence of closed, non-empty sets. Then

⋂∞
n=1 An 6= ∅.

(This is a special case of 6.2.)

6.8 (extreme value theorem). If X is a compact space and f : X → (R, Euclidean) is
continuous then f has a maximum value and a minimum value.

6.9 (uniformly continuous). A function f from a metric space to a metric space is uni-
formly continuous if for any ε > 0, there is δ > 0 such that if d(x, y) < δ then d( f (x), f (y)) <
ε. Show that a continuous function from a compact metric space to a metric space is uni-
formly continuous.

6.10.
√

If X is compact, Y is Hausdorff, f : X → Y is bijective and continuous, then f
is a homeomorphism.

6.11. In a compact space any infinite set has a limit point.

6.12. In a Hausdorff space a point and a disjoint compact set can be separated by open
sets.

6.13. In a regular space a closed set and a disjoint compact set can be separated by open
sets.

6.14. In a Hausdorff space two disjoint compact sets can be separated by open sets.

6.15.
√

Any compact Hausdorff space is normal.

6.16. Prove 6.2.

6.17. Prove the existence of Lebesgue’s number 6.3 by using open coverings.

6.18. Find the one-point compactification of (0, 1)∪ (2, 3) with the Euclidean topology,
that is, describe this space more concretely.

6.19. Find the one-point compactification of { 1
n | n ∈ Z+} under the Euclidean topol-

ogy?

6.20. Find the one-point compactification of Z+ under the Euclidean topology? How
about Z?

6.21. Show that Q is not locally compact (under the Euclidean topology of R). Is its
Alexandroff compactification Hausdorff?

6.22. What is the one-point compactification of the Euclidean open ball B(0, 1)? Find
the one-point compactification of the Euclidean space Rn.

6.23. What is the one-point compactification of the Euclidean annulus {(x, y) ∈ R2 | 1 <

x2 + y2 < 2}?
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42 GENERAL TOPOLOGY

6.24. Define a topology on R∪{±∞} such that it is a compactification of the Euclidean
R.

6.25. Consider R with the Euclidean topology. Find a necessary and sufficient condi-
tion for a continuous function from R to R to have an extension to a continuous function
from the one-point compactification R∪ {∞} to R.

6.26. If there is a topology on the set X∞ = X∪ {∞} such that it is compact, Hausdorff,
and containing X as a subspace, then X must be Hausdorff, locally compact, and there is
only one such topology – the topology of the Alexandroff compactification.

6.27. We could have noticed that the notion of local compactness as we have defined
is not apparently a local property. For a property to be local, every neighborhood of any
point must contain a neighborhood of that point with the given property (as in the cases of
local connectedness and local path-connectedness). Show that for Hausdorff spaces local
compactness is indeed a local property, i.e., every neighborhood of any point contains a
compact neighborhood of that point.

6.28. Any locally compact Hausdorff space is a regular space.

6.29. In a locally compact Hausdorff space, if K is compact, U is open, and K ⊂ U, then
there is an open set V such that V is compact and K ⊂ V ⊂ V ⊂ U. (Compare with 5.2.)

6.30. A space is locally compact Hausdorff if and only if it is homeomorphic to an open
subspace of a compact Hausdorff space.

6.31. * Let X be a compact Hausdorff space. Let X1 ⊃ X2 ⊃ · · · be a nested sequence
of closed connected subsets of X. Show that Y =

⋂∞
i=1 Xi is connected.

Is the statement correct if connected is replaced by path-connected?

6.32. The set of n× n-matrix with real coefficients, denoted by M(n, R), could be nat-
urally considered as a subset of the Euclidean space Rn2

by considering entries of a matrix
as coordinates, via the map

(ai,j) 7−→ (a1,1, a2,1, . . . , an,1, a1,2, a2,2, . . . , an,2, a1,3, . . . , an−1,n, an,n).

Let GL(n, R) be the set of all invertible n× n-matrices with real coefficients.

(a) Show that taking product of two matrices is a continuous map on GL(n, R).
(b) Show that taking inverse of a matrix is a continuous map GL(n, R).
(c) A set with both a group structure and a topology such that the group operations

are continuous is called a topological group. Show that GL(n, R) is a topological
group. It is called the General Linear Group.

6.33. * The Orthogonal Group O(n) is defined to be the group of matrices representing
orthogonal linear maps of Rn, that is, linear maps that preserve inner product. Thus

O(n) = {A ∈ M(n, R)| A · AT = In}.

The Special Orthogonal Group SO(n) is the subgroup of O(n) consisting of all orthogonal
matrices with determinant 1.

(a) Show that any element of SO(2) is of the form

R(ϕ) =

(
cos ϕ − sin ϕ

sin ϕ cos ϕ

)
.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


6. COMPACT SPACE 43

This is a rotation in the plane around the origin with an angle ϕ. Thus SO(2) is
the group of rotations on the plane around the origin.

(b) Show that SO(2) is path-connected.
(c) How many connected components does O(2) have?
(d) Is SO(n) compact?
(e) It is known [F. Gantmacher, Theory of matrices, vol. 1, Chelsea, 1959, p. 285], that

for any matrix A ∈ O(n) there is a matrix P ∈ O(n) such that A = PBP−1 where
B is a matrix of the form

R(ϕ1)

. . .

R(ϕk)

1
. . .

1


.

Using this fact, prove that SO(n) is path-connected.
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44 GENERAL TOPOLOGY

7. Product of spaces

Finite products of spaces. Let X and Y be two topological spaces, and con-
sider the Cartesian product X × Y. The product topology on X × Y is the topology
generated by the collection F of sets of the form U × V where U is an open set of
X and V is an open set of Y. Since the intersection of two members of F is also a
member of F, the collection F is a basis for the product topology. Thus every open
set in the product topology is a union of products of open sets of X with open sets
of Y.

REMARK. Notice a common error: to assume that an aribitrary open set in the
product topology is a product U ×V.

The product topology on ∏n
i=1(Xi, τi) is defined similarly to be the topology

generated by the collection {∏n
i=1 Ui | Ui ∈ τi}.

PROPOSITION. If each bi is a basis for Xi then {∏n
i=1 Ui | Ui ∈ bi} is a basis for the

product topology on ∏n
i=1 Xi.

PROOF. Consider an element in the above basis of the product topology, which
is of the form ∏n

i=1 Vi where Vi ∈ τi. Each Vi can be written Vi =
⋃

ij∈Ii
Uij , where

Uij ∈ bi. Then
n

∏
i=1

Vi =
⋃

ij∈Ii ,1≤i≤n

n

∏
i=1

Uij .

This proves our assertion. �

EXAMPLE (Euclidean topology). Recall that Rn = R×R× · · · ×R︸ ︷︷ ︸
n copies of R

. Let R

have Euclidean topology, generated by open intervals. An open set in the product
topology of Rn is a union of products of open intervals. Since a product of open
intervals is an open rectangle, and an open rectangle is a union of open balls and
vice versa, the product topology on Rn is exactly the Euclidean topology.

Arbitrary products of spaces.

DEFINITION. Let {(Xi, τi)}i∈I be a family of topological spaces. The product
topology on the set ∏i∈I Xi is the topology generated by the collection F consisting
of all sets of the form ∏i∈I Ui, where Ui ∈ τi and Ui = Xi for all except finitely
many i ∈ I. In symbols:

F = {∏
i∈I

Ui | Ui ∈ τi, ∃Ji ⊂ τi, |Ji| < ∞, ∀i ∈ I \ Ji, Ui = Xi}.

Notice that the collection F above is a basis of the product topology. The sub-
collection of all sets of the form ∏i∈I Ui, where Ui ∈ τi and Ui = Xi for all except
one i ∈ I is a subbasis for the product topology.

Recall that an element of the set ∏i∈I Xi is written (xi)i∈I . For j ∈ I the projec-
tion to the j-coordinate is defined by pj : ∏i∈I Xi → Xj, pj((xi)) = xj.

The definition of the product topology is explained in the following:
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7. PRODUCT OF SPACES 45

THEOREM 7.1 (product topology is the topology such that projections are con-
tinuous). The product topology is the coarsest topology on ∏i∈I Xi such that all the projec-
tion maps pi are continuous. In other words, the product topology is the topology generated
by the projection maps.

PROOF. Notice that if Oj ∈ Xj then p−1
j (Oj) = ∏i∈I Ui with Ui = Xi for all i

except j, and Uj = Oj. The topology generated by all the maps pi is the topology
generated by all sets of the form p−1

i (Oi) with Oi ∈ τi, see 3.8. �

THEOREM 7.2 (map to a product space is continuous if and only if each com-
ponent map is continuous). A map f : Y → ∏i∈I Xi is continuous if and only if each
component fi = pi ◦ f is continuous.

PROOF. If f : Y → ∏i∈I Xi is continuous then pi ◦ f is continuous because pi

is continuous.
On the other hand, let us assume that every fi is continuous. Let U = ∏i∈I Ui

– an element of the basis of ∏i∈I Xi – where Ui ∈ τi and ∃J ⊂ I such that I \ J is
finite and Ui = Xi, ∀i ∈ J. Then

f−1(U) =
⋂
i∈I

f−1
i (Ui) =

⋂
i∈I\J

f−1
i (Ui),

which is an open set. So f is continuous. �

THEOREM 7.3 (convergence in product topology is coordinate-wise conver-
gence). A net n : J → ∏i∈I Xi is convergent if and only if all of its projections pi ◦ n are
convergent.

PROOF. (⇐) Suppose that each pi ◦ n is convergent to ai, we show that n is
convergent to a = (ai)i∈I .

A neighborhood of a contains an open set of the form U = ∏i∈I Oi with Oi are
open sets of Xi and Oi = Xi except for i ∈ K, where K is a finite subset of I.

For each i ∈ K, pi ◦ n is convergent to ai, therefore there exists an index ji ∈ J
such that for j ≥ ji we have pi(n(j)) ∈ Oi. Take an index j0 such that j0 ≥ ji for all
i ∈ K. Then for j ≥ j0 we have n(j) ∈ U. �

Tikhonov theorem.

THEOREM (Tikhonov theorem). The product of any family of compact spaces is
compact. More concisely, if Xi is compact for all i ∈ I then ∏i∈I Xi is compact.7

EXAMPLE. Let [0, 1] have the Euclidean topology. The space ∏i∈Z+ [0, 1] is
called the Hilbert cube. By Tikhonov theorem the Hilbert cube is compact.

Applications of Tikhonov theorem include the Banach-Alaoglu theorem in
Functional Analysis and the Stone-Cech compactification.

7Proved by Andrei Nicolaievich Tikhonov around 1926. The product topology was defined by him.
His name is also spelled as Tychonoff.
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46 GENERAL TOPOLOGY

Tikhonov theorem is equivalent to the Axiom of choice. The proofs we have
are rather difficult. However in the case of finite product it can be proved more
easily (7.18). Different techniques can be used in special cases of this theorem (7.21
and 7.8).

PROOF OF TIKHONOV THEOREM. Let Xi be compact for all i ∈ I. We will
show that X = ∏i∈I Xi is compact by showing that if a collection of closed subsets
of X has the finite intersection property then it has non-empty intersection (see
6.2).8

Let F be a collection of closed subsets of X that has the finite intersection prop-
erty. We will show that

⋂
A∈F A 6= ∅.

Have a look at the following argument, which suggests that proving the Tikhonov
theorem might not be easy. If we take the closures of the projections of the collec-
tion F to the i-coordinate then we get a collection {pi(A), A ∈ F} of closed subsets
of Xi having the finite intersection property. Since Xi is compact, this collection
has non-empty intersection. From this it is tempting to conclude that F must have
non-empty intersection itself. But that is not true, see the figure.

In what follows we will overcome this difficulty by first enlarging the collec-
tion F.

(a) We show that there is a maximal collection F̃ of subsets of X such that F̃
contains F and still has the finite intersection property. We will use Zorn
lemma for this purpose.9

Let K be the collection of collections G of subsets of X such that G
contains F and has the finite intersection property. On K we define an
order by the usual set inclusion.

Now suppose that L is a totally ordered subcollection of K. Let H =⋃
G∈L G. We will show that H ∈ K, therefore H is an upper bound of L.

First H contains F. We need to show that H has the finite intersection
property. Suppose that Hi ∈ H, 1 ≤ i ≤ n. Then Hi ∈ Gi for some Gi ∈ L.
Since L is totally ordered, there is an i0, 1 ≤ i0 ≤ n such that Gi0 contains
all Gi, 1 ≤ i ≤ n. Then Hi ∈ Gi0 for all 1 ≤ i ≤ n, and since Gi0 has the
finite intersection property, we have

⋂n
i=1 Hi 6= ∅.

8A proof based on open covers is also possible, see [Kel55, p. 143].
9This is a routine step; it might be easier for the reader to carry it out instead of reading.
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7. PRODUCT OF SPACES 47

(b) Since F̃ is maximal, it is closed under finite intersection. Moreover if a
subset of X has non-empty intersection with every element of F̃ then it
belongs to F̃.

(c) Since F̃ has the finite intersection property, for each i ∈ I the collection
{pi(A) | A ∈ F̃} also has the finite intersection property, and so does the
collection {pi(A) | A ∈ F̃}. Since Xi is compact,

⋂
A∈F̃ pi(A) is non-empty.

(d) Let xi ∈
⋂

A∈F̃ pi(A) and let x = (xi)i∈I ∈ ∏i∈I [
⋂

A∈F̃ pi(A)]. We will
show that x ∈ A for all A ∈ F̃, in particular x ∈ A for all A ∈ F.

We need to show that any neighborhood of x has non-empty intersec-
tion with every A ∈ F̃. It is sufficient to prove this for neighborhoods of x
belonging to the basis of X, namely finite intersections of sets of the form
p−1

i (Oi) where Oi is an open neighborhood of xi = pi(x). For any A ∈ F̃,
since xi ∈ pi(A) we have Oi ∩ pi(A) 6= ∅. Therefore p−1

i (Oi)∩ A 6= ∅. By
the maximality of F̃ we have p−1

i (Oi) ∈ F̃, and the desired result follows.

�

Stone-Cech compactification. Let X be a topological space. Denote by
C(X) the set of all bounded continuous functions from X to R where R has the
Euclidean topology. By Tikhonov theorem the space ∏ f∈C(X)[inf f , sup f ] is com-
pact. Define

Φ : X → ∏
f∈C(X)

[inf f , sup f ]

x 7→ ( f (x)) f∈C(X).

Thus for each x ∈ X and each f ∈ C(X), the f -coordinate of the point Φ(x) is
Φ(x) f = f (x). This means the f -component of Φ is f , i.e. p f ◦Φ = f , where p f is
the projection to the f -coordinate.

Notice that the closure Φ(X) is compact.

THEOREM 7.4. If X is completely regular then Φ : X → Φ(X) is a homeomorphism,
i.e. Φ is an embedding. In this case Φ(X) is called the Stone-Cech compactification of X.
It is a Hausdorff space.

Here, a space is said to be completely regular (also called a T3 1
2
-space) if it is a

T1-space and for each point x and each closed set A with x /∈ A there is a map
f ∈ C(X) such that f (x) = a and f (A) = {b} where a 6= b. Thus in a com-
pletely regular space a point and a closed set disjoint from it can be separated by
a continuous real function.

PROOF. We go through several steps.

(a) Φ is injective: If x 6= y then since X is completely regular there is f ∈ C(X)

such that f (x) 6= f (y), therefore Φ(x) 6= Φ(y).
(b) Φ is continuous: Since the f -component of Φ is f , which is continuous,

the result follows from 7.2.
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48 GENERAL TOPOLOGY

(c) Φ−1 is continuous: We prove that Φ brings an open set onto an open
set. Let U be an open subset of X and let x ∈ U. There is a function
f ∈ C(X) that separates x and X \ U. In particular there is an inter-
val (a, b) containing f (x) such that f−1((a, b)) ∩ (X \U) = ∅. We have
f−1((a, b)) = (p f ◦ Φ)−1((a, b)) = Φ−1(p−1

f ((a, b))) ⊂ U. Apply Φ to

both sides, we get p−1
f ((a, b)) ∩Φ(X) ⊂ Φ(U). Since p−1

f ((a, b)) ∩Φ(X)

is an open set in Φ(X) containing Φ(x), we see that Φ(x) is an interior
point of Φ(U). We conclude that Φ(U) is open.

That Φ(X) is a Hausdorff space follows from that Y is a Hausdorff space, by 7.15,
and 5.9. �

THEOREM. A bounded continuous real function on a completely regular space has a
unique extension to the Stone-Cech compactification of the space.

More concisely, if X is a completely regular space and f ∈ C(X) then there is a unique
function f̃ ∈ C(Φ(X)) such that f = f̃ ◦Φ.

X
Φ //

f
��

Φ(X)

f̃}}
R

PROOF. A continuous extension of f , if exists, is unique, by 5.20.
Since p f ◦Φ = f the obvious choice for f̃ is the projection p f . �

Problems.

7.5. Note that, as sets:

(a) (A× B) ∩ (C× D) = (A ∩ C)× (B ∩ D).
(b) (A× B)∪ (C×D)  (A∪C)× (B∪D) = (A× B)∪ (A×D)∪ (C× B)∪ (C×D).

7.6. Check that in topological sense (i.e. up to homeomorphisms):

(a) R3 = R2 ×R = R×R×R.
(b) More generally, is the product associative? Namely, is (X × Y)× Z = X × (Y ×

Z)? Is (X×Y)× Z = X×Y× Z?

7.7. Show that the sphere S2 with the North Pole and the South Pole removed is home-
omorphic to the infinite cylinder S1 ×R.

7.8. Let (Xi, di), 1 ≤ i ≤ n be metric spaces. Let X = ∏n
i=1 Xi. For x = (x1, x2, . . . , xn) ∈

X and y = (y1, y2, . . . , yn) ∈ X, define

δ1(x, y) = max{di(xi, yi) | 1 ≤ i ≤ n},

δ2(x, y) =

(
n

∑
i=1

di(xi, yi)
2

)1/2

.

Show that δ1 and δ2 are metrics on X generating the product topology.

7.9. Show that a space X is Hausdorff if and only if the diagonal ∆ = {(x, x) ∈ X×X}
is closed in X× X, by:
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7. PRODUCT OF SPACES 49

(a) using nets,
(b) not using nets.

7.10. Show that if Y is Hausdorff and f : X → Y is continuous then the graph of f (the
set {(x, f (x)) | x ∈ X}) is closed in X×Y.

7.11. If for each i ∈ I the space Xi is homeomorphic to the space Yi then ∏i∈I Xi is
homeomorphic to ∏i∈I Yi.

7.12. Show that each projection map pi is a an open map, mapping an open set onto an
open set. Is it a closed map?

7.13 (disjoint union).
√

Let A and B be topological spaces. On the set (A × {0}) ∪
(B × {1}) consider the topology generated by subsets of the form U × {0} and V × {1}
where U is open in A and V is open in B. Show that A × {0} is homeomorphic to A,
while B× {1} is homeomorphic to B. Notice that (A× {0}) ∩ (B× {1}) = ∅. The space
(A × {0}) ∪ (B × {1}) is called the disjoint union (hội rời) of A and B, denoted by A t B.
We use this construction when for example we want to consider a space consisting of two
disjoint circles.

7.14.
√

Fix a point O = (Oi) ∈ ∏i∈I Xi. Define the inclusion map f : Xi → ∏i∈I Xi by

x 7→ f (x) with f (x)j =

Oj if j 6= i

x if j = i
.

Show that f is a homeomorphism onto its image X̃i (an embedding of Xi). Thus X̃i is a
copy of Xi in ∏i∈I Xi. The spaces X̃i have O as the common point. This is an analog of the
coordinate system Oxy on R2.

7.15. Show that

(a) If each Xi, i ∈ I is a Hausdorff space then ∏i∈I Xi is a Hausdorff space.
(b) If ∏i∈I Xi is a Hausdorff space then each Xi is a Hausdorff space.

7.16. Show that

(a) If ∏i∈I Xi is path-connected then each Xi is path-connected.
(b) If each Xi, i ∈ I is path-connected then ∏i∈I Xi is path-connected.

7.17. Show that

(a) If ∏i∈I Xi is connected then each Xi is connected.
(b) If X and Y are connected then X×Y is connected.
(c) * If each Xi, i ∈ I is connected then ∏i∈I Xi is connected.

7.18. Show that

(a) If ∏i∈I Xi is compact then each Xi is compact.
(b) * If X and Y are compact then X × Y is compact (of course without using the

Tikhonov theorem).

7.19. Let X be a normed space over a field F which is R or C. Check that the addition
(x, y) 7→ x + y is a continuous map from the product space X × X to X, while the scalar
multiplication (c, x) 7→ c · x is a continuous map from F× X to X. This is an example of a
topological vector space, and is a special case of topological groups (see 6.32).
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50 GENERAL TOPOLOGY

7.20 (Zariski topology). * Let F = R or F = C.
A polynomial in n variables on F is a function from Fn to F that is a finite sum of terms

of the form axm1
1 xm2

2 · · · x
mn
n , where a, xi ∈ F and mi ∈N. Let P be the set of all polynomials

in n variables on F.
If S ⊂ P then define Z(S) to be the set of all common zeros of all polynomials in S, thus

Z(S) = {x ∈ Fn | ∀p ∈ S, p(x) = 0}. Such a set is called an algebraic set.

(a) Show that if we define that a subset of Fn is closed if it is algebraic, then this gives
a topology on Fn, called the Zariski topology.

(b) Show that the Zariski topology on F is exactly the finite complement topology.
(c) Show that if both F and Fn have the Zariski topology then all polynomials on Fn

are continuous.
(d) Is the Zariski topology on Fn the product topology?

The Zariski topology is used in Algebraic Geometry.

7.21. Using the characterization of compact subsets of Euclidean spaces, prove the
Tikhonov theorem for finite products of compact subsets of Euclidean spaces.

Using the characterization of compact metric spaces in terms of sequences, prove the
Tikhonov theorem for finite products of compact metric spaces.

7.22. Any completely regular space is a regular space.

7.23. Prove 7.4 using nets.

7.24. A space is completely regular if and only if it is homeomorphic to a subspace of a
compact Hausdorff space. As a corollary, a locally compact Hausdorff space is completely
regular.

By 7.24 if a space has a Hausdorff Alexandroff compactification then it also has a Haus-
dorff Stone-Cech compactification. In a certain sense, for a noncompact space the Alexan-
droff compactification is the “smallest” Hausdorff compactification of the space and the
Stone-Cech compactification is the “largest” one. For more discussions on this topic see for
instance [Mun00, p. 237].
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8. REAL FUNCTIONS AND SPACES OF FUNCTIONS 51

8. Real functions and Spaces of functions

In this section the set R is assumed to have the Euclidean topology.

Urysohn lemma.

THEOREM 8.1 (Urysohn lemma). If X is normal, F is closed, U is open, and F ⊂ U,
then there exists a continuous map f : X → [0, 1] such that f (x) = 0 on F and f (x) = 1
on X \U.

Equivalently, if X is normal, A and B are two disjoint closed subsets of X, then there
is a continuous function f from X to [0, 1] such that f (x) = 0 on A and f (x) = 1 on B.

Thus in a normal space two disjoint closed subsets can be separated by a con-
tinuous real function.

EXAMPLE. For metric space we can take

f (x) =
d(x, A)

d(x, A) + d(x, B)
.

PROOF OF URYSOHN LEMMA. The proof goes through the following steps:

(a) Construct a family of open sets in the following manner (recalling 5.2):
Let U1 = U.

n = 0: F ⊂ U0 ⊂ U0 ⊂ U1.
n = 1: U0 ⊂ U 1

2
⊂ U 1

2
⊂ U1.

n = 2: U0 ⊂ U 1
4
⊂ U 1

4
⊂ U 2

4
= U 1

2
⊂ U 2

4
⊂ U 3

4
⊂ U 3

4
⊂ U 4

4
= U1.

Inductively,

F ⊂ U0 ⊂ U0 ⊂ U 1
2n
⊂ U 1

2n
⊂ U 2

2n
⊂ U 2

2n
⊂ U 3

2n
⊂ U 3

2n
⊂ · · · ⊂

⊂ U 2n−1
2n
⊂ U 2n−1

2n
⊂ U 2n

2n
= U1.

(b) Let I = { m
2n | m, n ∈ N; 0 ≤ m ≤ 2n}. We have a family of open sets

{Ur | r ∈ I} having the property r < s ⇒ Ur ⊂ Us. We can check that I
is dense in [0, 1] (this is really the same thing as that any real number in
[0, 1] can be written in binary form, compare 1.14).

(c) Define f : X → [0, 1],

f (x) =

inf{r ∈ I | x ∈ Ur} if x ∈ U,

1 if x /∈ U.

In this way if x ∈ Ur then f (x) ≤ r, while if x /∈ Ur then f (x) ≥ r. So f (x)
gives the “level” of x on the scale from 0 to 1, while Ur is like a sublevel
set of f .

We prove that f is continuous, so f is the function we are looking for.
It is enough to prove that sets of the form {x | f (x) < a} and {x | f (x) >
a} are open.

(d) If a ≤ 1 then f (x) < a if and only if there is r ∈ I such that r < a and
x ∈ Ur. Thus {x | f (x) < a} = {x ∈ Ur | r < a} = ⋃

r<a Ur is open.
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52 GENERAL TOPOLOGY

F U0 Ur

Us U1 = U

fx

0 1r f (x) s

(e) If a < 1 then f (x) > a if and only if there is r ∈ I such that r > a and
x /∈ Ur. Thus {x | f (x) > a} = {x ∈ X \Ur | r > a} = ⋃

r>a X \Ur.
Now we show that

⋃
r>a X \ Ur =

⋃
r>a X \ Ur, which implies that⋃

r>a X \Ur is open. Indeed, if r ∈ I and r > a then there is s ∈ I such
that r > s > a. Then Us ⊂ Ur, therefore X \Ur ⊂ X \Us.

�

Partition of unity. An important application of the Urysohn lemma is the ex-
istence of partion of unity (phân hoạch đơn vị).

If f : X → R then the support of f , denoted by supp( f ) is defined to be the
closure of the subset {x ∈ X | f (x) 6= 0}.

THEOREM 8.2 (partition of unity). Let X be a a normal space. Suppose that X has
a finite open cover O. Then there is a collection of continuous maps ( fU : X → [0, 1])U∈O

such that supp( fU) ⊂ U and for every x ∈ X we have ∑U∈O fU(x) = 1.

PROOF. From problem 5.14, there is an open cover (U′′U)U∈O of X such that
for each U ∈ O there is an open U′U satisfying U′′U ⊂ U′′U ⊂ U′U ⊂ U′u ⊂ U. By
Urysohn lemma there is a continuous map ϕU : X → [0, 1] such that ϕU |U′′U = 1

and ϕU |X\U′U = 0. This implies supp(ϕU) ⊂ U′u ⊂ U. For each x ∈ X there is
U ∈ O such that U′′U contains x, therefore ϕU(x) = 1. Let

fU =
ϕU

∑U∈O ϕU
.

�

Partition of unity allows us to extend some local properties to global ones, by
“patching” neighborhoods. It is needed for such important results as the existence
of a Riemannian metric on a manifold or the definition of integration on manifolds.

The compact-open topology. Let X and Y be two topological spaces. We
say that a net ( fi)i∈I of functions from X to Y converges point-wise to a function
f : X → Y if for each x ∈ X the net ( fi(x))i∈I converges to f (x).
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8. REAL FUNCTIONS AND SPACES OF FUNCTIONS 53

Now let Y be a metric space. Recall that a function f : X → Y is said to be
bounded if the set of values f (X) is a bounded subset of Y. We consider the set
B(X, Y) of all bounded functions from X to Y. If f , g ∈ B(X, Y) then we define
a metric on B(X, Y) by d( f , g) = sup{d( f (x), g(x)) | x ∈ X}. The topology gen-
erated by this metric is called the topology of uniform convergence. If a net ( fi)i∈I

converges to f in the metric space B(X, Y) then we say that ( fi)i∈I converges to f
uniformly.

PROPOSITION. Suppose that ( fi)i∈I converges to f uniformly. Then:

(a) ( fi)i∈I converges to f point-wise.
(b) If each fi is continuous then f is continuous.

PROOF. The proof of the second statement is the same as the proof for metric
spaces. Suppose that each fi is continuous. Let x ∈ X, we prove that f is continu-
ous at x. The key step is the following inequality:

d( f (x), f (y)) ≤ d( f (x), fi(x)) + d( fi(x), fi(y)) + d( fi(y), f (y)).

Given ε > 0, fix an i ∈ I such that d( fi, f ) < ε. For this i, there is a neighborhood
U of x such that if y ∈ U then d( fi(x), fi(y)) < ε. The above inequality implies
that for y ∈ U we have d( f (x), f (y)) < 3ε. �

DEFINITION. Let X and Y be two topological spaces. Let C(X, Y) be the set
of all continuous functions from X to Y. The topology generated by all sets of the
form

S(A, U) = { f ∈ C(X, Y) | f (A) ⊂ U}

where A ⊂ X is compact and U ⊂ Y is open is called the compact-open topology on
C(X, Y).

PROPOSITION. If X is compact and Y is a metric space then on C(X, Y) the compact-
open topology is the same as the uniform convergence topology.

This says that the compact-open topology is a generalization of the uniform
convergence topology to topological spaces.

PROOF. Given f ∈ C(X, Y) and ε > 0, we show that the ball B( f , ε) ⊂ C(X, Y)
in the uniform metric contains an open neighborhood of f in the compact-open
topology. For each x ∈ X there is an open set Ux containing x such that f (Ux) ⊂
B( f (x), ε/3). Since X is compact, there are finitely many xi, 1 ≤ i ≤ n, such that⋃n

i=1 Uxi ⊃ X and f (Uxi ) ⊂ B( f (xi), ε/3). Then

f ∈
n⋂

i=1

S(Uxi , B( f (xi), ε/2)) ⊂ B( f , ε).

In the opposite direction, we need to show that every open neighborhood of
f in the compact-open topology contains a ball B( f , ε) in the uniform metric. It
is suffcient to show that for open neighborhood of f of the form S(A, U). For
each x ∈ A there is a ball B( f (x), εx) ⊂ U. Since f (A) is compact, there are
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x

f (x)

Ux
X

Y

B( f , ε)

FIGURE 8.3. Notice that f ∈ S(A, U) means graph( f |A) ⊂ A×U.

finitely many xi ∈ A and εi > 0, 1 ≤ i ≤ n, such that B( f (xi), εi) ⊂ U and⋃n
i=1 B( f (xi), εi/2) ⊃ f (A). Let ε = min{εi/2 | 1 ≤ i ≤ n}. Suppose that g ∈

B( f , ε). For each x ∈ A, there is an i such that f (x) ∈ B( f (xi), εi/2). Then

d(g(x), f (xi)) ≤ d(g(x), f (xi)) + d( f (xi), f (x)) < ε +
εi
2
≤ εi,

so g(x) ∈ U. Thus g ∈ S(A, U). �

Tiestze extension theorem. Below is another application of Urysohn lemma.

THEOREM (Tiestze extension theorem). Let X be a normal space. Let F be closed
in X. Let f : F → R be continuous. Then there is a continuous map g : X → R such that
g|F = f .

Thus in a normal space a continuous real function on a closed subspace can be ex-
tended continuously to the whole space.

PROOF. First consider the case where f is bounded.

(a) The general case can be reduced to the case when infF f = 0 and supF f =

1. We will restrict our attention to this case.
(b) By Urysohn lemma, there is a continuous function g1 : X → [0, 1

3 ] such
that

g1(x) =

0 if x ∈ f−1([0, 1
3 ])

1
3 if x ∈ f−1([ 2

3 , 1]).

Let f1 = f − g1. Then supX g1 = 1
3 , supF f1 = 2

3 , and infF f1 = 0.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


8. REAL FUNCTIONS AND SPACES OF FUNCTIONS 55

(c) Inductively, once we have a function fn : F → R, for a certain n ≥ 1 we
will obtain a function gn+1 : X → [0, 1

3
( 2

3
)n
] such that

gn+1(x) =

0 if x ∈ f−1
n ([0, 1

3
( 2

3
)n
])

1
3
( 2

3
)n

if x ∈ f−1
n ([

( 2
3
)n+1

,
( 2

3
)n
]).

Let fn+1 = fn − gn+1. Then supX gn+1 = 1
3
( 2

3
)n

, supF fn+1 =
( 2

3
)n+1

,
and infF fn+1 = 0.

(d) The series ∑∞
n=1 gn converges uniformly to a continuous function g.

(e) Since fn = f − ∑n
i=1 gi, the series ∑n

n=1 gn|F converges uniformly to f .
Therefore g|F = f .

(f) Note that with this construction infX g = 0 and supX g = 1.

Now consider the case when f is not bounded.

(a) Suppose that f is neither bounded from below nor bounded from above.
Let h be a homeomorphism from (−∞, ∞) to (0, 1). Then the range of f1 =

h ◦ f is a subset of (0, 1), therefore it can be extended as in the previous
case to a continuous function g1 such that infx∈X g1(x) = infx∈F f1(x) = 0
and supx∈X g1(x) = supx∈F f1(x) = 1.

If the range of g1 includes neither 0 nor 1 then g = h−1 ◦ g1 will be
the desired function.

It may happens that the range of g1 includes either 0 or 1. In this case
let C = g−1

1 ({0, 1}). Note that C ∩ F = ∅. By Urysohn lemma, there is
a continuous function k : X → [0, 1] such that k|C = 0 and k|F = 1. Let
g2 = kg1 + (1− k) 1

2 . Then g2|F = g1|F and the range of g2 is a subset
of (0, 1) (g2(x) is a certain convex combination of g1(x) and 1

2 ). Then
g = h−1 ◦ g2 will be the desired function.

(b) If f is bounded from below then similarly to the previous case we can use
a homeomorphism h : [a, ∞)→ [0, 1), and we let C = g−1

1 ({1}).
The case when f is bounded from above is similar.

�

Problems.

8.4. Show that a normal space is completely regular. So: normal⇒ completely regular
⇒ regular. In other words: T4 ⇒ T3 1

2
⇒ T3.

8.5. Show that a space is completely regular if and only if it is homeomorphic to a
subspace of a compact Hausdorff space. As a corollary, a locally compact Hausdorff space
is completely regular.

8.6. Prove the following version of Urysohn lemma, as stated in [Rud86]. Suppose that
X is a locally compact Hausdorff space, V is open in X, K ⊂ V, and K is compact. Then
there is a continuous function f : X → [0, 1] such that f (x) = 1 for x ∈ K and supp( f ) ⊂ V.

8.7. Show that the Tiestze extension theorem implies the Urysohn lemma.
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56 GENERAL TOPOLOGY

8.8. The Tiestze extension theorem is not true without the condition that the set F is
closed.

8.9. Show that the Tiestze extension theorem can be extended to maps to the space

∏i∈I R where R has the Euclidean topology.

8.10. Let X be a normal space and F be a closed subset of X. Then any continuous map
f : F → Sn can be extended to an open set containing F.

8.11 (point-wise convergence topology). Now we view a function from X to Y as an
element of the set YX = ∏x∈X Y. In this view a function f : X → Y is an element f ∈ YX ,
and for each x ∈ X the value f (x) is the x-coordinate of the element f .

(a) Let ( fi)i∈I be a net of functions from X to Y, i.e. a net of points in YX . Show that
( fi)i∈I converges to a function f : X → Y point-wise if and only if the net of points
( fi)i∈I converges to the point f in the product topology of YX .

(b) Define the point-wise convergence topology on the set YX of functions from X to Y
as the topology generated by sets of the form

S(x, U) = { f ∈ YX | f (x) ∈ U}

with x ∈ X and U ⊂ Y is open. Show that the point-wise convergence topology is
exactly the product topology on YX .

8.12. Let X and Y be two topological spaces. Let C(X, Y) be the set of all continu-
ous functions from X to Y. Show that if a net ( fi)i∈I converges to f in the compact-open
topology of C(X, Y) then it converges to f point-wise.

8.13 (continuity of functions of two variables). * Let Y, Z be topological spaces and let
X be a locally compact Hausdorff space. Recall that it is not true that a map on a product
space is continuous if it is continuous on each variable. Prove that a map

f : X× Z → Y

(x, t) 7→ f (x, t)

is continuous if and only if the map

ft : X → Y

x 7→ ft(x) = f (x, t)

is continuous for each t ∈ Z and the map

Z → C(X, Y)

t 7→ ft

is continuous with the compact-open topology on C(X, Y).

8.14 (Niemytzki space). * Let H = {(x, y) ∈ R2 | y ≥ 0} be the upper half-plane.
Equip H with the topology generated by the Euclidean open disks (i.e. open balls) in K =

{(x, y) ∈ R2| y > 0}, together with sets of the form {p} ∪ D where p is a point on the line
L = {(x, y) ∈ R2| y = 0} and D is an open disk in K tangent to L at p. This is called the
Niemytzki space.

(a) Check that this is a topological space.
(b) What is the subspace topology on L?
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8. REAL FUNCTIONS AND SPACES OF FUNCTIONS 57

(c) What are the closed sets in H?
(d) Show that H is Hausdorff.
(e) Show that H is regular.
(f) Show that H is not normal.
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58 GENERAL TOPOLOGY

9. Quotient space

We consider the operation of gluing parts of a space to form a new space. For
example when we glue the two endpoints of a line segment together we get a circle.

Mathematically speaking, gluing elements mean to let them be equivalent, to
identify them as one. For a set X and an equivalence relation ∼ on X, the quotient
set X/ ∼ is exactly what we need.

We also want the gluing to be continuous. That means when X is a topological
space we equip the quotient set X/ ∼ with a topology such that the gluing map
p : X → X/ ∼, x 7→ [x] is continuous. Namely, a subset U of X/ ∼ is open if
and only if the preimage p−1(U) is open in X (see 3.8). The set X/ ∼ with this
topology is called the quotient space of X by the equivalence relation.

In a special case, if A is a subspace of X then there is this equivalence relation
on X: x ∼ x if x ∈ X, and x ∼ y if x, y ∈ A. The quotient space X/ ∼ is often
written as X/A, and we can think of it as being obtained from X by collapsing the
whole subset A to one point.

PROPOSITION 9.1. Let Y be a topological space. A map f : X/ ∼→ Y is continuous
if and only if f ◦ p is continuous.

X
p
//

f ◦p ""

X/ ∼

f
��

Y

PROOF. The map f ◦ p is continuous if and only if for each open subset U
of Y, the set ( f ◦ p)−1(U) = p−1( f−1(U)) is open in X. The latter statement is
equivalent to that f−1(U) is open for every U, that is, f is continuous. �

The following result will provide us a tool for identifying quotient spaces:

THEOREM. Suppose that X is compact and ∼ is an equivalence relation on X. Sup-
pose that Y is Hausdorff, and f : X → Y is continuous and onto. Suppose that f (x1) =

f (x2) if and only if x1 ∼ x2. Then f induces a homeomorphism from X/ ∼ onto Y.

PROOF. Define h : X/ ∼→ Y by h([x]) = f (x). Then h is onto and is injective,
thus it is a bijection.

X
p
//

f ""

X/ ∼

h
��

Y
Notice that f = h ◦ p (in such a case people often say that the above diagram is
commutative, and that the map f can be factored). By 9.1 h is continuous. By 6.10,
h is a homeomorphism. �
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9. QUOTIENT SPACE 59

EXAMPLE (gluing the two end-points of a line segment gives a circle). More
precisely [0, 1]/0 ∼ 1 (see 9.24) is homeomorphic to S1:

[0, 1]
p
//

f
%%

[0, 1]/0 ∼ 1

h
��

S1

Here f is the map t 7→ (cos(2πt), sin(2πt)). The map f is continuous, onto, and
it fails to be injective only at t = 0 and t = 1. Since in the quotient set 0 and 1 are
identified, the induced map h on the quotient set becomes a bijection. The above
theorem allows us to check that h is a homeomorphism.

EXAMPLE (gluing a pair of opposite edges of a square gives a cylinder). Let
X = [0, 1] × [0, 1]/ ∼ where (0, t) ∼ (1, t) for all 0 ≤ t ≤ 1. Then X is homeo-
morphic to the cylinder [0, 1]× S1. The homeomorphism is induced by the map
(s, t) 7→ (s, cos(2πt), sin(2πt)).

EXAMPLE (gluing opposite edges of a square gives a torus). Let X = [0, 1]×
[0, 1]/ ∼ where (s, 0) ∼ (s, 1) and (0, t) ∼ (1, t) for all 0 ≤ s, t ≤ 1, then X is
homeomorphic to the torus10 (mặt xuyến) T2.

FIGURE 9.2. The torus.

The torus T2 is homeomorphic to a subspace of R3, in other words, the torus
can be embedded in R3. A of subspace R3 homeomorphic to T2 can be obtained
as the surface of revolution obtained by revolving a circle around a line not inter-
secting it.

Suppose that the circle is on the Oyz-plane, the center is on the y-axis and the
axis for the rotation is the z-axis. Let a be the radius of the circle, b be the distance
from the center of the circle to O, (a < b). Let S be the surface of revolution, then
the embedding can be given by

[0, 2π]× [0, 2π] //

f
&&

T2

h
��

S

where f (φ, θ) = ((b + a cos θ) cos φ, (b + a cos θ) sin φ, a sin θ).

10The plural form of the word torus is tori.
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60 GENERAL TOPOLOGY

FIGURE 9.3. The torus embedded in R3.

φ

θ

y
a

b

x

O

z

EXAMPLE (gluing the boundary circle of a disk together gives a sphere). More
precisely D2/∂D2 is homeomorphic to S2. We only need to construct a continuous
map from D2 onto S2 such that after quotient out by the boundary ∂D2 it becomes
injective.

EXAMPLE 9.4 (the Mobius band). Gluing a pair of opposite edges of a square
in opposite directions gives the Mobius band (dải, lá, mặt Mobius11). More precisely
the Mobius band is X = [0, 1]× [0, 1]/ ∼ where (0, t) ∼ (1, 1− t) for all 0 ≤ t ≤ 1.

The Mobius band could be embedded in R3. It is homeomorphic to a subspace
of R3 obtained by rotating a straight segment around the z-axis while also turning
that segment “up side down”. The embedding can be induced by the map (see

11Möbius or Moebius are other spellings for this name.
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9. QUOTIENT SPACE 61

FIGURE 9.5. The Mobius band embedded in R3.

Figure 9.6)

(s, t) 7→ ((a + t cos(s/2)) cos s, (a + t cos(s/2)) sin s, t sin(s/2)),

with 0 ≤ s ≤ 2π and −1 ≤ t ≤ 1.

a

s

s/2

t

FIGURE 9.6. The embedding of the Mobius band in R3.

The Mobius band is famous as an example of unorientable surfaces. It is also
one-sided. A proof is in 25.2.

EXAMPLE (the projective plane). Identifying opposite points on the bound-
ary of a disk (they are called antipodal points) we get a topological space called
the projective plane (mặt phẳng xạ ảnh) RP2. The real projective plane cannot be
embedded in R3. It can be embedded in R4.

More generally, identifying antipodal boundary points of Dn gives us the pro-
jective space (không gian xạ ảnh) RPn. With this definition RP1 is homeomorphic
to S1. See also 9.19.

EXAMPLE (gluing a disk to the Mobius band gives the projective plane). In
other words, deleting a disk from the projective plane gives the Mobius band. See
Figure 9.7
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a a

a

a

a

a

a a

a
a

b

b

b

b b

b b b
b

b b

c

c

c

c

c c

c c
c c

c

FIGURE 9.7. Gluing a disk to the Mobius band gives the projective plane.

EXAMPLE (the Klein bottle). Identifying one pair of opposite edges of a square
and the other pair in opposite directions gives a topological space called the Klein
bottle. More precisely it is [0, 1]× [0, 1]/ ∼with (0, t) ∼ (1, t) and (s, 0) ∼ (1− s, 1).

FIGURE 9.8. The Klein bottle.

This space cannot be embedded in R3, but it can be immersed in R3. An im-
mersion (phép nhúng chìm) is a local embedding. More concisely, f : X → Y is an
immersion if each point in X has a neighborhood U such that f |U : U → f (U) is a
homeomorphism. Intuitively, an immersion allows self-intersection (tự cắt).
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9. QUOTIENT SPACE 63

FIGURE 9.9. The Klein bottle immersed in R3.

EXAMPLE 9.10 (the three-dimensional torus). Consider a cube [0, 1]3. Identi-
fying opposite faces by (x, y, 0) ∼ (x, y, 1), (x, 0, z) ∼ (x, 1, z), (0, y, z) ∼ (1, y, z)
we get a space called the three-dimensional torus.

Problems.

9.11. Describe the space [0, 1]/0 ∼ 1
2 ∼ 1.

9.12. Describe the space that is the quotient of the sphere S2 by its equator S1.

9.13. Show that the torus T2 is homeomorphic to S1 × S1.

9.14. Show that the following spaces are homeomorphic (one of them is the Klein bot-
tle).

a a

b

a

a

b

bb

9.15. What do we obtain after we cut a Mobius band along its middle circle? Try it
with an experiment.

To cut a subset S from a space X means to delete S from X, the resulting space is the
subspace X \ S. In figure 9.15 the curve CC′ is deleted.

9.17. If X is connected then X/ ∼ is connected.

9.18. The one-point compactification of the open Mobius band (the Mobius band with-
out the boundary circle) is the projective space RP2.

9.19. * Show that identifying antipodal boundary points of Dn is equivalent to identi-
fying antipodal points of Sn. In other words, the projective space RPn is homeomorphic to
Sn/x ∼ −x.

9.20. Show that the projective space RPn is a Hausdorff space.

9.21. In order for the quotient space X/ ∼ to be a Hausdorff space, a necessary con-
dition is that each equivalence class [x] must be a closed subset of X. Is this condition
sufficient?
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B

A

C

A′

B′
C′

A

C

B

FIGURE 9.16. Cutting a Mobius band along the middle circle.

9.22. On the Euclidean R define x ∼ y if x− y ∈ Z. Show that R/ ∼ is homeomorphic
to S1. The space R/ ∼ is also described as “R quotiented by the action of the group Z”.

9.23. On the Euclidean R2, define (x1, y1) ∼ (x2, y2) if (x1 − x2, y1 − y2) ∈ Z×Z.
Show that R2/ ∼ is homeomorphic to T2.

9.24 (minimal equivalence relation). Given a set X and a set Y ⊂ X × X, show that
there is an equivalence relation on X that contains Y and is contained in every equivalence
relation that contains Y, called the minimal equivalence relation containing Y.

For example, when we write [0, 1]/0 ∼ 1 we mean the quotient of the set [0, 1] by the
minimal equivalence relation on [0, 1] such that 0 ∼ 1. In this case that minimal equivalence
relation is clearly {(0, 1), (1, 0), (x, x) | x ∈ [0, 1]}.

9.25. * A question can be raised: In quotient spaces, if identifications are carried out
in steps rather than simultaneously, will the results be different? More precisely, let R1 and
R2 be two equivalence relations on a space X and let R be the minimal equivalence relation
containing R1 ∪ R2 is also an equivalence relation on space X. On the space X/R1 we define
an equivalence relation R̃2 induced from R2 by: [x]R1 ∼R̃2

[y]R1 if (x ∼R1∪R2 y). Prove that
the map

X/(R1 ∪ R2) → (X/R1)/R̃2

[x]R1∪R2 7→ [[x]R1 ]R̃2

is a homeomorphism. Thus in this sense the results are same.
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OTHER TOPICS 65

Other topics

Below are several more advanced topics. Though we do not present them in
detail, we think it is useful for the reader to have some familiarity with them. At
the end is a guide for further reading.

Invariance of dimension. That the Euclidean spaces R2 and R3 are not home-
omorphic is not easy. It is a consequence of the following difficult theorem of L.
Brouwer in 1912:

THEOREM 9.26 (invariance of dimension). If two subsets of the Euclidean Rn are
homeomorphic and one set is open then the other is also open.

This theorem is often proved using Algebraic Topology, see for instance [Mun00,
p. 381], [Vic94, p. 34], [Hat01, p. 126].

COROLLARY. The Euclidean spaces Rm and Rn are not homeomorphic if m 6= n.

PROOF. Suppose that m < n. It is easy to check that the inclusion map Rm →
Rn, (x1, x2, . . . , xm) 7→ (x1, x2, . . . , xm, 0, . . . , 0) is a homeomorphism onto its image
A ⊂ Rn. If A is homeomorphic to Rn then by Invariance of dimension, A is open
in Rn. But A is clearly not open in Rn. �

This result allows us to talk about topological dimension.

Jordan curve theorem. The following is an important and deep result of
plane topology.

THEOREM (Jordan curve theorem). A simple, continuous, closed curve separates
the plane into two disconnected regions. More concisely, if C is a subset of the Euclidean
plane homeomorphic to the circle then R2 \ C has two connected components.

Nowadays this theorem is usually proved in a course in Algebraic Topology.

Space filling curves. A rather curious and surprising result is:

THEOREM. There is a continuous curve filling a rectangle on the plane. More con-
cisely, there is a continuous map from the interval [0, 1] onto the square [0, 1]2 under the
Euclidean topology.

Note that this map cannot be injective, in other words the curve cannot be
simple.

Such a curve is called a Peano curve. It could be constructed as a limit of an
iteration of piecewise linear curves.

Strategy for a proof of Tikhonov theorem based on net. The proof that
we will outline here is based on further developments of the theory of nets and a
characterization of compactness in terms of nets.
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66 GENERAL TOPOLOGY

DEFINITION (subnet). Let I and I′ be directed sets, and let h : I′ → I be a map
such that

∀k ∈ I, ∃k′ ∈ I′, (i′ ≥ k′ ⇒ h(i′) ≥ k).

If n : I → X is a net then n ◦ h is called a subnet of n.

The notion of subnet is an extension of the notion of subsequence. If we take
ni ∈ Z+ such that ni < ni+1 then (xni ) is a subsequence of (xn). In this case
the map h : Z+ → Z+ given by h(i) = ni is a strictly increasing function. Thus
a subsequence of a sequence is a subnet of that sequence. On the other hand a
subnet of a sequence does not need to be a subsequence, since for a subnet the
map h is only required to satisfy limi→∞ h(i) = ∞.

A net (xi)i∈I is called eventually in A ⊂ X if there is j ∈ I such that i ≥ j ⇒
xi ∈ A.

Universal net A net n in X is universal if for any subset A of X either n is
eventually in A or n is eventually in X \ A.

PROPOSITION. If f : X → Y is continuous and n is a universal net in X then f (n)
is a universal net.

PROPOSITION. The following statements are equivalent:

(a) X is compact.
(b) Every universal net in X is convergent.
(c) Every net in X has a convergent subnet.

The proof of the two propositions above could be found in [Bre93].
Then we finish the proof of Tikhonov theorem as follows.

PROOF OF TIKHONOV THEOREM. Let X = ∏i∈I Xi where each Xi is compact.
Suppose that (xj)j∈J is a universal net in X. By 7.3 the net (xj) is convergent if and
only if the projection (pi(xj)) is convergent for all i. But that is true since (pi(xj))

is a universal net in the compact set Xi. �

Metrizability.

THEOREM 9.27 (Urysohn metrizability theorem). A regular space with a count-
able basis is metrizable.

The proof uses the Urysohn lemma [Mun00].

Guide for further reading. The book by Kelley [Kel55] has been a classics
and a standard reference although it was published in 1955. Its presentation is
rather abstract. The book contains no figure!

Munkres’ book [Mun00] is presently a standard textbook. The treatment there
is somewhat more modern than that in Kelley’s book, with many examples, figures
and exercises. It also has a section on Algebraic Topology.
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OTHER TOPICS 67

Hocking and Young’s book [HY61] contains many deep and difficult results.
This book together with Kelley’s and Munkres’ books contain many topics not
discussed in our lectures.

For General Topology as a service to Analysis, [KF75] is an excellent textbook.
[Cai94] and [VINK08] are other good books on General Topology.

A more recent textbook by Roseman [Ros99] works mostly in Rn and is more
down-to-earth. The newer textbook [AF08] contains many interesting recent ap-
plications of topology.
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Algebraic Topology

10. Structures on topological spaces

Topological manifold . If we only stay around our small familiar neighbor-
hood then we might not be able to recognize that the surface of the Earth is curved,
and to us it is indistinguishable from a plane. When we begin to travel farther and
higher, we can realize that the surface of the Earth is a sphere, not a plane. In
mathematical language, a sphere and a plane are locally same but globally differ-
ent.

Briefly, a manifold is a space that is locally Euclidean. In a manifold each element
can be described by a list of independent parameters. The description can vary
from one part to another part of the manifold. 12

DEFINITION. A topological manifold (đa tạp tôpô) of dimension n is a topologi-
cal space each point of which has a neighborhood homeomorphic to the Euclidean
space Rn.

We can think of a manifold as a space that could be covered by a collection of
open subsets each of which homeomorphic to Rn.

REMARK. In this chapter we assume Rn has the Euclidean topology unless we
mention otherwise.

The statement below is often convenient in practice:

12Bernard Riemann proposed the idea of manifold in his Habilitation dissertation [Spi99].

69
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70 ALGEBRAIC TOPOLOGY

PROPOSITION. A manifold of dimension n is a space such that each point has an open
neighborhood homeomorphic to an open subset of Rn.

PROOF. Let M be a space, x ∈ M, and suppose that x has an open neighbor-
hood U in M with a homeomorphism h : U → V where V is an open subset of
Rn. We will show that x has a neighborhood homeomorphic to Rn. There is a
ball B( f (x), ε) ⊂ V. Since h is a homeomorphism, h−1(B( f (x), ε)) is open in U,
so is open in M. So x has an open neighborhood h−1(V) homeomorphic to a ball
B( f (x), ε), which in turns homeomorphic to Rn (3.16). �

REMARK. By Invariance of dimension (9.26), Rn and Rm are not homeomor-
phic unless m = n, therefore a manifold has a unique dimension.

EXAMPLE. Any open subspace of Rn is a manifold of dimension n.

EXAMPLE. Let f : D → R be a continuous function where D ⊂ Rn is an open
set, then the graph of f , the set {(x, f (x)) | x ∈ D}, as a subspace of Rn+1, is
homeomorphic to D, therefore is an n-dimensional manifold.

Thus manifolds generalizes curves and surfaces.

EXAMPLE. The sphere Sn is an n-dimensional manifold. One way to show this
is by covering Sn with two neighborhoods Sn \ {(0, . . . , 0, 1)} and Sn \ {(0, . . . , 0,−1)}.
Each of these neighborhoods is homeomorphic to Rn via stereographic projec-
tions. Another way is by covering Sn by hemispheres {(x1, x2, . . . , xn+1) ∈ Sn | xi >

0} and {(x1, x2, . . . , xn+1) ∈ Sn | xi < 0}, 1 ≤ i ≤ n + 1. Each of these hemispheres
is a graph, homeomorphic to an open n-dimensional unit ball.

EXAMPLE. The torus is a two-dimensional manifold. Let us consider the torus
as the quotient space of the square [0, 1]2 by identifying opposite edges. Each point
has a neighborhood homeomorphic to an open disk, as can be seen easily in the
following figure, though explicit description would be time consuming. We can

FIGURE 10.1. The sets with same colors are glued to form a neigh-
borhood of a point on the torus. Each such neighborhood is home-
omorphic to an open ball.

also view the torus as a surface in R3, given by the equation (
√

x2 + y2 − a)2 +
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10. STRUCTURES ON TOPOLOGICAL SPACES 71

z2 = b2. As such it can be covered by the open subsets of R3 corresponding to
z > 0, z < 0, x2 + y2 < a2, x2 + y2 > a2.

REMARK. The interval [0, 1] is not a manifold, it is a “manifold with bound-
ary”. We will not give a precise definition of manifold with boundary here.

A two-dimensional manifold is often called a surface.

Simplicial complex. For an integer n ≥ 0, an n-dimensional simplex (đơn
hình) is a subspace of a Euclidean space Rm, m ≥ n which is the convex linear
combination of (n + 1) points in Rm that do not belong to any n-dimensional hy-
perplane. As a set it is given by {t0v0 + t1v1 + · · ·+ tnvn | t0, t1, . . . , tn ∈ [0, 1], t0 +

t1 + · · ·+ tn = 1} where v0, v1, . . . , vn ∈ Rm and v1 − v0, v2 − v0, . . . , vn − v0 are
n linearly independent vectors (it can be checked that this condition does not de-
pend on the order of the points). The points v0, v1, . . . , vn are called the vertices of
the simplex.

EXAMPLE. A 0-dimensional simplex is just a point. A 1-dimensional simplex
is a straight segment in Rm, m ≥ 1. A 2-dimensional simplex is a triangle in Rm,
m ≥ 2. A 3-dimensional simplex is a tetrahedron in Rm, m ≥ 3.

In particular, the standard n-dimensional simplex (đơn hình chuẩn) ∆n is the
convex linear combination of the (n + 1) vectors (1, 0, 0, . . . ), (0, 1, 0, 0, . . . ), . . . ,
(0, 0, . . . , 0, 1) in the standard linear basis of Rn+1. Thus

∆n = {(t0, t1, . . . , tn) | t0, t1, . . . , tn ∈ [0, 1], t0 + t1 + · · ·+ tn = 1}.

The convex linear combination of any subset of the set of vertices of a simplex
is called a face of the simplex.

EXAMPLE. For a 2-dimensional simplex (a triangle) its faces are the vertices,
the edges, and the triangle itself.

DEFINITION. An n-dimensional simplicial complex (phức đơn hình) in Rm is
a finite collection S of simplexes in Rm of dimensions at most n and at least one
simplex is of dimension n and such that:

(a) any face of an element of S is an element of S,
(b) the intersection of any two elements of S is a common face.

The union of all elements of S is called its underlying space, denoted by |S|, a sub-
space of Rm. A space which is the underlying space of a simplicial complex is also
called a polyhedron (đa diện).

EXAMPLE. A 1-dimensional simplicial complex is a graph.

Triangulation. A triangulation (phép phân chia tam giác) of a topological space
X is a homeomorphism from the underlying space of a simplicial complex to X,
the space X is then said to be triangulated.
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72 ALGEBRAIC TOPOLOGY

For example, a triangulation of a surface is an expression of the surface as the
union of finitely many triangles, with a requirement that two triangles are either
disjoint, or have one common edge, or have one common vertex.

FIGURE 10.2. A triangulation of the 2-dimensional sphere.

-3
-2

-1
 0

 1
 2

 3 -3
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-1
 0

 1
 2

 3
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 0

 0.5

 1

-1
-0.8
-0.6
-0.4
-0.2
 0
 0.2
 0.4
 0.6
 0.8
 1

FIGURE 10.3. A triangulation of the torus.

FIGURE 10.4. Description of a triangulation of the torus.

It is known that any two or three dimensional manifold can be triangulated,
and that there exists a 4-dimensional manifold with no triangulation. The situa-
tions in higher dimensions are still being studied.
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10. STRUCTURES ON TOPOLOGICAL SPACES 73

A simplicial complex is specified by a finite set of points, if a space can be
triangulated then we can study that space combinatorially, using constructions
and computations in finitely many steps.

Cell complex. For n ≥ 1 a cell (ô) is an open ball in the Euclidean space Rn.
A 0-dimensional cell is a point (this is consistent with the general case with the
convention that R0 = {0}).

Recall a familiar term that an n-dimensional disk is a closed ball in Rn, in par-
ticular when n = 0 it is a point. The unit disk centered at the origin B′(0, 1) is
denoted by Dn. Thus for n ≥ 1 the boundary ∂Dn is the sphere Sn−1 and the
interior int(Dn) is an n-cell.

By attaching a cell to a topological space X we mean taking a continuous func-
tion f : ∂Dn → X then forming the quotient space (X tDn)/(x ∼ f (x), x ∈ ∂Dn)

(for disjoint union see 7.13). Intuitively, we attach a cell to the space by gluing each
point on the boundary of the disk to a point on the space in a certain way.

We can attach finitely many cells to X in the same manner. Precisely, attaching
k n-cells to X means taking the quotient space

(
X t

(⊔k
i=1 Dn

i

))
/(x ∼ fi(x), x ∈

∂Dn
i , 1 ≤ i ≤ k) where fi : ∂Dn

i → X is continuous, 1 ≤ i ≤ k.

DEFINITION. A (finite) n-dimensional cell complex (phức ô) or CW-complex X
is a topological space built as follows:

(a) X0 is a finite collection of 0-cells, with the discrete topology,
(b) for 1 ≤ i ≤ n ∈ Z+, Xi is obtained by attaching finitely many i-cells to

Xi−1, and Xn = X.

Briefly, a cell complex is a topological space with an instruction for building it by
attaching cells. The subspaces Xi are called the i-dimensional skeleton (khung) of
X.13

EXAMPLE. A topological circle has a cell complex structure as a triangle with
three 0-cells and three 1-cells. There is another cell complex structure with only
one 0-cell and one 1-cell.

EXAMPLE. The 2-dimensional sphere has a cell complex structure as a tetra-
hedron with four 0-cells, six 1-cells, and four 2-cells. There is another cell complex
structure with only one 0-cell and one 2-cell.

EXAMPLE. The torus, as we can see directly from its definition (figure 9), has
a cell complex structure with one 0-cells, two 1-cells, and one 2-cells.

A simplicial complex gives rise to a cell complex:

PROPOSITION. Any triangulated space is a cell complex.

13The term CW-complex is more general than the term cell-complex, can be used when there are infin-
itely many cells.
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74 ALGEBRAIC TOPOLOGY

PROOF. Let X be a simplicial complex. Let Xi be the union of all simplexes
of X of dimensions at most i. Then Xi+1 is the union of Xi with finitely many
(i + 1)-dimensional simplexes. Let ∆i+1 be such an (i + 1)-dimensional simplex.
The i-dimensional faces of ∆i+1 are simplexes of X, so the union of those faces,
which is the boundary of ∆i+1, belongs to Xi. There is a homeomorphism from an
(i + 1)-disk to ∆i+1 (see 10.15), bringing the boundary of the disk to the boundary
of ∆i+1. Thus including ∆i+1 in X implies attaching an (i + 1)-cell to Xi. �

The example of the torus indicates that cell complexes may require less cells
than simplicial complexes. On the other hand we loose the combinatorial setting,
because we need to specify the attaching maps.

It is known that any compact manifold of dimension different from 4 has a cell
complex structure. Whether that is true or not in dimension 4 is not known yet
[Hat01, p. 529].

Euler characteristic.

DEFINITION. The Euler characteristic (đặc trưng Euler) of a cell complex is de-
fined to be the alternating sum of the number of cells in each dimension of that
cell complex. Namely, let X be an n-dimensional cell complex and let ci, 0 ≤ i ≤ n,
be the number of i-dimensional cells of X, then the Euler characteristic of X is

χ(X) =
n

∑
i=0

(−1)ici.

EXAMPLE. For a triangulated surface, its Euler characteristic is the number v
of vertices minus the number e of edges plus the number f of triangles (faces):

χ(S) = v− e + f .

THEOREM 10.5. The Euler characteristic of homeomorphic cell complexes are equal.

We will discuss a proof of this result in 17.
In particular two cell complex structures on a topological space have same

Euler characteristic. The Euler characteristic is a topological invariant (bất biến tôpô).

We have χ(S2) = 2. A consequence is the famous formula of Leonhard Euler:

THEOREM (Euler’s formula). For any polyhedron homeomorphic to a 2-dimensional
sphere, v− e + f = 2.

EXAMPLE. The Euler characteristic of a surface is defined and does not depend
on the choice of triangulation. If two surfaces have different Euler characteristic
they are not homeomorphic.

From any triangulation of the torus, we get χ(T2) = 0. For the projective
plane, χ(RP2) = 1. As a consequence, the sphere, the torus, and the projective
plane are not homeomorphic to each other: they are different surfaces.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


10. STRUCTURES ON TOPOLOGICAL SPACES 75

FIGURE 10.6. The Euler characteristic of the dodecahedron is 2.

Problems.

10.7. Show that if two spaces are homeomorphic and one space is an n-dimensional
manifold then the other is also an n-dimensional manifold.

10.8. Show that an open subspace of a manifold is a manifold.

10.9. Show that if X and Y are manifolds then X×Y is also a manifold.

10.10. Show that a connected manifold must be path-connected. Thus for manifold
connectedness and path-connectedness are same.

10.11. Show that RPn is an n-dimensional topological manifold.

10.12. Show that a manifold is a locally compact space.

10.13. Show that the Mobius band, without its boundary circle, is a manifold.

10.14. Give examples of topological spaces which are not manifolds. Discuss necessary
conditions for a topological space to be a manifold.

10.15.
√

Show that any n-dimensional simplex is homeomorphic to an n-dimensional
disk.

10.16. Give examples of different spaces (not homeomorphic) but with same Euler
characteristic.

10.17. Give a triangulation for the Mobius band, find a simpler cell complex structure
for it, and compute its Euler characteristic.

10.18. Give a triangulation for the Klein bottle, find a simpler cell complex structure
for it, and compute its Euler characteristic.

10.19. Draw a cell complex structure on the torus with two holes.

10.20. Find a cell complex structure on RPn.
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11. Classification of compact surfaces

In this section by a surface (mặt) we mean a two-dimensional topological man-
ifold (without boundary).

Connected sum. Let S and T be two surfaces. From each surface deletes an
open disk, then glue the two boundary circles. The resulting surface is called the
connected sum (tổng liên thông) of the two surfaces, denoted by S#T.

S \
◦

D2 T\
◦

D2 S #T

It is known that the connected sum does not depend on the choices of the
disks.

EXAMPLE. If S is any surface then S#S2 = S.

Classification.

THEOREM (classification of compact surfaces). A connected compact surface is
homeomorphic to either the sphere, or a connected sum of tori, or a connected sum of pro-
jective planes.

We denote by Tg the connected sum of g tori, and by Mg the connected sum of
g projective planes. The number g is called the genus (giống) of the surface.

The sphere and the surfaces Tg are orientable (định hướng được) surface , while
the surfaces Mg are non-orientable (không định hướng được) surfaces. We will not
give a precise definition of orientability here (compare 25).

FIGURE 11.1. Orientable surfaces: S2, T1, T2, . . .
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11. CLASSIFICATION OF COMPACT SURFACES 77

Recall that a torus T1 is the quotient space of a square by the identification on
the boundary described by the word aba−1b−1. In general, given a polygon on the
plane (the underlying space that is homeomorphic to a disk of a simplicial com-
plex), and suppose that the edges of the polygon are labeled and oriented. Choose
one edge as the initial one then follow the edge of the polygon in a predetermined
direction (the boundary of the polygon is homemorphic to a circle). If an edge a is
met in the opposite direction then write it down as a−1. In this way we associate
each polygon with a word. We also write aa as a2.

In the reverse direction, a word gives a polygon with labeled and oriented
edges. If a label appears more than once, then the edges with this label can be
identified in the orientations assigned to the edges. Let us consider two words
equivalent if they give rise to homeomorphic spaces. For examples, changing labels
and cyclic permutations are equivalence operations on words.

The classification theorem is a direct consequence of the following result:

THEOREM 11.2. A connected compact surface is homeomorphic to the space obtained
by identifying the edges of a polygon in one of the following ways:

(a) aa−1,
(b) a1b1a−1

1 b−1
1 a2b2a−1

2 b−1
2 · · · agbga−1

g b−1
g ,

(c) c2
1c2

2 · · · c2
g.

Proof of 11.2. We will use the following fact: any compact surface can be
triangulated (a proof is available in [Moi77]).

Take a triangulation X of the compact connected surface S. Let T be the set of
triangles in X. Label the edges of the triangles and mark an orientation for each
edge. Each edge will appear twice, on two different triangles.

We now build a new space P out of these triangles. Let P1 be any element of T,
which is homeomorphic to a disk. Inductively suppose that we have built a space
Pi from a subset Ti of T, where Pi is homeomorphic to a disk and its boundary
consists of labeled and directed edges. If Ti 6= T then there exists an element
∆ ∈ T \ Ti such that ∆ has at least one edge with the same label α as an edge
on the boundary of Pi, otherwise |X| could not be connected. Glue ∆ to Pi via
this edge to get Pi+1, in other words Pi+1 = (Pi t ∆) /α ∼ α. Since two disks
glued along a common arc on the boundaries is still a disk, Pi+1 is homeomorphic
to a disk. Also, let Ti+1 = Ti ∪ {∆}. When this process stops we get a space
P homemorphic to a disk, whose boundary consists of labeled, directed edges. If
these edges are identified following the instruction by the labels and the directions,
we get a space homemorphic to the original surface S. The polygon P is called a
fundamental polygon of the surface S. See an example in figure 11.3.

Theorem 11.2 is a direct consequence of the following:

PROPOSITION 11.4. An associated word to a connected compact surface is equivalent
to a word of the forms:

(a) aa−1,
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b

a c

d e

f

a

c

f

d
d

f

c

eb

FIGURE 11.3. A triangulation of the sphere and an associated fun-
damental polygon.

(b) a1b1a−1
1 b−1

1 a2b2a−1
2 b−1

2 · · · agbga−1
g b−1

g ,
(c) c2

1c2
2 · · · c2

g.

We will prove 11.4 through a series of lemmas.
Let w a the word associated to a fundamental polygon of a compact connected

surface. If w1 and w2 are two equivalent words then we write w1 ∼ w2.

LEMMA 11.5. aa−1α ∼ α, if α 6= ∅.

PROOF. See figure 11.6. �

a a
a

FIGURE 11.6. Lemma 11.5.

LEMMA 11.7. The word w is equivalent to a word whose all of the vertices of the
associated polygon is identified to a single point on the associated surface (w is said to be
“reduced”).

PROOF. When we do the operation in figure 11.8, the number of P vertices is
decreased. When there is only one P vertex left, we arrive at the situation in lemma
11.5. �

LEMMA 11.9. aαaβ ∼ aaαβ−1.

PROOF. See figure 11.10. �

LEMMA 11.11. Suppose that w is reduced. If w = aαa−1β where α 6= ∅ then ∃b ∈ α

such that b ∈ β or b−1 ∈ β.
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11. CLASSIFICATION OF COMPACT SURFACES 79

P
a

Q

P

P
a

Q
Q

P

Q

P
a

Q

c

b
c

b

c

c
bb

c

b

FIGURE 11.8. Lemma 11.7.

a a
a

a
c

c c

c c
a

α

β

α

β

αβ

FIGURE 11.10. Lemma 11.9.

PROOF. If all labels in α appear in pairs then the vertices in the part of the
polygon associated to α are identified only with themselves, and are not identi-
fied with a vertex outside of that part. This contradicts the assumption that w is
reduced. �

LEMMA 11.12. aαbβa−1γb−1δ ∼ aba−1b−1αδβγ.

PROOF. See figure 11.13. �

LEMMA 11.14. aba−1b−1αc2β ∼ a2b2αc2β.

PROOF. Do the operation in figure 11.15, after that we are in a situation where
we can apply lemma 11.9 three times. �
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a

a

c
bb b c c

a

a

b

c
c

a

a

b c c

d

a

a

c c

a
d

d

a

c c

d

d

a

FIGURE 11.13. Lemma 11.12.

a

b

a

b

c

c

d

a

b

d

c

ba

d

FIGURE 11.15. Lemma 11.14.

PROOF OF 11.4. The proof follows the following steps.

1. Bring w to reduced form by using 11.7 finitely many times.
2. If w has the form aa−1− then go to 2.1, if not go to 3.
2.1. If w has the form aa−1 then stop, if not go to 2.2.
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11. CLASSIFICATION OF COMPACT SURFACES 81

2.2. w has the form aa−1α where α 6= ∅. Repeatedly apply 11.5 finitely
many times, deleting pairs of the form aa−1 in w until no such pair is
left or w has the form aa−1. If no such pair is left go to 3.

3. w does not have the form−aa−1−. If we apply 11.9 then a pair of of the
form −aαa− with α 6= ∅ could become a pair of the form −a− a−1−,
but a pair of the form −aa− will not be changed. Therefore 11.9 could
be used finitely many times until there is no pair −aαa− with α = ∅
left. Notice from the proof of 11.9 that this step will not undo the steps
before it.

4. If there is no pair of the form −aαa−1 where α 6= ∅, then stop: w has
the form a2

1a2
2 · · · a2

g.
5. w has the form −aαa−1 where α 6= ∅. By 11.11 w must has the form

−a− b− a−1 − b−1−, since after Step 3 there could be no −b− a−1 −
b−.

6. Apply 11.12 finitely many times until w no longer has the form−aαbβa−1γb−1−
where at least one of α, β, or γ is non-empty. If w is not of the form
−aa− then stop: w has the form a1b1a−1

1 b−1
1 · · · agbga−1

g b−1
g .

7. w has the form −aba−1b−1 − cc−. Use 11.14 finitely many times to
transform w to the form a2

1a2
2 · · · a2

g.

�

EXAMPLE. What is the topological space in figure 11.16?

a

b

c

d

a

b

c

d

FIGURE 11.16.

Applying lemma 11.12 we get abcda−1b−1c−1d−1 ∼ aba−1b−1cdc−1d−1. Thus
this space is homemorphic to the genus 2 torus.

For more on this topic one can read [Mas91, ch. 1].

Problems.

11.17. Show that gluing two Mobius bands along their boundaries gives the Klein bot-
tle. In other words, RP2#RP2 = K.14 (See figure 9.7.)

14There is a humorous poem:
A mathematician named Klein
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82 ALGEBRAIC TOPOLOGY

11.18. Show that T2#RP2 = K#RP2, where K is the Klein bottle.

11.19. What is the topological space in figure 11.20?

a

b

c

d

b

c

a

d

FIGURE 11.20.

11.21. (a) Show that Tg#Th = Tg+h.
(b) Show that Mg#Mh = Mg+h.
(c) Mg#Th =?

11.22. Show that for any two compact surfaces S1 and S2 we have χ(S1#S2) = χ(S1) +

χ(S2)− 2.

11.23. Compute the Euler characteristics of all connected compact surfaces. Deduce
that the orientable surfaces S2 and Tg, for different g, are distinct, meaning not homeomor-
phic to each other. Similarly the non-orientable surfaces Mg are all distinct.

11.24. From 11.2, describe a cell complex structure on any compact surface. From that
compute the Euler characteristics.

11.25. Let S be a triangulated compact connected surface with v vertices, e edges, and
f triangles. Prove that:

(a) 2e = 3 f .
(b) v ≤ f .
(c) e ≤ 1

2 v(v− 1).

(d) v ≥
⌊

1
2

(
7 +

√
49− 24χ(S)

)⌋
= H(S). (The integer H(S), called the Heawood

number, gives the minimal number of colors needed to color a map on the surface
S, except in the case of the Klein bottle. When S is the sphere this is the four colors
problem [MT01, p. 230].)

(e) Show that a triangulation of the torus needs at least 14 triangles. Indeed 14 is the
minimal number: there are triangulations of the torus with exactly 14 triangles,
see e.g. [MT01, p. 142].

11.26 (surfaces are homogeneous). A space is homogeneous (đồng nhất) if given two
points there exists a homeomorphism from the space to itself bringing one point to the
other point.

(a) Show that the sphere S2 is homogeneous.

Thought the Mobius band was divine
Said he, “If you glue
The edges of two,
You’ll get a weird bottle like mine.”
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11. CLASSIFICATION OF COMPACT SURFACES 83

(b) Show that the torus T2 is homogeneous.

For more see 26.1.
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12. Homotopy

Homotopy of maps.

DEFINITION. Let X and Y be topological spaces and f , g : X → Y be con-
tinuous. We say that f and g are homotopic (đồng luân) if there is a continuous
map

F : X× [0, 1] → Y

(x, t) 7→ F(x, t)

such that F(x, 0) = f (x) and F(x, 1) = g(x) for all x ∈ X. The map F is called a
homotopy (phép đồng luân) from f to g.

We can think of t as a time parameter and F as a continuous process in time
that starts with f and ends with g. To suggest this view F(x, t) is often written as
Ft(x). So F0 = f and F1 = g.

Here we are looking at [0, 1] ⊂ R with the Euclidean topology and X × [0, 1]
with the product topology.

PROPOSITION 12.1. Homotopic relation on the set of continuous maps between two
given topological spaces is an equivalence relation.

PROOF. If f : X → Y is continuous then f is homotopic to itself via the map
Ft = f , ∀t ∈ [0, 1]. If f is homotopic to g via F then g is homotopic to f via
G(x, t) = F(x, 1− t). We can think of G is an inverse process to H. If f is homotopic
to g via F and g is homotopic to h via G then f is homotopic to h via

Ht =

F2t, 0 ≤ t ≤ 1
2

G2t−1, 1
2 ≤ t ≤ 1.

Thus we obtain H by following F at twice the speed, then continuing with a copy
of G also at twice the speed. To check the continuity of H it is better to write it as

H(x, t) =

F(x, 2t), (x, t) ∈ X× [0, 1
2 ],

G(x, 2t− 1), (x, t) ∈ X× [ 1
2 , 1],

then use 3.15. Another, more advanced way to check continuity of H is by using
the property 8.13 about the compact-open topology. �

In this section, and whenever it is clear from the context, we indicate this rela-
tion by the usual notation for equivalence relation ∼.

LEMMA 12.2. If f , g : X → Y and f ∼ g then f ◦ h ∼ g ◦ h for any h : X′ → X,
and k ◦ f ∼ k ◦ g for any k : Y → Y′.

PROOF. Let F be a homotopy from f to g then Gt = Ft ◦ h is a homotopy from
f ◦ h to g ◦ h. Rewriting G(x′, t) = F(h(x′), t) we see that G is continuous. �
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Homotopic spaces.

DEFINITION. Two topological spaces X and Y are homotopic if there are contin-
uous maps f : X → Y and g : Y → X such that g ◦ f is homotopic to IdX and f ◦ g
is homotopic to IdY. Each of the maps f and g is called a homotopy equivalence.

Immediately we have:

PROPOSITION (homeomorphic⇒ homotopic). Homeomorphic spaces are homo-
topic.

PROOF. If f is a homeomorphism then we can take g = f−1. �

PROPOSITION. Homotopic relation on the set of all topological spaces is an equiva-
lence relation.

PROOF. Any space is homotopic to itself. From the definition it is clear that
this relation is symmetric. Now we check that it is transitive. Suppose that X is
homotopic to Y via f : X → Y, g : Y → X and suppose that Y is homotopic to Z
via h : Y → Z, k : Z → Y. By 12.2:

(g ◦ k) ◦ (h ◦ f ) = (g ◦ (k ◦ h)) ◦ f ∼ (g ◦ IdY) ◦ f = g ◦ f ∼ IdX .

Similarly

(h ◦ f ) ◦ (g ◦ k) = (h ◦ ( f ◦ g)) ◦ k ∼ (h ◦ IdY) ◦ k = h ◦ k ∼ IdZ.

Thus X is homotopic to Z. �

Deformation retraction. Let X be a space, and let A be a subspace of X. We
say that A is a retract (rút) of X if there is a continuous map r : X → A such that
r|A = idA, called a retraction (phép rút) from X to A. In other words A is a retract
of X if the identity map idA can be extended to X.

A deformation retraction (phép co rút) from X to A is a homotopy F that starts
with idX , ends with a retraction from X to A, and fixes A throughout, i.e., F0 = idX ,
F1(X) = A, and Ft|A = idA, ∀t ∈ [0, 1]. If there is such a deformation retraction
we say that A is a deformation retract (co rút) of X.

In such a deformation retraction each point x ∈ X \ A “moves” along the path
Ft(x) to a point in A, while every point of A is fixed.

EXAMPLE. A subset A of a normed space is called a star-shaped region if there
is a point x0 ∈ A such that for any x ∈ A the straight segment from x to x0 is
contained in A. For example, any convex subset of the normed space is a star-
shaped region. The map Ft = (1− t)x + tx0 is a deformation retraction from A to
x0, so a star-shaped region has a deformation retraction to a point.

EXAMPLE. A normed space minus a point has a deformation retraction to a
sphere. For example, a normed space minus the origin has a deformation retrac-
tion Ft(x) = (1− t)x + t x

||x|| to the unit sphere at the origin.
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EXAMPLE. An annulus S1 × [0, 1] has a deformation retraction to one of its
circle boundary S1 × {0}.

PROPOSITION. If a space X has a deformation retraction to a subspace A then X is
homotopic to A.

PROOF. Suppose that Ft is a deformation retraction from X to A. Consider
F1 : X → A and the inclusion map g : A→ X, g(x) = x. Then idX is homotopic to
g ◦ F1 via Ft, while F1 ◦ g = idA. �

EXAMPLE. The circle, the annulus, and the Mobius band are homotopic to
each other, although they are not homeomorphic to each other.

A space which is homotopic to a space containing only one point is said to be
contractible (thắt được).

COROLLARY. A space which has a deformation retraction to a point is contractible.

The converse is not true, see [Hat01, p. 18].

Homotopy of paths. Recall that a path (đường đi) in a space X is a continuous
map α from the Euclidean interval [0, 1] to X. The point α(0) is called the initial
end point, and α(1) is called the final end point. In this section for simplicity of
presentation we assume the domain of a path is the Euclidean interval [0, 1] instead
of any Euclidean closed interval as before.

A loop (vòng) or a closed path (đường đi kín) based at a point a ∈ X is a path
whose initial point and end point are a. In other words it is a continuous map
α : [0, 1]→ X such that α(0) = α(1) = a. The constant loop at a is the loop α(t) = a
for all t ∈ [0, 1].

DEFINITION. Let α and β be two paths from a to b in X. A path-homotopy
(phép đồng luân đường) from α to β is a continuous map F : [0, 1]× [0, 1] → X,
F(s, t) = Ft(s), such that F0 = α, F1 = β, and for each t the path Ft goes from a to
b, i.e. Ft(0) = a, Ft(1) = b.

If there is a path-homotopy from α to β we say that α is path-homotopic (đồng
luân đường) to β.

REMARK. A homotopy of path is a homotopy of maps defined on [0, 1], with
the further requirement that the homotopy fixes the initial point and the terminal point.
To emphasize this we have used the word path-homotopy, but some sources (e.g.
[Hat01, p. 25]) simply use the term homotopy, taking this further requirement
implicitly.

EXAMPLE. In a convex subset of a normed space any two paths α and β with
the same initial points and end points are homotopic, via the homotopy (1− t)α +

tβ.
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F0 = α

F1 = β

a b

Ft

FIGURE 12.3. We can think of a path-homotopy from α to β as a
way to continuously brings α to β, keeping the endpoints fixed,
similar to a motion picture.

PROPOSITION. Path-homotopic relation on the set of all paths from a to b is an equiv-
alence relation.

The proof is the same as the proof of 12.1.

Problems.

12.4. Show in detail that the Mobius band has a deformation retraction to a circle.

12.5. Show that contractible spaces are path-connected.

12.6. Let X be a topological space and let Y be a retract of X. Show that any continuous
map from Y to a topological space Z can be extended to X.

12.7. Let X be a topological space and let Y be a retract of X. Show that if every contin-
uous map from X to itself has a fixed point then every continuous map from Y to itself has
a fixed point.

12.8. Show that if B is contractible then A× B is homotopic to A.

12.9. Show that if a space X is contractible then all continuous maps from a space Y to
X are homotopic. Is the converse correct?

12.10. Show that if f : Sn → Sn is not homotopic to the identity map then there is
x ∈ Sn such that f (x) = −x.

12.11. Classify the alphabetical characters according to homotopy types, that is, which
of the characters are homotopic to each other as subspaces of the Euclidean plane? Do the
same for the Vietnamese alphabetical characters. Note that the result depends on the font
you use.
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88 ALGEBRAIC TOPOLOGY

13. The fundamental group

If α(t), 0 ≤ t ≤ 1 is a path from a to b then we write as α−1 the path given by
α−1(t) = α(1− t), called the inverse path of α, going from b to a.

If α is a path from a to b, and β is a path from b to c, then we define the
composition (hợp) of α with β, written α · β, to be the path

α · β(t) =

α(2t), 0 ≤ t ≤ 1
2

β(2t− 1), 1
2 ≤ t ≤ 1.

Notice that α · β is continuous by 3.15.

LEMMA 13.1. If α is path-homotopic to α1 and β is path-homotopic to β1 then α · β is
path-homotopic to α1 · β1.

PROOF. Let F be a path-homotopy from αto β and G be a homotopy from β to
γ. Let Ht = Ft · Gt, that is:

H(s, t) =

F(2s, t), 0 ≤ s ≤ 1
2 , 0 ≤ t ≤ 1

G(2s− 1, t), 1
2 ≤ s ≤ 1, 0 ≤ t ≤ 1.

Then H is continuous by 3.15 and is a homotopy from α · β to α1 · β1. �

LEMMA 13.2. If α is a path from a to b then α · α−1 is path-homotopic to the constant
loop at a.

PROOF. A homotopy F from α · α−1 to the constant loop at a can be described
as follows. At a fixed t, the loop Ft starts at time 0 at a, goes along α but at twice the
speed of α, until time 1

2 −
t
2 , stays there until time 1

2 + t
2 , then catches the inverse

path α−1 at twice its speed to come back to a. More precisely,

F(s, t) =


α(2s), 0 ≤ s ≤ 1

2 −
t
2

α(1− t), 1
2 −

t
2 ≤ s ≤ 1

2 + t
2

α−1(2s− 1) = α(2− 2s), 1
2 + t

2 ≤ s ≤ 1.

Again by 3.15, F is continuous. �

LEMMA 13.3 (reparametrization does not change homotopy class). With a con-
tinuous map ϕ : [0, 1] → [0, 1], ϕ(0) = 0, ϕ(1) = 1, for any path α the path α ◦ ϕ is
path-homotopic to α.

PROOF. Let Ft = (1− t)ϕ + tId[0,1], a homotopy from ϕ to Id[0,1] on [0, 1]. We
can check that Gt = α ◦ Ft, i.e., G = α ◦ F is a path-homotopy from α ◦ ϕ to α. �

COROLLARY 13.4. (α · β) · γ is path-homotopic to α · (β · γ).

PROOF. We can check directly that (α · β) · γ is a reparametrization of α · (β ·
γ). (It is likely easier for the reader to find out a formula for a reparametrization
himself/herself than to read about one). �
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13. THE FUNDAMENTAL GROUP 89

The fundamental group. For elementary algebra [Gal10] is a very good text-
book. Recall that a group is a set G with a map

G× G → G

(a, b) 7→ a · b,

callled a multiplication, such that:

(a) multiplication is associative: (ab)c = a(bc), ∀a, b, c ∈ G,
(b) there exists an element of G called the unit element or the identity element

esatisfying ae = ea = a, ∀a ∈ G,
(c) for each element a of G there exists an element of G called the inverse

element of a, denoted by a−1, satisfying a · a−1 = a−1 · a = e.

Consider the set of loops of X based at a point x0 under the path-homotopy rela-
tion. On this set we define a multiplication operation [α] · [β] = [α · β]. By 13.1 this
operation is well-defined.

THEOREM 13.5. The set of all path-homotopy classes of loops of X based at a point x0

is a group under the above operation.

This group is called the fundamental group (nhóm cơ bản) of X at x0, denoted
by π1(X, x0). The point x0 is called the base point.

PROOF. Denote by 1 the constant loop at x0. By lemma 13.3, 1 · α is path-
homotopic to α, thus [1] · [α] = [α]. So [1] is the identity in π1(X, x0).

We define [α]−1 = [α−1]. It is easy to check that this is well-defined. By 13.2
[α]−1 is indeed the inverse element of [α].

By 13.4 we have associativity:

([α] · [β]) · [γ] = [α · β] · [γ] = [(α · β) · γ] = [α · (β · γ)] = [α] · ([β] · [γ]).

�

EXAMPLE. The fundamental group of a space containing only one point is
trivial. Namely, if X = {x0} then π1(X, x0) = 1, the group with only one element.

Recall that a map h : G1 → G2 between two groups is called a group homomor-
phism if it preserves group operations, i.e. h(a · b) = h(a) · h(b), ∀a, b ∈ G1. It is a
group isomorphism if is a bijective homomorphism (in this case the inverse map is
also a homomorphism).

PROPOSITION 13.6 (dependence on base point). If there is a path from x0 to x1

then π1(X, x0) is isomorphic to π1(X, x1).

PROOF. Let α be a path from x0 to x1. Consider the map

hα : π1(X, x1) → π1(X, x0)

[γ] 7→ [α · γ · α−1].
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90 ALGEBRAIC TOPOLOGY

Using 13.1 and 13.4 we can check that this is a well-defined map, and is a group
homomorphism with an inverse homomorphism:

h−1
α : π1(X, x1) → π1(X, x0)

[γ] 7→ [α−1 · γ · α].
�

Thus for a path-connected space the fundamental group is the same up to
group isomorphisms for any choice of base point. Therefore if X is a path-connected
space we often drop the base point in the notation and just write π1(X).

Induced homomorphism. Let X and Y be topological spaces, and f : X →
Y. Then f induces the following map

f∗ : π1(X, x0) → π1(Y, f (x0))

[γ] 7→ [ f ◦ γ].

This is a well-defined map (problem 13.8). Notice that f∗ depends on the base
point x0. Furthermore f∗ is a group homomorphism, indeed:

f∗([γ1] · [γ2]) = f∗([γ1 ·γ2]) = [ f ◦ (γ1 ·γ2)] = ( f ◦γ1) · ( f ◦γ2) = f∗([γ1]) · f∗([γ2]).

PROPOSITION ((g ◦ f )∗ = g∗ ◦ f∗). If f : X → Y and g : Y → Z then (g ◦ f )∗ =
g∗ ◦ f∗ as maps π1(X, x0)→ π1(Z, g( f (x0))).

PROOF.

(g ◦ f )∗([γ]) = [(g ◦ f ) ◦ γ] = [g ◦ ( f ◦ γ)] = g∗([ f ◦ γ)]) = g∗( f∗([γ])).

�

LEMMA. If f : X → X is homotopic to the identity map then f∗ : π1(X, x0) →
π1(X, f (x0)) is an isomorphism.

PROOF. From the assumption there is a homotopy F from f to idX . Then
α(t) = Ft(x0), 0 ≤ t ≤ 1, is a continuous path from f (x0) to x0. We will show
that f∗ = hα where hα is the map used in the proof of 13.6, which was shown there
to be an isomorphism.

For each fixed 0 ≤ t ≤ 1, let βt be the path that goes along α from α(0) = f (x0)

to α(t), given by βt(s) = α(st), 0 ≤ s ≤ 1. For any loop γ at x0, let Gt = βt · Ft(γ) ·
β−1

t . That G is continuous can be checked by writing down the formula for G
explicitly. Then G gives a path-homotopy from f (γ) to α · γ · α−1, thus f∗([γ]) =
[ f ◦ γ] = [α · γ · α−1] = hα(γ). �

THEOREM. If f : X → Y is a homotopy equivalence then f∗ : π1(X, x0) →
π1(Y, f (x0)) is an isomorphism.

PROOF. Since f is a homotopy equivalence there is g : Y → X such that g ◦
f is homotopic to idX and f ◦ g is homotopic to idY. By the above lemma, the
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13. THE FUNDAMENTAL GROUP 91

f (x0)

α(t) = Ft(x0)

x0
γ

Ft(γ)

f (γ)

βt

composition

π1(X, x0)
f∗→ π1(Y, f (x0))

g∗→ π1(X, g( f (x0)))

is an isomorphism, which implies that g∗ is surjective. Similarly the composition

π1(Y, f (x0))
g∗→ π1(X, g( f (x0)))

f
′
∗→ π1(Y, f (g( f (x0))))

is an isomorphism, where f ′∗ denotes the induced homomorphism by f with base
point g( f (x0)). This implies that g∗ is injective. Since g∗ is bijective, from the first
composition we see that f∗ is bijective. �

COROLLARY (homotopy invariance). If two path-connected spaces are homotopic
then their fundamental groups are isomorphic.

We say that for path-connected spaces, the fundamental group is a homotopy in-
variant.

EXAMPLE. The fundamental group of a contractible space is trivial.

Problems.

13.7. Show that if X0 is a path-connected component of X and x0 ∈ X0 then π1(X, x0)

is isomorphic to π1(X0, x0).

13.8. Let X and Y be topological spaces, f : X → Y, f (x0) = y0. Show that the induced
map

f∗ : π1(X, x0) → π1(Y, y0)

[γ] 7→ [ f ◦ γ]

is a well-defined.

13.9. Suppose that f : X → Y is a homeomorphism. Show that the induces homomor-
phism f∗ : π1(X, x0)→ π1(Y, f (x0)) is an isomorphism, directly without using the general
result about homotopy equivalence.

13.10. Suppose that Y is a retract of X through a retraction r : X → Y. Let i : Y ↪→ X
be the inclusion map. With y0 ∈ Y, show that r∗ : π1(X, y0) → π1(Y, y0) is surjective and
i∗ : π1(Y, y0)→ π1(X, y0) is injective.
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92 ALGEBRAIC TOPOLOGY

13.11. Show that

π1(X×Y, (x0, y0)) ∼= π1(X, x0)× π1(Y, y0).

13.12. Show that in a space X the following statements are equivalent:

(a) All continuous maps S1 → X are homotopic.
(b) Any continuous map S1 → X has a continuous extension to a map D2 → X.
(c) π1(X, x0) = 1, ∀x0 ∈ X.

13.13. A space is said to be simply connected (đơn liên) if it is path-connected and any
loop is path-homotopic to a constant loop. Show that a space is simply-connected if and
only if it is path-connected and its fundamental group is trivial.

13.14. Show that any contractible space is simply connected.

13.15. Show that a space is simply connected if and only if all paths with same initial
points and same terminal points are path-homotopic, in other words, there is exactly one
path-homotopy class from one point to another point.
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14. THE FUNDAMENTAL GROUP OF THE CIRCLE 93

14. The fundamental group of the circle

THEOREM (π1(S1) ∼= Z). The fundamental group of the circle is infinite cyclic.

Let γn be the loop (cos(n2πt), sin(n2πt)), 0 ≤ t ≤ 1, the loop on the circle S1

based at the point (1, 0) that goes n times around the circle at uniform speed in
the counter-clockwise direction if n > 0 and in the clockwise direction if n < 0.
Consider the map

Φ : Z → π1(S1, (1, 0))

n 7→ [γn].

This map associates each integer n with the path-homotopy class of γn. We will
show that Φ is a group isomorphism, where Z has the usual additive structure.
This implies that the fundamental group of the circle is generated by a loop that
goes once around the circle in the counter-clockwise direction, and the homotopy
class of a loop in the circle corresponds to an integer representing the “number of
times” that the loop goes around the circle, with the counter-clockwise direction
being the positive direction.

Φ is a group homomorphism. This means γm+n is path-homotopic to γm ·
γn. If m = −n then we can verify from the formulas that γn(t) = γ−m(t) =

γm(1− t) = γ−1
m (t). We have checked earlier 13.2 that γm · γ−1

m is path-homotopic
to the constant loop γ0.

If m 6= −n then γm · γn is a reparametrization of γm+n so they are path-
homotopic by 13.3. Indeed, with

γm+n(t) = (cos((m + n)2πt), sin((m + n)2πt)), 0 ≤ t ≤ 1,

and

γm · γn(t) =

(cos(m2π2t), sin(m2π2t)), 0 ≤ t ≤ 1
2 ,

(cos(n2π(2t− 1)), sin(n2π(2t− 1))), 1
2 ≤ t ≤ 1,

we can find ϕ such that γm+n ◦ ϕ = γm · γn, namely,

ϕ(t) =

 m
m+n 2t, 0 ≤ t ≤ 1

2 ,
n(2t−1)+m

m+n , 1
2 ≤ t ≤ 1.

Covering spaces. Let p : R → S1, p(t) = (cos(2πt), sin(2πt)), a map that
wraps the line around the circle countably infinitely many times in the counter-
clockwise direction, called the projection map. This is related to the usual parametriza-
tion of the circle by angle. The map p is called the covering map associated with of
the covering space R of S1. For a path γ : [0, 1] → S1, a path γ̃ : [0, 1] → R such
that p ◦ γ̃ = γ is called a lift of γ. For example γn(t) = p(nt), 0 ≤ t ≤ 1, so γn has
a lift γ̃n with γ̃n(t) = nt.
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94 ALGEBRAIC TOPOLOGY

R

p
��

[0, 1]

γ̃
==

γ
// S1

An idea is that paths in S1 are projections of paths in R, while R is simpler than
S1.

As a demonstration, we use this idea to show again that γm+n is path-homotopic
to γm · γn. Consider the case m + n > 0. Let

γ̃m+n : [0, 1] → [0, m + n]

t 7→ (m + n)t,

then this is a lift of γm+n. Let

γ̃m · γn : [0, 1] → [0, m + n]

t 7→

m2t, 0 ≤ t ≤ 1
2 ,

n(2t− 1) + m, 1
2 ≤ t ≤ 1,

then this is a lift of γm · γn. The two paths γ̃m+n and γ̃m · γn are paths in R (a
normed vector space) with same endpoints, so they are path-homotopic via a path-
homotopy such as Fs = (1− s)γ̃m+n + sγ̃m · γn, 0 ≤ s ≤ 1. Then γm+n is path-
homotopic to γm · γn via the path-homotopy p ◦ F.

Φ is surjective. This means every loop γ on the circle based at (1, 0) is path-
homotopic to a loop γn. Our is based on the fact that there is a path γ̃ on R starting
at 0 such that γ = p ◦ γ̃. This is an important result in its own right and will be
proved separately below at 14.1. Then γ̃(1) is an integer n. On R the path γ̃ is
path-homotopic to the path γ̃n, via a path-homotopy F, then γ is path-homotopic
to γn via the path-homotopy p ◦ F.

LEMMA 14.1 (existence of lift). Every path in S1 has a lift to R. Furthermore if the
initial point of the lift is specified then the lift is unique.

PROOF. Let us write S1 = U ∪ V with U = S1 \ {(0,−1)} and V = S1 \
{(0, 1)}. Then p−1(U) =

⋃
n∈Z(n − 1

4 , n + 3
4 ), consisting of infinitely many dis-

joint open subsets of R, each of which is homeomorphic to U via p, i.e. p :
(n − 1

4 , n + 3
4 ) → U is a homeomorphism, in particular the inverse map exists

and is continuous. The same thing happens with respect to V.
Let γ : [0, 1] → S1, γ(0) = (1, 0). We can divide [0, 1] into sub-intervals with

endpoints 0 = t0 < t1 < · · · < tn = 1 such that on each sub-interval [ti−1, ti],
1 ≤ i ≤ n, the path γ is either contained in U or in V. This is guaranteed by
the existence of a Lebesgue number (6.3) with respect to the open cover γ−1(U) ∪
γ−1(V) of [0, 1].
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14. THE FUNDAMENTAL GROUP OF THE CIRCLE 95

ti−1 ti

γ̃

γ

p
R

S1

(1, 0)

ni ni+1

0 1

U

p−1(U)

Suppose a lift γ̃(0) is chosen, an integer. Suppose that γ̃ has been constructed
on [0, ti−1] for a certain 1 ≤ i ≤ n. If γ([ti−1, ti]) ⊂ U then there is a unique ni ∈ Z

such that γ̃(ti−1) ∈ (ni − 1
4 , ni +

3
4 ). There is only one way to continuously extend

γ̃ to [ti−1, ti], that is by defining γ̃ = p|−1
(ni− 1

4 ,ni+
3
4 )
◦ γ. In this way γ̃ is extended

continuously to [0, 1]. �

Examining the proof above we can see that the key property of the covering
space p : R → S1 is the following: each point on the circle has an open neighbor-
hood U such that the preimage p−1(U) is the disjoint union of open subsets of R,
each of which is homeomorphic to U via p. This is the defining property of general
covering spaces.

Φ is injective. This is reduced to showing that if γm is path-homotopic to γn

then m = n. Our proof is based on another important result below, 14.2, which
says that if γm is path-homotopic to γn then γ̃m is path-homotopic to γ̃n. This
implies the terminal point m of γ̃m must be the same as the terminal point n of γ̃n.

LEMMA 14.2 (homotopy of lifts). Lifts of path-homotopic paths with same initial
points are path-homotopic.

PROOF. The proof is similar to the above proof of 14.1. Let F : [0, 1]× [0, 1] →
S1 be a path-homotopy from the path F0 to the path F1. If the two lifts F̃0 and F̃1

have same initial points then that initial point is the lift of the point F((0, 0)).
As we noted earlier, the circle has an open cover O such that each U ∈ O we

have p−1(U) is the disjoint union of open subsets of R, each of which is homeo-
morphic to U via p. The collection F−1(O) is an open cover of the square [0, 1]×
[0, 1]. By the existence of Lebesgue’s number, there is a partition of [0, 1] × [0, 1]
into sub-rectangles such that each sub-rectangle is contained in an element of
F−1(O). More concisely, we can divide [0, 1] into sub-intervals with endpoints
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96 ALGEBRAIC TOPOLOGY

0 = t0 < t1 < · · · < tn = 1 such that for each 1 ≤ i, j ≤ n there is U ∈ O such that
F([ti−1, ti]× [tj−1, tj]) ⊂ U.

ti−1

F̃

F

p
R

S1

(1, 0)

Ũ

0 1

U

p−1(U)

1

tj−1

We will build up F̃ sub-rectangle by sub-rectangle, going from left to right
then below to above. We already have F̃((0, 0)). Suppose that for some 1 ≤ i, j ≤ n
the point F̃((ti−1, tj−1)) is already defined. We have F([ti−1, ti]× [tj−1, tj]) ⊂ U for
some U ∈ O. Let Ũ be the unique open subset of R such that Ũ contains the point
F̃((ti−1, tj−1)) and p|Ũ : Ũ → U is a homeomorphism. Then we define F̃ on the
sub-rectangle [ti−1, ti]× [tj−1, tj] to be p|−1

Ũ ◦ F.
We need to check F̃ is continuous on the new domain. Since we extend one

sub-rectangle at a time in this way, the intersection of the previous domain of F̃
and the sub-rectangle [ti−1, ti]× [tj−1, tj] is connected, being one edge or the union
of two edges with a common vertex. That implies F̃ must bring the entire common
domain to Ũ, therefore on this common domain F̃ must be p|−1

Ũ ◦ F, agreeing with
the new definition. The continuity of F̃ now follows from gluing of continuous
functions 3.15.

Thus we obtained a continuous lift F̃ of F. Since the initial point is given, by
uniqueness of lifts of paths in 14.1, the restriction of F̃ to [0, 1]×{0} is F̃0 while the
restriction of F̃ to [0, 1]× {1} is F̃1. Thus F̃ is a path-homotopy from F̃0 to F̃1. �

That the fundamental group of the circle is non-trivial gives us:

COROLLARY. The circle is not contractible.

COROLLARY 14.3. There cannot be any retraction from the disk D2 to its boundary
S1.

PROOF. Suppose there is a retraction r : D2 → S1. Let i : S1 ↪→ D2 be the

inclusion map. From the diagram S1 i→ D2 r→ S1 we have r ◦ i = idS1 , therefore
on the fundamental groups (r ◦ i)∗ = r∗ ◦ i∗ = idπ1(S1). A consequence is that r∗ is
onto, but this is not possible since π1(D2) is trivial while π1(S1) is non-trivial. �
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14. THE FUNDAMENTAL GROUP OF THE CIRCLE 97

A proof of this result for higher dimensions is presented in 16.2.
The important Brouwer fixed point theorem follows from that simple result:

THEOREM 14.4 (Brouwer fixed point theorem for dimension two). Any contin-
uous map from the disk D2 to itself has a fixed point.

PROOF. Suppose that f : D2 → D2 does not have a fixed point, i.e. f (x) 6= x
for all x ∈ D2. The straight line from f (x) to x will intersect the boundary ∂D2 at
a point g(x).

f (x)

x g(x)

We can check that g is continuous (see 14.8). Then g : D2 → ∂D2 is a retraction,
contradicting 14.3. �

Problems.

14.5. Find the fundamental groups of:

(a) the Mobius band,
(b) the cylinder.

14.6. Show that the plane minus a point is not simply connected.

14.7. Derive from the fact that the torus T2 is homeomorphic to S1 × S1 (9.13) the
fundamental group of the torus.

14.8. Check that the map g in the proof of the Brouwer fixed point theorem is indeed
continuous.
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98 ALGEBRAIC TOPOLOGY

15. Van Kampen theorem

Van Kampen theorem is about giving the fundamental group of a union of
subspaces from the fundamental groups of the subspaces.

EXAMPLE (S1 ∨ S1). Two circles with one common point (the figure 8) is called
a wedge product S1 ∨ S1. Let x0 be the common point, let a be a loop starting at
x0 going once around the first circle and let b the a loop starting at x0 going once
around the second circle. Then a and b generate the fundamental groups of the
two circles with based points at x0. Intuitively we can see that π1(S1 ∨ S1, x0)

consists of path-homotopy classes of loops like a, ab, bba, aabab−1a−1a−1, . . . This
is a group called the free group generated by a and b, denoted by 〈a, b〉.

a b

x0

Free group. Let S be a set. Let S−1 be a set having a bijection with S. Cor-
responding to each element x ∈ S is an element in S−1 denoted by x−1. A word
with letters in S is a finite sequence of elements in S ∪ S−1. The sequence with
no element is called the empty word. Given two words we form a new word by
juxtaposition (đặt kề): (s1s2 · · · sn) · (s′1s′2 · · · s′m) = s1s2 · · · sns′1s′2 · · · s′m. With this
operation the set of all words with letters in S becomes a group. The identity el-
ement 1 is the empty word. The inverse element of a word s1s2 · · · sn is the word
s−1

n s−1
n−1 · · · s

−1
1 . This group is called the free group generated by the set S, denoted by

〈S〉.

EXAMPLE. The free group 〈{a}〉 generated by the set {a} is often written as
〈a〉. As a set 〈a〉 can be written as {an | n ∈ Z}. The product is given by am · an =

am+n. The identity is a0. Thus as a group 〈a〉 is an infinite cyclic group, isomorphic
to (Z,+).

Let G be a set and let R be a set of words with letters in G, i.e. R is a finite subset
of the free group 〈G〉. Let N be the smallest normal subgroup of 〈G〉 containing R.
The quotient group 〈G〉 /N is written 〈G | R〉. Elements of G are called generators
of this group and elements of R are called relators of this group. We can think of
〈G | R〉 as consisting of words in G subjected to the relations r = 1 for all r ∈ R.

EXAMPLE.
〈

a | a2〉 = {a0, a} ∼= Z2.

Free product of groups. Let G and H be groups. Form the set of all words
with letters in G or H. In such a word, two consecutive elements from the same
group can be reduced by the group operation. For example ba2ab3b−5a4 = ba3b−2a4.
In particular if x and x−1 are next to each other then they will be canceled. The
identities of G and H are also reduced. For example abb−1c = a1c = ac.
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15. VAN KAMPEN THEOREM 99

As with free groups, given two words we form a new word by juxtaposition.
For example (a2b3a−1) · (a3ba) = a2b3a−1a3ba = a2b3a2ba. This is a group op-
eration, with the identity element 1 being the empty word, the inverse of a word
s1s2 · · · sn is the word s−1

n s−1
n−1 · · · s

−1
1 . This group is called the free product of G with

H.

EXAMPLE (G ∗ H 6= G× H). We have

〈g〉 ∗ 〈h〉 = 〈g, h〉 = {gm1 hn1 gm2 hn2 · · · gmk hnk | m1, n1, . . . , mk, nk ∈ Z, k ∈ Z+}.

Compare that to 〈g〉 × 〈h〉 = {(gm, hn) | m, n ∈ Z} with component-wise multi-
plication. This group can be identified with 〈g, h | gh = hg〉 = {gmhn | m, n ∈ Z}.
Thus Z ∗Z 6= Z×Z.

For more details on free group and free product, see textbooks on Algebra
such as [Gal10] or [Hun74].

Van Kampen theorem.

THEOREM (Van Kampen theorem). Suppose that U, V ⊂ X are open, path-connected,
U ∩ V is path-connected, and x0 ∈ U ∩ V. Let iU : U ∩ V ↪→ U and iV : U ∩ V ↪→ V
be inclusion maps. Then

π1(U ∪V, x0) ∼=
π1(U, x0) ∗ π1(V, x0)

〈{(iU)∗(α)(iV)∗(α)−1 | α ∈ π1(U ∩V, x0)}〉
.

PROOF. Let γ be any loop in X at x0. By the existence of a Lebesgue number in
association with the open cover {γ−1(U), γ−1(V)} of [0, 1], there is a partition of
[0, 1] by 0 = t0 < t1 < · · · < tn = 1 such that γ([ti−1, ti]) ⊂ U or γ([ti−1, ti]) ⊂ V
for every 1 ≤ i ≤ n, and furthermore we can arrange so that γ(ti) ∈ U ∩ V for
every 1 ≤ i ≤ n. Let γi be the path γ

∣∣∣[ti−1,ti ]
reparametrized to the domain [0, 1].

Then γ has a reparametrization as γ1 · γ2 · · · γn. Let βi be a path in U ∩ V from
γ(ti) to x0, 1 ≤ i ≤ n− 1. In terms of path-homotopy in U ∪V we have:

γ ∼ γ1 · γ2 · · · γn

∼ (γ1 · β1) · (β−1
1 · γ2 · β2) · · · (β−1

n−2 · γn−1 · βn−1)(β−1
n−1 · γn).

Thus every loop at x0 in U ∪V is path-homotopic to a product of loops at x0 each
of which is contained entirely either in U or in V.

Let jU : U ↪→ U ∪V and jV : V ↪→ U ∪V be inclusion maps. Let

Φ : π1(U, x0) ∗ π1(V, x0) → π1(U ∪V, x0)

a1b1 · · · anbn 7→ (jU)∗ (a1) (jV)∗ (b1) · · · (jU)∗ (an) (jV)∗ (bn).

It is immediate that Φ is a homomorphism. The above disscusion implies that Φ
is surjective.

For the kernel of Φ, let α ∈ π1(U ∩V, x0), then

Φ((iU)∗(α)(iV)∗(α)−1) = (jU)∗ ((iU)∗(α)) (jV)∗ ((iV)∗(α)
−1))

= (jU ◦ iU)∗ (α) (jV ◦ iV)∗ (α)
−1 = 1,
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100 ALGEBRAIC TOPOLOGY

U V

γ

γ1
γ2

γ3

γ4

β1
β2

β3

γ(t1)

γ(t2)

γ(t3)

x0

by noticing that jU ◦ iU = jV ◦ iV . Thus ker Φ contains the normal subgroup gen-
erated by all elements (iU)∗(α)(iV)∗(α)−1, α ∈ π1(U ∩V, x0).

That ker Φ is equal to that group is more difficult to prove, we will not present
a proof. The reader can read for instance in [Vic94]. �

COROLLARY. The spheres of dimensions greater than one are simply connected:

π1(Sn) ∼=

Z, n = 1

1, n > 1.

PROOF. Let A = Sn \ {(0, 0, . . . , 0, 1)} and B = Sn \ {(0, 0, . . . , 0,−1)}. Then
A and B are contractible. If n ≥ 2 then A ∩ B is path-connected. By Van Kampen
theorem, π1(S2) ∼= π1(A) ∗ π1(B) = 1. �

COROLLARY. If X = U ∪ V with U, V open, path-connected, U ∩ V is simply
connected, and x0 ∈ U ∩V, then π1(X, x0) ∼= π1(U, x0) ∗ π1(V, x0).

EXAMPLE (S1 ∨ S1). Let U be the union of the first circle with an open arc on
the second circle containing the common point. Similarly let V be the union of
the second circle with an open arc on the first circle containing the common point.
Clearly U and V have deformation retractions to the first and the second circles
respectively, while U ∩V is ismply connected (has a deformation retraction to the
common point). Applying the Van Kampen theorem, or the corollary above, we
get

π1(S1 ∨ S1) ∼= π1(S1) ∗ π1(S1) ∼= Z ∗Z.

The fundamental group of a cell complex.

THEOREM 15.1. Let X be a path-connected topological space and consider the space
Xt f Dn obtained by attaching an n-dimensional cell to X via the map f : ∂Dn = Sn−1 →
X.

(a) If n > 2 then π1(X t f Dn) ∼= π1(X).
(b) If n = 2: Let γ1 be the loop (cos 2πt, sin 2πt) on the circle ∂D2. Let x0 =

f (1, 0). Then π1(X t f Dn, x0) ∼= π1(X, x0)/ 〈[ f ◦ γ1]〉.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


15. VAN KAMPEN THEOREM 101

Intuitively, gluing a 2-disk destroys the boundary circle of the disk homotopically,
while gluing disks of dimensions greater than 2 does not affect the fundamental group.

PROOF. Let Y = X t f Dn. Let U = X t f {x ∈ Dn | ‖x‖ > 1
2} ⊂ Y. There

is a deformation retraction from U to X. Let V be the image of the imbedding of
the interior of Dn in Y. Then V is contractible. Also, U ∩ V is homeomorphic to
{x ∈ Dn | 1

2 < ‖x‖ < 1}, which has a deformation retraction to Sn−1. We now
apply Van Kampen theorem to the pair (U, V).

When n > 2 the fundamental group of U ∩ V is trivial, therefore π1(Y) ∼=
π1(U) ∼= π1(X).

Consider the case n = 2. Let y0 ∈ U ∩ V be the image of the point ( 2
3 , 0) ∈

D2, let γ be imbedding of the loop 2
3 (cos 2πt, sin 2πt) starting at y0 going once

around the annulus U ∩ V. Then [γ] is a generator of π1(U ∩ V, y0). In V the
loop γ is homotopically trivial, therefore π1(Y, y0) ∼= π1(U, y0)/ 〈[γ]〉. Under the
deformation retraction from U to X, [γ] becomes [ f ◦ γ1]. Therefore π1(Y, x0) ∼=
π1(X, x0)/ 〈[ f ◦ γ1]〉. �

This result shows that the fundamental group only gives information about
the two-dimensional skeleton of a cell complex, it does not give information on
cells of dimensions greater than 2.

EXAMPLE 15.2. Consider the space below. As a cell-complex it consists of

a

a

a

one 0-cell, one 1-cell (represented by a), forming the 1-dimensional skeleton (a
circle, also denoted by a), and one 2-cell attached to the 1-dimensional skeleton by
wrapping the boundary of the disk around athree times. Thus the fundamental
group of the space is isomorphic to

〈
a | a3 = 1

〉 ∼= Z3. In practice, we get the
fundamental group immediately by seeing that the boundary of the disk is a3 and
gluing this disk homotopically destroys a3.

The fundamental groups of surfaces. By the classification theorem, any
compact without boundary surface is obtained by identifying the edges of a poly-
gon following a word as in 11.2. As such it has a cell complex structure with a
two-dimensional disk glued to the boundary of the polygon under the equivalence
relation, which is a wedge of circles. An application of 15.1 gives us:

THEOREM. The fundamental group of a connected compact surface S is isomorphic
to one of the following groups:

(a) trivial group, if S = S2,
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102 ALGEBRAIC TOPOLOGY

(b)
〈

a1, b1a2, b2, . . . , ag, bg | a1b1a−1
1 b−1

1 a2b2a−1
2 b−1

2 · · · agbga−1
g b−1

g

〉
, if S is the

orientable surface of genus g,
(c)

〈
c1, c2, . . . , cg | c2

1c2
2 · · · c2

g

〉
, if S is the unorientable surface of genus g.

EXAMPLE. For the torus: π1(T1) ∼= 〈a, b | ab = ba〉 ∼= Z×Z.
For the projective plane: π1(RP2) ∼=

〈
c | c2 = 1

〉 ∼= Z2.

Problems.

15.3. Use the Van Kampen theorem to find the fundamental groups of the following
spaces:

(a) A wedge of finitely many circles.
(b) S1 ∨ S2.
(c) S2 ∨ S3.
(d) The plane minus finitely many points.
(e) The Euclidean space R3 minus finitely many points.

15.4. Give a rigorous definition of the wedge product of two spaces. For example, what
really is S1 ∨ S1?

15.5. By problem 9.14 we have two different presentations for the fundamental group
of the Klein bottle: π1(K) ∼=

〈
a, b | aba−1b

〉
and π1(K) ∼=

〈
a, b | a2b2〉. Show directly that〈

a, b | aba−1b
〉 ∼= 〈a, b | a2b2〉.

15.6. Is the fundamental group of the Klein bottle abelian?

15.7. Show that the fundamental groups of the one-hole torus and the two-holes torus
are not isomorphic. Therefore the two surfaces are different.

15.8. Find a space whose fundamental group is isomorphic to Z ∗Z2 ∗Z3.

15.9. Show that if X = A ∪ B, where A and B are open, simply connected, and A ∩ B
is path-connected, then X is simply connected.

15.10. Is R3 \ {(0, 0, 0)} simply connected? How about R3 \ {(0, 0, 0), (1, 0, 0)}?

15.11 (two-dimensional Poincaré conjecture). If a compact surface is simply connected
then it is homeomorphic to the two-dimensional sphere.

15.12. Consider the three-dimensional torus T3, obtained from the cube [0, 1]3 by iden-
tifying opposite faces by projection maps, that is (x, y, 0) ∼ (x, y, 1), (0, y, z) ∼ (1, y, z),
(x, 0, z) ∼ (x, 1, z), ∀(x, y, z) ∈ [0, 1]3.

(a) Show that T3 is homeomorphic to S1 × S1 × S1.
(b) Show that T3 is a 3-dimensional manifold.
(c) Construct a cellular structure on T3.
(d) Compute the fundamental group of T3.

15.13. * Consider the space X obtained from the cube [0, 1]3 by rotating each lower face
(i.e. faces on the planes xOy, yOz, zOx) an angle of π/2 about the normal line that goes
through the center of the face, then gluing this face to the opposite face. For example the
point (1,1,0) will be glued to the point (0, 1, 1).
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15. VAN KAMPEN THEOREM 103

(a) Show that X has a cellular structure consisting of 2 0-cells, 4 1-cells, 3 2-cells, 1
3-cell.

(b) Compute the fundamental group of X.
(c) Check that the fundamental group of X is isomorphic to the quaternion group.

15.14. If
G = 〈g1, g2, . . . , gm1 | r1, r2, . . . , rn1 〉

and
H = 〈h1, h2, . . . , hm2 | s1, s2, . . . , sn2 〉

then
G ∗ H = 〈g1, g2, . . . , gm1 , h1, h2, . . . , hm2 | r1, r2, . . . , rn1 , s1, s2, . . . , sn2 〉 .
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104 ALGEBRAIC TOPOLOGY

16. Homology

In homology theory we associate each space with a sequence of groups.
A singular simplex (đơn hình suy biến, kì dị) is a continuous map from a stan-

dard simplex to a topological space. More precisely, an n-dimensional singular
simplex in a topological space X is a continuous map σ : ∆n → X, where ∆n is the
standard n-simplex.

Let Sn(X) be the free abelian group generated by all n-dimensional singular
simplexes in X. As a set

Sn(X) =

{
m

∑
i=1

niσi | σi : ∆n → X, ni ∈ Z, m ∈ Z+

}
.

Each element of Sn(X) is a finite sum of integer multiples of n-dimensional singu-
lar simplexes, called a singular n-chain.

Let σ be an n-dimensional singular simplex in X, i.e., a map

σ : ∆n → X

(t0, t1, . . . , tn) 7→ σ(t0, t1, . . . , tn).

For 0 ≤ i ≤ n define the ith face of σ to be the (n− 1)-singular simplex

∂i
n(σ) : ∆n−1 → X

(t0, t1, . . . , tn−1) 7→ σ(t0, t1, . . . , ti−1, 0, ti, . . . , tn−1).

Define the boundary of σ to be the singular (n− 1)-chain

∂n(σ) =
n

∑
i=0

(−1)i∂i
n(σ).

Intuitively one can think of ∂n(σ) as σ|∂∆n . The map ∂n is extended linearly to
become a group homomorphism from Sn(X) to Sn−1(X).

EXAMPLE. A 0-dimensional singular simplex in X is a point in X.
A 1-dimensional singular simplex is a continuous map σ(t0, t1) with t0, t1 ∈

[0, 1] and t0 + t1 = 1. Its image is a curve between the points A = σ(1, 0) and
B = σ(0, 1). Its boundary is −A + B.

A 2-dimensional singular simplex is a continuous map σ(t0, t1, t2) with t0, t1, t2 ∈
[0, 1] and t0 + t1 + t2 = 1. Its image is a “curved triangle” between the points
A = σ(1, 0, 0), B = σ(0, 1, 0), and C = (0, 0, 1). Intuitively, the image of the face
∂0 is the “curved edge” BC, the image of ∂1 is AC, and the image of ∂2 is AB. The
boundary is ∂0 − ∂1 + ∂2. Intuitively, it is BC− AC + AB.

PROPOSITION 16.1. ∂n−1 ◦ ∂n = 0, ∀n ≥ 2.

PROOF. Let σ be a singular n-simplex. From definition:
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16. HOMOLOGY 105

(∂n−1∂n) (σ) = ∂n−1

(
n

∑
i=0

(−1)i∂i
n(σ)

)

=
n−1

∑
j=0

(−1)j∂
j
n−1

(
n

∑
i=0

(−1)i∂i
n(σ)

)

= ∑
0≤i≤n,0≤j≤n−1

(−1)i+j∂
j
n−1∂i

n(σ)

= ∑
0≤j<i≤n

(−1)i+j∂
j
n−1∂i

n(σ) +

+ ∑
0≤i≤j≤n−1

(−1)i+j∂
j
n−1∂i

n(σ)

= ∑
0≤j<i≤n

(−1)i+j∂
j
n−1∂i

n(σ) +

+ ∑
0≤i<k≤n, (k=j+1)

(−1)i+k−1∂k−1
n−1∂i

n(σ)

= ∑
0≤j<i≤n

(−1)i+j∂
j
n−1∂i

n(σ) +

+ ∑
0≤j<i≤n

−(−1)i+j∂i−1
n−1∂

j
n(σ).

For 0 ≤ j < i ≤ n:

∂
j
n−1∂i

n(σ)(t0, . . . , tn−2) = ∂i
nσ(t0, . . . , tj−1, 0, tj, . . . , tn−2)

= σ(t0, . . . , tj−1, 0, tj, . . . , ti−2, 0, ti−1, . . . , tn−2),

while

∂i−1
n−1∂

j
n(σ)(t0, . . . , tn−2) = ∂

j
nσ(t0, . . . , ti−2, 0, ti−1, . . . , tn−2)

= σ(t0, . . . , tj−1, 0, tj, . . . , ti−2, 0, ti−1, . . . , tn−2),

thus ∂
j
n−1∂i

n = ∂i−1
n−1∂

j
n. So ∂n−1 ◦ ∂n = 0. �

That ∂n−1 ◦ ∂n = 0 can be interpreted as

Im(∂n+1) ⊂ ker(∂n).

Elements of ker(∂n) are often called closed chains or cycles, while elements of Im(∂n+1)

are called exact chains or boundaries. We have just observed that

exact⇒ closed

boundaries are cycles

Homology group. In general, a sequence of groups and homomorphisms

· · · ∂n+2→ Sn+1
∂n+1→ Sn

∂n→ Sn−1
∂n−1→ · · · ∂1→ S0
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106 ALGEBRAIC TOPOLOGY

satisfying Im(∂n+1) ⊂ ker(∂n), i.e. ∂n ◦ ∂n+1 = 0 for all n ≥ 0 is called a chain
complex (phức xích). If furthermore Im(∂n+1) = ker(∂n), ∀n ≥ 0 then the chain
complex is called exact (khớp).

Notice that if the group Sn are abelian then Im(∂n+1) is a normal subgroup of
ker(∂n).

DEFINITION. The n-dimensional singular homology group of a topological space
X is defined to be the quotient group

Hn(X) =
ker(∂n)

Im(∂n+1)
.

EXAMPLE. Denoting by {pt} a space containing only one point, then Hn({pt}) =
0, n ≥ 1 and H0({pt}) = 〈pt〉 ∼= Z.

PROPOSITION. If X is path-connected then H0(X) ' Z, generated by any point of
X. In general H0(X) is generated by one point in each path-connected components of X.

PROOF. Let x0 and x1 be two points in X. A continuous path from x0 to x1

gives rise to a singular 1-simplex σ : ∆1 → X such that σ(0, 1) = x0 and σ(1, 0) =
x1. The boundary of this singular simplex is ∂σ = x1 − x0 ∈ Im ∂1. Thus [x0] =

[x1] ∈ H0(X) = S0(X)/ Im ∂1. �

Induced homomorphism. Let X and Y be topological spaces and let f : X →
Y be continuous. For any n-singular simplex σ let f#(σ) = f ◦ σ, then extend f#

linearly, we get a group homomorphism f# : Sn(X)→ Sn(Y).

EXAMPLE. Id∗ = Id.

LEMMA. ∂ ◦ f# = f# ◦ ∂. As a consequence f# brings cycles to cycles, boundaries to
boundaries.

PROOF. Because both f# and ∂ are linear we only need to prove ∂( f#(σ)) =

( f#(∂(σ)) for any n-singular simplex σ : ∆n → X. We have

f#(∂(σ)) = f#

(
n

∑
i=0

(−1)i∂i(σ)

)
=

n

∑
i=0

(−1)i f ◦ ∂i(σ).

On the other side: ∂( f#(σ)) = ∑n
i=0(−1)i∂i( f ◦ σ). Notice that

∂i( f ◦ σ)(t0, . . . , tn−1) = ( f ◦ σ)(t0, . . . , ti−1, 0, ti, . . . , tn−1)

= f (σ(t0, . . . , ti−1, 0, ti, . . . , tn−1))

= f (∂iσ(t0, . . . , tn−1)).

Thus ∂i( f ◦ σ) = f ◦ ∂i(σ). From this the result follows. �

As a consequence f# induces a group homomorphism:

f∗ : Hn(X) → Hn(Y).

[c] 7→ [ f#(c)].
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16. HOMOLOGY 107

LEMMA. (g ◦ f )∗ = g∗ ◦ f∗.

PROOF. Since the maps involved are linear it is sufficient to check this property
on each n-singular simplex σ:

(g ◦ f )∗([σ]) = [(g ◦ f )#(σ)] = [(g ◦ f ) ◦ σ] = [g ◦ ( f ◦ (σ))] = g∗([ f ◦ σ]) =

= g∗( f∗([σ])).

�

A simple application of the above lemma gives us an important result:

THEOREM (topological invariance of homology). If f : X → Y is a homeomor-
phism then f∗ : Hn(X)→ Hn(Y) is an isomorphism.

PROOF. Apply the above lemma to the pair f and f−1. �

We will use, but will not prove, the following stronger result :

THEOREM (homotopy invariance of homology). If f : X → Y is a homotopy
equivalence then f∗ : Hn(X)→ Hn(Y) is an isomorphism.

Mayer-Vietoris sequence.

THEOREM. Let X be a topological space. Suppose U, V ⊂ X and int(U)∪ int(V) =

X. Then there is an exact chain complex, called the Mayer-Vietoris sequence:

· · · → Hn(U ∩V)
(i∗ ,j∗)→ Hn(U)⊕ Hn(V)

ψ∗→ Hn(U ∪V)
∆→ Hn−1(U ∩V)→ · · ·

· · · → H0(U ∪V)→ 0.

Here i and j are the inclusion maps from U ∩V to U and V respectively.

The Mayer-Vietoris sequence allows us to study the homology of a space from
homologies of subspaces, in a similar manner to the Van Kampen theorem.

We will use the Mayer-Vietoris sequence to compute the homology of the
sphere:

THEOREM. For m ≥ 1,

Hn(Sm) ∼=

Z, if n = 0, m

0, otherwise.

PROOF. Let U and V be the upper hemisphere and the lower hemisphere
slightly enlarged, for example, U = Sm \ {(0, . . . , 0,−1)} and V = Sm \ {(0, . . . , 0, 1)}.
The Mayer-Vietoris sequence for this pair gives an exact short sequence:

Hn(U)⊕ Hn(V)→ Hn(Sm)→ Hn−1(U ∩V)→ Hn−1(U)⊕ Hn(V).

Notice that for m ≥ 1, U and V are contractible, while U ∩V is homotopic to Sm−1.
We get for n ≥ 2 a short exact sequence

0→ Hn(Sm)→ Hn−1(Sm−1)→ 0.
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108 ALGEBRAIC TOPOLOGY

This implies Hn(Sm) ∼= Hn−1(Sm−1) for n ≥ 2. The problem now reduces to
computation of H1(Sm).

Consider the exact sequence:

H1(U)⊕ H1(V)→ H1(Sm)
∆→ H0(U ∩V)

(i∗ ,j∗)→ H0(U)⊕ H0(V).

Since H1(U) = H1(V) = 0, it follows that ∆ is injective.
For m ≥ 2 a point x ∈ U ∩ V generates H0(U ∩ V) as well as H0(U) and

H0(V). Therefore the maps i∗ and j∗ are injective. This implies Im(∆) = 0. This
can happen only when H1(Sm) = 0.

For m = 1 the intersection U ∩ V has two path-connected components. Let
x and y be points in each connected component. If mx + ny ∈ H0(U ∩ V) then
i∗(mx + ny) = j∗(mx + ny) = mx + nx = (m + n)x. Thus ker(i∗, j∗) = {mx −
my = m(x− y) | m ∈ Z}. This implies H1(S1) ∼= Im(∆) = ker(i∗, j∗) ∼= Z. �

COROLLARY 16.2. For n ≥ 2 there cannot be any retraction from the disk Dn to its
boundary Sn−1.

The proof is similar to the 2-dimensional case (14.3).

PROOF. Suppose there is a retraction r : Dn → Sn−1. Let i : Sn−1 ↪→ Dn

be the inclusion map. From the diagram Sn−1 i→ Dn r→ Sn−1 we have r ◦ i =

idSn−1 , therefore on the (n− 1)-dimensional homology groups (r ◦ i)∗ = r∗ ◦ i∗ =
idHn−1(Sn−1) , implying that r∗ : Hn−1(Dn) → Hn−1(Sn−1) is onto. But this is not
possible for n ≥ 2, since Hn−1(Dn) is trivial while Hn−1(Sn−1) is not. �

A proof of this result in differentiable setting is presented in 24.1.
Just as in the case of dimension two (14.4), the Brouwer fixed point theorem

follows, with the same proof:

THEOREM 16.3 (Brouwer fixed point theorem). Any continuous map from the
disk Dn to itself has a fixed point.

By 16.16 and 16.15 we get a more general version:

THEOREM (generalized Brouwer fixed point theorem). Any continuous map
from a compact convex subset of a Euclidean space to itself has a fixed point.

For more on singular homology, one can read [Vic94] and [Hat01].

Problems.

16.4. Prove 16.1.

16.5. Compute the homology groups of S2 × [0, 1].

16.6. Compute the fundamental group and the homology groups of the Euclidean
space R3 minus a straight line.

16.7. Compute the fundamental group and the homology groups of the Euclidean
space R3 minus two intersecting straight lines.
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16. HOMOLOGY 109

16.8. Compute the fundamental group and the homology groups of R3 \ S1.

16.9. Show that if X has k connected components Xi, 1 ≤ i ≤ k, then Sn(X) ∼=⊕k
i=1 Sn(Xi) and Hn(X) ∼=

⊕k
i=1 Hn(Xi).

16.10. Show that if A and B are open, A ∩ B is contractible then Hi(A ∪ B) ∼= Hi(A)⊕
Hi(B) for i ≥ 2. Is this true if i = 0, 1?

16.11. Using problem 16.10, compute the homology groups of S2 ∨ S4.

16.12. Compute the fundamental group and the homology groups of S2 ∪ {(0, 0, z) | −
1 ≤ z ≤ 1}.

16.13. Let U be an open subset of R2 and a ∈ U. Show that

H1(U \ {a}) ∼= H1(U)⊕Z.

16.14. Let A be a retract of X via a retraction r : X → A. Let i : A ↪→ X be the
inclusion map. Show that the induced homomorphism i∗ : Hn(A) → Hn(X) is injective
while r∗ : Hn(X)→ Hn(A) is surjective.

16.15. Show that if every continuous map from X to itself has a fixed point and Y is
homeomorphic to X then every continuous map from Y to itself has a fixed point.

16.16. * Show that:

(a) Any convex compact subset of Rn with empty interior is homemorphic to the
closed interval D1.

(b) Any convex compact subset of Rn with non-empty interior is homemorphic to the
disk Dn.

16.17. Is the Brouwer fixed point theorem correct for open balls? for spheres? for tori?
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110 ALGEBRAIC TOPOLOGY

17. Homology of cell complexes

In this section we consider homology for a special class of topological spaces:
cell complexes, including simplicial complexes.

Degrees of maps on spheres. A continuous map f : Sn → Sn induces a
homomorphism f∗ : Hn(Sn) → Hn(Sn). We know Hn(Sn) ∼= Z, so there is a
generator a such that Hn(Sn) = 〈a〉. Then f∗(a) = ma for a certain integer m,
called the topological degree of f , denoted by deg f .

EXAMPLE. If f is the identity map then deg f = 1. If f is the constant map
then deg f = 0.

Relative homology groups. Let A be a subspace of X. Viewing each singular
simplex in A as a singular simplex in X, we have a natural inclusion Sn(A) ↪→
Sn(X). In this way Sn(A) is a normal subgroup of Sn(X). The boundary map ∂n

induces a homomorphism ∂n : Sn(X)/Sn(A)→ Sn−1(X)/Sn−1(A), giving a chain
complex

· · · → Sn(X)/Sn(A)
∂n→ Sn−1(X)/Sn−1(A)

∂n−1→ Sn−2(X)/Sn−2(A)→ · · ·

The homology groups of this chain complex is called the relative homology groups
of the pair (X, A), denoted by Hn(X, A).

If f : X → Y is continuous and f (A) ⊂ B then as before it induces a homo-
morphism f∗ : Hn(X, A)→ Hn(Y, B).

Homology of cell complexes. Let X be a cellular complex. Recall that Xn

denote the n-dimensional skeleton of X. Suppose that Xn is obtained from Xn−1

by attaching the n-dimensional disks Dn
1 , Dn

2 , . . . , Dn
cn . Let en

1 , en
2 , . . . , en

cn be the cor-
responding cells. Then

Hn(Xn, Xn−1) ∼=
〈
en

1 , en
2 , . . . , en

cn

〉
= {

cn

∑
i=1

mien
i | mi ∈ Z}.

If cn = 0 then let the group be 0.
Consider the sequence

C(X) = · · · dn+1→ Hn(Xn, Xn−1)
dn→ Hn−1(Xn−1, Xn−2)

dn−1→ · · ·

· · · d2→ H1(X1, X0)
d1→ H0(X).

Here the map dn is given by

dn(en
i ) =

cn−1

∑
j=1

di,jen−1
j ,

where the integer number di,j is the degree of the following map on spheres:

Sn−1
i = ∂Dn

i → Xn−1 → Xn−1/Xn−2 = Sn−1
1 ∨ Sn−1

2 ∨ · · · ∨ Sn−1
cn−1
→ Sn−1

j .

Of course if cn−1 = 0 then dn = 0.
Below is the main tool for computing homology of cellular complexes:
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17. HOMOLOGY OF CELL COMPLEXES 111

THEOREM. The sequence C(X) is a chain complex and its homology coincides with
the homology of X.

. As an application we get:

THEOREM (homology groups of surfaces). The homology groups of a connected
compact orientable surface S of genus g ≥ 0 is

Hn(S) ∼=

Z, if n = 0, 2

Zg if n = 1.

For more on cellular homology one can read [Hat01, p. 137].

Homology of simplicial complexes. Now we look at a special class of cell
complexes: simplicial complexes. For simplicial complexes we will develop an
algorithm for computing homology.

Consider a simplex of dimension greater than 0. Consider the relation on
the collection of ordered sets of vertices of this simplex whereas two order sets of
vertices are related if they differ by an even permutation. This is an equivalence
relation. Each of the two equivalence classes is called an orientation of the simplex.
If we choose an orientation, then the simplex is said to be oriented.

In more details, an orientation for a set A consisting of n elements is repre-
sented by bijective map from the set of integers I = {1, 2, . . . , n} to A. If o and o′

are two such maps, then o = o′ ◦ σ where σ = o′−1 ◦ o : I → I is bijective, a permu-
tation. Any permutation falls into one of tow classes: even or odd permutations.
We say that o and o′ represent the same orientations if σ is an even permutation.

For each simplex of dimension greater than 0 there are two oriented simplexes.
For convenience we say that for a 0-dimensional simplex (a vertex) there is only one
orientation.

REMARK. In this section, to be clearer we reserve the notation v0v1 · · · vn for
an un-oriented simplex with the set of vertices {v0, v1, . . . , vn}, and the notation
[v0, v1, . . . , vn] for an oriented simplex with the same set of vertices, i.e. the simplex
v0v1 · · · vn with this particular order of vertices. (Later, and in other sources, this
convention can be dropped.)

EXAMPLE. A 1-dimensional simplex in Rn is a straight segment connecting
two points. Choosing one point as the first point and the other point as the second
gives an orientation to this simplex. Intuitively, this means to give a direction to
the straight segment. If the two vertices are labeled v0 and v1, then an ordered pair
[v0, v1] gives an orientation for this simplex, while an ordered pair [v1, v0] gives a
simplex with the opposite orientation.

Consider a 2-dimensional simplex. Let v0, v1, v2 be the vertices. The oriented
simplexes [v0, v1, v2], [v1, v2, v0], [v2, v0, v1] have the same orientations, opposite to
the orientations of the oriented simplexes [v1, v0, v2], [v2, v1, v0], [v0, v2, v1].
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112 ALGEBRAIC TOPOLOGY

v2

v0 v1

FIGURE 17.1.

Let X be a simplicial complex in a Euclidean space. For each integer n let
Sn(X) be the free abelian group generated by all n-dimensional oriented simplexes
in X modulo the relation that if σ and σ′ are oriented simplexes with opposite
orientations then σ = −σ′. Each element of Sn(X), called an n-dimensional chain
(xích), is a finite sum of integer multiples of n-dimensional oriented simplexes,
i.e. of the form ∑m

i=1 niσi where σi is an n-dimensional oriented simplex of X and
ni ∈ Z.

If n < 0 or n > dim X then Sn(X) is assigned to be the trivial group 0.
The group Sn(X) is generated by the set of all n-simplexes of X with each

simplex given any orientation.

EXAMPLE 17.2. Consider the simplicial complex whose underlying space is
the triangle in figure 17.1:

X = {v0v1v2, v0v1, v1v2, v2v0, v0, v1, v2}.

For n = 0:

S0(X) = {n0v0 + n1v1 + n2v2 | n0, n1, n2 ∈ Z}.

For n = 1:

S1(X) = {n0[v0, v1] + n1[v1, v2] + n2[v2, v0] | n0, n1, n2 ∈ Z}.

In this group S1(X) we have the relations [v1, v0] = −[v0, v1], [v2, v1] = −[v1, v2],
[v0, v2] = −[v2, v0].

For n = 2:
S2(X) = {n0[v0, v1, v2] | n0 ∈ Z}.

Here for example [v0, v1, v2] = −[v2, v1, v0] = [v1, v2, v0].

Let σ = [v0, v1, . . . , vn] be an n-dimensional oriented simplex. Define the
boundary of σ to be the following (n− 1)-dimensional chain, the alternating sum
of the (n− 1)-dimensional faces of σ:

∂nσ =
n

∑
i=0

(−1)i[v0, v1, . . . , vi−1, v̂i, vi+1, . . . , vn],
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17. HOMOLOGY OF CELL COMPLEXES 113

where the notation v̂i is traditionally used to indicate that this element is dropped.
This map is extended linearly to become a map from Sn(X) to Sn−1(X), namely

∂n

(
m

∑
i=1

niσi

)
=

m

∑
i=1

ni∂n (σi) .

It can be checked directly that this boundary map does not depend on choices of
orientations of simplexes.

REMARK. If n < 0 or n > dim X then ∂n = 0 since Sn(X) = 0.

EXAMPLE. Continuing example 17.2:

∂1([v0, v1]) = v1 − v0,

∂1([v1, v2]) = v2 − v1,

∂1([v2, v0]) = v0 − v2,

∂2([v0, v1, v2]) = [v1, v2]− [v0, v2] + [v0, v1] = [v1, v2] + [v2, v0] + [v0, v1].

Notice that:

∂1(∂2([v0, v1, v2])) = ∂1([v0, v1] + [v1, v2] + [v2, v0])

= (v1 − v0) + (v2 − v1) + (v0 − v2) = 0.

By 17, we have:

THEOREM (simplicial homology). The n-dimensional group of a simplicial complex
is isomorphic to the quotient group

ker(∂n)

Im(∂n+1)
.

EXAMPLE. Continuing example 17.2, we compute the homology groups of X.
From

∂1(n0[v0, v1] + n1[v1, v2] + n2[v2, v0]) = n0(v1 − v0) + n1(v2 − v1) + n2(v0 − v2),

we see that an element of Im ∂1 has the form

n0(v1 − v0) + n1(v2 − v1) + n2(v0 − v2) = n0(v1 − v0) + n1(v2 − v0 + v0 − v1) + n2(v0 − v2)

= (n0 − n1)(v1 − v0) + (n1 − n2)(v2 − v0).

Thus Im ∂1 = 〈{v1 − v0, v2 − v0}〉. So

H0(X) = S0(X)/ Im ∂1
∼= 〈v0, v1, v2 | v1 = v0, v2 = v0〉

∼= 〈v0〉 ∼= 〈v1〉 ∼= 〈v2〉 ∼= Z.

Since

n0(v1− v0) + n1(v2− v1) + n2(v0− v2) = (n2− n0)v0 + (n0− n1)v1 + (n1− n2)v2

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


114 ALGEBRAIC TOPOLOGY

we see that ∂1(n0[v0, v1] + n1[v1, v2] + n2[v2, v0]) = 0 if and only if n0 = n1 = n2.
So

ker ∂1 = {n([v0, v1] + [v1, v2] + [v2, v0]) | n ∈ Z} = 〈([v0, v1] + [v1, v2] + [v2, v0])〉 .

Since
∂2(n[v0, v1, v2]) = n([v0, v1] + [v1, v2] + [v2, v0])

we see that

Im ∂2 = {n([v0, v1] + [v1, v2] + [v2, v0]) | n ∈ Z} = 〈([v0, v1] + [v1, v2] + [v2, v0])〉 .

Thus Im ∂2 = ker ∂1, so
H1(X) = 0.

We also see immediately that ∂2(n[v0, v1, v2]) = 0 if and only if n = 0. Thus
ker ∂2 = 0 and

H2(X) = ker ∂2 = 0.

EXAMPLE. Instead of a 2-dimensional triangle in example 17.2, let us consider
a 1-dimensional triangle, namely

X = {v0v1, v1v2, v2v0, v0, v1, v2}.

v2

v0 v1

In this case H1(X) = ker ∂1 = 〈([v0, v1] + [v1, v2] + [v2, v0])〉 ∼= Z, H0(X) =

〈v0〉 ∼= Z, and Hn(X) = 0 for n 6= 0, 1.
For more on simplicial homology one can read [Mun84], [Cro78], or [Ams83].

In [Hat01] Hatcher used a modified notion called ∆-complex, different from sim-
plicial complex. For algorithms for computation of simplicial homology, see [KMM04,
chapter 3].

Problems.

17.3. Using cellular homology compute the homology groups of the following spaces:

(a) The Klein bottle.
(b) S1 ∨ S1.
(c) S1 ∨ S2.
(d) S2 ∨ S3.

17.4. Compute the homology of the simplicial complex described in the picture:

(a)

(b)
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17. HOMOLOGY OF CELL COMPLEXES 115

(c)

(d)

(e)

17.5. Show that if the underlying space of a simplical complex is connected then for
any two vertices there is a continuous path whose trace is a union of some edges connecting
the two vertices.

17.6. Given a simplicial complex X.

(a) Show that if the underlying space |X| is connected then H0(X) ∼= 〈v〉 ∼= Z where
v is any vertex of X.

(b) Show that if |X| has k connected components then H0(X) ∼=
⊕k

i=1 〈vi〉 ∼= Zk,
where vi, 1 ≤ i ≤ k are arbitrary vertices in different components of |X|.

17.7. Show that if the underlying space of a simplicial complex X has k connected
components Xi, 1 ≤ i ≤ k, then Hn(X) ∼=

⊕k
i=1 Hn(Xi).

17.8. Show that two compact connected surfaces are homeomorphic if and only if their
homologies are isomorphic.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


116 ALGEBRAIC TOPOLOGY

Other topics

The Poincaré conjecture. One of the most celebrated achievements in topol-
ogy is the resolution of the Poincaré conjecture:

THEOREM (Poincaré conjecture). A compact manifold which is homotopic to the
sphere is homeomorphic to the sphere.

The proof of this statement is the result of a cumulative effort of many math-
ematicians, including Stephen Smale (for dimension ≥ 5, early 1960s), Michael
Freedman (for dimension 4, early 1980s), and Grigory Perelman (for dimension 3,
early 2000s). For dimension 2 it is elementary, see problem 15.11.

Guide for further study. There are several books presenting aspects of alge-
braic topology to undergraduate students, such as [Cro78], [Ams83], [J84].

The book of Munkres [Mun00], also aims at undergraduate students, has a
part on algebraic topology, but stops before homology.

The book [Vas01] gives a modern overview of many aspects of both algebraic
and differential topology, aiming at undergraduate students. Although it often
provides only sketches of proofs, it introduces general ideas very well.

For cellular homology the book of Hatcher [Hat01] is popular, however it aims
at graduate students.

It turns out that our choice of topics is similar to that in the book [Lee11],
which aims at graduate students. The reader can find more details and more ad-
vanced treatments there.

Recently algebraic topology has begun to be applied to science and engineer-
ing. One can read about a new field called “Computational Topology” in [EH10].
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Differential Topology

18. Smooth manifolds

In this chapter we always assume that Rn has the Euclidean topology.
Roughly, a smooth manifold is a space that is locally diffeomorphic to Rn.

This allows us to bring the differential and integral calculus from Rn to manifolds.
Smooth manifolds provide a setting for generalizations of vector calculus of curves
and surfaces (see e.g. [Vugt3]) to higher dimensions. Smooth manifolds constitute
a subset of the set of topological manifolds, introduced in section 10.

Smooth maps on Rn. For a function f from a subset D of Rk to Rl we say that
f is smooth (or infinitely differentiable) at an interior point x of D if f is continuous
and partial derivatives of all orders of f exist and are continuous at x. (In common
notation in analysis, f is smooth means f ∈ C∞ =

⋂∞
k=0 Ck.)

If x is a boundary point of D, then f is said to be smooth at x if f can be extended
to be a function which is smooth at every point in an open neighborhood in Rk of
x. Precisely, f is smooth at x if there is an open set U ⊂ Rk containing x, and
function F : U → Rl such that F is smooth at every point of U and F|U∩D = f .

If f is smooth at every point of D then we say that f is smooth on D, or f ∈
C∞(D).

Let X ⊂ Rk and Y ⊂ Rl . Then f : X → Y is a diffeomorphism if it is bijective
and both f and f−1 are smooth. If there is a diffeomorphism from X to Y then we
say that X and Y are diffeomorphic.

If a function is smooth at a point, it must be continuous at that point. Therefore
a diffeomorphism is also a homeomorphism.

EXAMPLE. Any open ball B(x, r) in Rn is diffeomorphic to Rn (compare 3.16).

Smooth manifolds.

DEFINITION. A subspace M ⊂ Rk is a smooth manifold of dimension m ∈ Z+

if every point in M has a neighborhood in M which is diffeomorphic to Rm.

REMARK. By convention, a manifold of dimension 0 is a discrete subspace of
a Euclidean space.

Recall that by Invariance of dimension 9.26, Rm cannot be homeomorphic to
Rn if m 6= n, therefore a manifold has a unique dimension.

117
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118 DIFFERENTIAL TOPOLOGY

REMARK. A diffeomorphism is a homeomorphism, therefore a smooth man-
ifold is a topological manifold. In differential topology unless stated otherwise
manifolds mean smooth manifolds.

The following is a simple but convenient observation, although it seems to be
less intuitive than our original definition, it is technically more convenient to use:

PROPOSITION. A subspace M ⊂ Rk is a smooth manifold of dimension m if every
point in M has an open neighborhood in M which is diffeomorphic to an open subset of
Rm.

PROOF. Suppose that (U, φ) is a local coordinate on M where U is a neighbor-
hood of x in M and φ : U → Rm is a diffeomorphism. There is an open subset U′

of M such that x ∈ U′ ⊂ U. Since φ is a homeomorphism, φ(U′) is an open neigh-
borhood of φ(x). There is a ball B(φ(x), r) ⊂ φ(U′). Let U′′ = φ−1(B(φ(x), r)).
Then U′′ is open in U′, so is open in M. Furthermore φ|U′′ : U′′ → B(φ(x), r) is a
diffeomorphism.

We have just shown that any point in the manifold has an open neighborhood
diffeomorphic to an open ball in Rm. For the reverse direction, we recall that any
open ball in Rm is diffeomorphic to Rm. �

By this result, each point x in a manifold has an open neighborhood U in M
and a diffeomorphism ϕ : U → V where V is an open subset of Rm. The pair
(U, ϕ) is called a local coordinate at x. The pair (V, ϕ−1) is called a local parametriza-
tion at x. A set of pairs (Ux, ϕ) for x ∈ M is called an atlas (tập bản đồ) for M, in
this way each pair (Ux, ϕ) can be called a chart (tờ bản đồ) of this atlas. One can
think of a manifold as a space together with an atlas.

EXAMPLE. Any open subset of Rm is a smooth manifold of dimension m.

PROPOSITION 18.1. The graph of a smooth function f : D → Rl , where D ⊂ Rk is
an open set, is a smooth manifold of dimension k.

PROOF. Let G = {(x, f (x)) | x ∈ D} ⊂ Rk+l be the graph of f . The map
x 7→ (x, f (x)) from D to G is smooth. Its inverse is the projection (x, y) 7→ x. This
projection is the restriction of the projection given by the same formula from Rk+l

to Rk, which is a smooth map. Therefore D is diffeomorphic to G. �

EXAMPLE (curves and surfaces). The graph of a smooth function y = f (x) for
x ∈ (a, b) is a 1-dimensional smooth manifold, often called a smooth curve.

The graph of a smooth function z = f (x, y) for x, y ∈ D, where D is an open
set in R2 is a 2-dimensional smooth manifold, often called a smooth surface.

EXAMPLE (circle). Let S1 = {(x, y) ∈ R2 | x2 + y2 = 1}. It is covered by four
neighborhoods which are half circles, each corresponds to points (x, y) ∈ S1 such
that x > 0, x < 0, y > 0 and y < 0. Each of these neighborhoods is diffeomorphic
to (−1, 1). For example consider the projection from U = {(x, y) ∈ S1 | x > 0} →

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


18. SMOOTH MANIFOLDS 119

(−1, 1) given by (x, y) 7→ y. The map (x, y) 7→ y is smooth on R2, so it is smooth
on U. The inverse map y 7→ (

√
1− y2, y) is smooth on (−1, 1). Therefore the

projection is a diffeomorphism.

REMARK. We are discussing smooth manifolds embedded in Euclidean spaces.
There is a notion of abstract smooth manifold, but we do not discuss it now.

DEFINITION. If M and N are two smooth manifolds in Rk and M ⊂ N then
we say that M is a submanifold of N.

Problems.

18.2. From our definition, a smooth function f defined on D ⊂ Rk does not necessarily
have partial derivatives defined at boundary points of D. However, show that if D is the
closure of an open subspace of Rk then the partial derivatives of f are defined and are
continuous on D. For example, f : [a, b]→ R is smooth if and only if f has right-derivative
at a and left-derivative at b, or equivalently, f is smooth on an open interval (c, d) containing
[a, b].

18.3. If X and Y are diffeomorphic and X is an m-dimensional manifold then so is Y.

18.4. The sphere Sn = {(x1, x2, . . . , xn+1) ∈ Rn+1 | x2
1 + x2

2 + · · · + x2
n+1 = 1} is a

smooth manifold of dimension n, covered by the hemispheres.
There is a another way to see that Sn as a manifold, by using two stereographic projec-

tions, one from the North Pole and one from the South Pole.

18.5. Show that the hyperboloid x2 + y2 − z2 = 1 is a manifold. Is the surface x2 +

y2 − z2 = 0 a manifold?

18.6. The torus can be obtained by rotating around the z axis a circle on the xOz plane
not intersecting the z axis. Show that the torus is a smooth manifold.

18.7. Consider the union of the curve y = sin 1
x , x > 0 and the segment {(0, y)| − 1 ≤

y ≤ 1} (the Topologist’s sine curve, see Section 4.4). Is it a manifold?

18.8. Consider the union of the curve y = x3 sin 1
x , x 6= 0 and the point (0, 0). Is it a

smooth manifold?

18.9. Is the trace of the path γ(t) = ( 1
2 sin(2t), cos(t)), t ∈ (0, 2π) (the figure 8) a

smooth manifold?

18.10. A simple closed regular path is a map γ : [a, b] → Rm such that γ is injective
on [a, b), γ is smooth, γ(k)(a) = γ(k)(b) for all integer k ≥ 0, and γ′(t) 6= 0 for all t ∈ [a, b].
Show that the trace of a simple closed regular path is a smooth 1-dimensional manifold.

18.11. The trace of the path((2 + cos(1.5t)) cos t, (2 + cos(1.5t)) sin t, sin(1.5t)), 0 ≤
t ≤ 4π is often called the trefoil knot. Draw it (using computer). Show that the trefoil knot
is a smooth 1-dimensional manifold (in fact it is diffeomorphic to the circle S1, but this is
more difficult).

18.12. Show that any open subset of a manifold is a manifold.

18.13. Show that a connected manifold is also path-connected.

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


120 DIFFERENTIAL TOPOLOGY

18.14. Show that any diffeomorphism from Sn−1 onto Sn−1 can be extended to a dif-
feomorphism from Dn = B′(0, 1) onto Dn.

18.15. * Show that our definition of smooth manifold coincides with the definitions in
[Spi65, p. 109] and [Mun91, p. 196].
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19. TANGENT SPACES AND DERIVATIVES 121

19. Tangent spaces and derivatives

Derivatives of maps on Rn. We summarize here several results about deriva-
tives of functions defined on open sets in Rn. See for instance [Spi65] or [Lan97]
for more details.

Let U be an open set in Rk and V be an open set in Rl . Let f : U → V be
smooth. We define the derivative of f at x ∈ U to be the linear map d fx such that

d fx : Rk → Rl

h 7→ d fx(h) = limh→0
f (x + th)− f (x)

t
.

Thus d fx(h) is the directional derivative of f at x in the direction of h, measur-
ing rate of change in the direction of h at x. The derivative d fx is a linear approxi-
mation of f at x.

Because we assumed that all the first order partial derivatives of f exist and
are continuous, the derivative of f exists. In the canonical coordinate system of Rn

the derivative map d fx is represented by an l× k-matrix J fx = [ ∂ fi
∂xj

(x)]1≤i≤l, 1≤j≤k,

called the Jacobian of f at x, thus d fx(h) = J fx · h.

PROPOSITION (chain rule). Let U, V, W be open subsets of Rk, Rl , Rp respectively,
let f : U → V and g : V →W be smooth maps, and let y = f (x). Then

d(g ◦ f )x = dgy ◦ d fx.

In other words, the following commutative diagram

V
g

  
U

f
??

g◦ f
// W

induces the commutative diagram

TVy
dgy

##
TUx

d fx
==

d(g◦ f )x

// TWg(y)

PROPOSITION. Let U and V be open subsets of Rk and Rl respectively. If f : U → V
is a diffeomorphism then the derivative d fx is a linear isomorphism, and k = l.

As a corollary, Rk and Rl are not diffeomorphic if k 6= l.

Tangent spaces of manifolds. To motivate the definition of tangent spaces
of manifolds we recall the notion of tangent spaces of surfaces. Consider a parametrized
surface in R3 given by ϕ(u, v) = (x(u, v), y(u, v), z(u, v)). Consider a point ϕ(u0, v0)

on the surface. Near to (u0, v0) if we fix v = v0 and only allow u to change then
we get a parametrized path ϕ(u, v0) passing through ϕ(u0, v0). The velocity vector
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122 DIFFERENTIAL TOPOLOGY

of the path ϕ(u, v0) is a “tangent vector” to the path at the point ϕ(u0, v0), and is
given by the partial derivative with respect to u, that is, ∂ϕ

∂u (u0, v0). Similarly we

have another “tangent vector” ∂ϕ
∂v (u0, v0). Then the “tangent space” of the surface

at ϕ(u0, v0) is the plane spanned by the above two tangent vectors (under some
further conditions for this notion to be well-defined).

ϕ(u0, v0)

v

u x

z

ϕ

(u0, v0)
y

We can think of a manifold as a multi-dimensional surface. Therefore our
definition of tangent space of manifold is a natural generalization.

DEFINITION. Let M be an m-dimensional manifold in Rk. Let x ∈ M and let
ϕ : U → M, where U is an open set in Rm, be a parametrization of a neighborhood
of x, and x = ϕ(u). We define the tangent space of M at x, denoted by TMx (or Tx M,
or TM(x)), to be the vector space spanned by ∂ϕ

∂ui
(u0), 1 ≤ i ≤ m. Each element of

the tangent space is called a tangent vector.

Since ∂ϕ
∂ui

(u0) = dϕ(u0)(ei), we get TMx = dϕu(TUu) = dϕu(Rm): the de-
rivative of the local parametrization brings the Euclidean space onto the tangent
space.

EXAMPLE. Consider a surface z = f (x, y). Then the tangent plane at (x, y, f (x, y))
consists of the linear combinations of the vectors (1, 0, fx(x, y)) and (0, 1, fy(x, y)).

EXAMPLE. Consider the circle S1. Let (x(t), y(t)) be any path on S1. The
tangent space of S1 at (x, y) is spanned by the velocity vector (x′(t), y′(t)) if this
vector is not 0. Since x(t)2 + y(t)2 = 1, differentiating both sides with respect to t
we get x(t)x′(t) + y(t)y′(t) = 0, or in other words (x′(t), y′(t)) is perpendicular to
(x(t), y(t)). Thus the tangent space is perpendicular to the radius.

PROPOSITION. If M is an m-dimensional manifold then the tangent space TMx is
an m-dimensional linear space.

PROOF. Since a parametrization ϕ is a diffeomorphism, there is a smooth map
F from an open set in Rk to Rm such that F ◦ ϕ = Id. So dFϕ(0) ◦ dϕ0 = IdRm .
This implies that dϕ0 is an injective linear map, thus the image of dϕ0 is an m-
dimensional vector space. �
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19. TANGENT SPACES AND DERIVATIVES 123

PROPOSITION. The tangent space does not depend on the choice of parametrization.

PROOF. Consider the following diagram, where U, U′ are open, ϕ and ϕ′ are
parametrizations of open neighborhood of x ∈ M.

M

U

ϕ
>>

ϕ′−1◦ϕ

// U′

ϕ′
``

Notice that the map ϕ′−1 ◦ ϕ is to be understood as follows. We have that ϕ(U) ∩
ϕ′(U′) is a neighborhood of x ∈ M. Restricting to ϕ−1(ϕ(U) ∩ ϕ′(U′)), the map
ϕ′−1 ◦ ϕ is well-defined, and is a diffeomorphism. The above diagram gives us,
with any v ∈ Rm:

dϕu(v) = dϕ′
ϕ′−1◦ϕ(u)

(
d(ϕ′−1 ◦ ϕ)u(v)

)
.

Thus any tangent vector with respect to the parametrization ϕ is also a tangent
vector with respect to the parametrization ϕ′. We conclude that the tangent space
does not depend on the choice of parametrization. �

Here is another interpretation of tangent vector. Each vector in Rm is the ve-
locity vector of a path in Rm. The local parametrization brings this path to M. The
velocity vector of this path is a tangent vector of M.

x
Rm

M

ϕ

u

γ′(0)
ϕ ◦ γ

dϕu(γ′(0))

0

γ

R

Derivatives of maps on manifolds. Let M ⊂ Rk and N ⊂ Rl be manifolds
of dimensions m and n respectively. Let f : M → N be smooth. Let x ∈ M. There
is a neighborhood W of x in Rk and a smooth extension F of f to W. The derivative
of f is defined to be the restriction of the derivative of F. Precisely:

DEFINITION. The derivative of f at x is defined to be d fx = dFx|TMx , i.e.

d fx : TMx → TN f (x)

h 7→ d fx(h) = dFx(h).
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124 DIFFERENTIAL TOPOLOGY

We need to show that the derivative is well-defined:

PROPOSITION. d fx(h) ∈ TN f (x) and does not depend on the choice of F.

PROOF. We have a commutative diagram

W
F // N

U

ϕ

OO

ψ−1◦ f ◦ϕ

//

f ◦ϕ
>>

V

ψ

OO

Let us explain this diagram. Assume that ϕ(u) = x, ψ(v) = f (x), h = dϕu(w).
Take a parametrization ψ(V) of a neighborhood of f (x). Then f−1(ψ(V)) is an
open neighborhood of x in M. From the definition we can find an open set W in
Rk such that W ∩ M is an open neighborhood of x in M parametrized by ϕ(U),
and f has an extension to a function F defined on W which is smooth.

The diagram induces that d fx(dϕu(w)) = dFx
(
dϕu(w)

)
= dψv

(
d(ψ−1 ◦ f ◦

ϕ)u(w)
)

for every w ∈ Rm. From this identity we get the desired conclusion. �

Thus, although as noted in the previous section a smooth map defined on a
general subset of Rk may not have derivatives, on a manifold the derivative can
be defined, in a natural manner as the restriction of the derivative of the extension
map to the tangent space of the manifold.

PROPOSITION (chain rule). If f : M → N and g : N → P are smooth functions
between manifolds, then

d(g ◦ f )x = dg f (x) ◦ d fx.

PROOF. There is an open neighborhood V of y in Rl and a smooth extension
G of g to V. There is an open neighborhood U of x in Rk such that U ⊂ F−1(V)

and there is a smooth extension F of f U. Then d(g ◦ f )x = d(G ◦ F)x|TMx =

(dGy ◦ dFx)|TMx = dGy|TNy ◦ dFx|TMx = dgy ◦ d fx. �

The derivative brings a tangent vector of M to a tangent vector of N in a natural
manner. Indeed, a tangent vector at x ∈ M is the velocity γ′(0) of a path γ(t) with
γ(0) = x. The map f brings this path to N, giving the path f ◦ γ. The velocity
vector of this new path at f (x) is ( f ◦ γ)′ (0) = d fx(γ′(0)), which is the image
under the derivative of f of the velocity of γ at x.

PROPOSITION. If f : M → N is a diffeomorphism then d fx : TMx → TN f (x) is a
linear isomorphism. In particular the dimensions of the two manifolds are same.

PROOF. Let m = dim M and n = dim N. Since d fx ◦ d f−1
f (x) = IdTN f (x)

and

d f−1
f (x) ◦ d fx = IdTMx we deduce, via the rank of d fx that m ≥ n. Doing the same

with d f−1
f (x) we get m ≤ n, hence m = n. From that d fx must be a linear isomor-

phism. �
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19. TANGENT SPACES AND DERIVATIVES 125

f (x)

N

f

x

γ′(0)

f ◦ γ

d fx(γ′(0))
γ

M

Problems.

19.1. Calculate the tangent spaces of Sn.

19.2. Calculate the tangent spaces of the hyperboloid x2 + y2 − z2 = 1.

19.3. Show that if Id : M→ M is the identify map then d(Id)x is Id : TMx → TMx.

19.4. Show that if M is a submanifold of N then TMx is a subspace of TNx.

19.5. A path on a manifold M ⊂ Rk is a smooth map γ from an open interval of R to
M. Suppose γ(t0) = x. The vector γ′(t0) ∈ Rk is called the velocity vector of the path at
t = t0. Show that any tangent vector of M at x is the velocity vector of a path in M going
through x.

19.6. Show that if M and N are manifolds and M ⊂ N then TMx ⊂ TNx.

19.7 (Cartesian products of manifolds). If X ⊂ Rk and Y ⊂ Rl are manifolds then
X×Y ⊂ Rk+l is also a manifold. Furthermore T(X×Y)(x,y) = TXx × TYy.

19.8. Calculate the derivative of the maps:

(a) f : (0, 2π)→ S1, f (t) = (cos t, sin t).
(b) f : S1 → R, f (x, y) = ey.
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126 DIFFERENTIAL TOPOLOGY

20. Regular values

Let f : M → N be smooth. A point in M is called a critical point (điểm dừng,
điểm tới hạn) of f if the derivative of f at that point is not surjective. Otherwise
the point is called a regular point (điểm thường, điểm chính qui) of f .

EXAMPLE. Let U be an open set in Rn and let f : U → R be smooth. Then
x ∈ U is a critical point of f if and only if ∇ f (x) = 0.

A point in N is called a critical value of f if it is the value of f at a critical point.
Otherwise the point is called a regular value of f .

Thus y is a critical value of f if and only if f−1(y) contains a critical point. In
particular, if f−1(y) = ∅ then y is considered a regular value in this convention.

EXAMPLE. If f : M → N where dim(M) < dim(N) then every x ∈ M is a
critical point and every y ∈ N is a critical value of f .

The Inverse function theorem and the Implicit function theorem. First we
state the Inverse function theorem in Multivariables Calculus.

THEOREM 20.1 (Inverse function theorem). Let f : Rk → Rk be smooth. If d fx is
bijective then f is locally a diffeomorphism.

More concisely, if det(J fx) 6= 0 then there is an open neighborhood U of x and an
open neighborhood V of f (x) such that f |U : U → V is a diffeomorphism.

For a proof, see for instance [Spi65]. Usually the result is stated for continu-
ously differentiable function (i.e. C1), but the result for smooth functions follows,
since the Jacobian matrix of the inverse map is the inverse matrix of the Jacobian of
the original map, and the entries of an inverse matrix can be obtained from the en-
tries of the original matrix via smooth operations, namely A−1 = 1

det A A∗, where
A∗i,j = (−1)i+j det(Aj,i), and Aj,i is obtained from A by omitting the ith row and
jth column.

THEOREM 20.2 (Implicit function theorem). Suppose that

f : Rm ×Rn → Rn

(x, y) 7→ f (x, y)

is smooth and the n × n-matrix ∂ f
∂y (x0, y0) is non-singular then there is a neighborhood

U × V of (x0, y0) such that for each x ∈ U there is a unique g(x) ∈ V satisfying
f (x, g(x)) = 0, and the function g is smooth.

The conclusion of the theorem implies that on U × V the implicit equation
f (x, y) = 0 has a unique solution y = g(x). It also implies that {(x, y) ∈ U ×
V | f (x, y) = 0} = {(x, g(x)) | x ∈ U}. In other words, on the open neighborhood
U ×V of (x0, y0) the level set f−1(0) is the graph of a smooth function.

The Implicit function theorem can be obtained by setting F(x, y) = (x, f (x, y))
and applying the Inverse function theorem to F.
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20. REGULAR VALUES 127

R

R

f (x, y) = 0

y = g(x)
y0

x0U

V

(
∂ f
∂x , ∂ f

∂y

)
(x0, y0)

COROLLARY 20.3. Let f : Rm+n → Rn be smooth and f (x) = y. If d fx is surjective
then there is a an open neighborhood of x in the level set f−1(y) which is diffeomorphic to
an open subset of Rm.

PROOF. All we need is a permutation of variables to bring the function to the
form used the the Implicit function theorem. Since d fx is onto, the Jacobian ma-
trix J f (x) is of rank n, therefore it has n independent columns, corresponding to n
variables xi1 , xi2 , . . . , xin . Let σ be any permutation of {1, 2, . . . , (m + n)} such that
σ(m + 1) = i1, σ(m + 2) = i2, . . . , σ(m + n) = in. Let ϕ : Rm+n → Rm+n be the
map that permute the variables as (x1, x2, . . . , xm+n) 7→ (xσ(1), xσ(2), . . . , xσ(m+n)).
Consider the function f ◦ ϕ. By the chain rule J( f ◦ ϕ)(ϕ−1(x)) = J f (x) · Jϕ(ϕ−1(x)).
Then it can be verified that the last n columns of the matrix J( f ◦ ϕ)(ϕ−1(x)) are
the previous n independent columns of J f (x).

Now we can apply the Implicit function theorem to f ◦ ϕ. Write (u0, v0) =

ϕ−1(x) ∈ Rm ×Rn. There is an open neighborhood U of u0 in Rm and an open
neighborhood V of v0 in Rn such that

(U ×V) ∩ ( f ◦ ϕ)−1(y) = {(u, h(u)) | u ∈ U}.

The latter set is the graph of the smooth function h on U, therefore it is diffeomor-
phic to U (18.1). On the other hand the former set is (U × V) ∩

(
ϕ−1( f−1(y))

)
=

ϕ−1 (ϕ(U ×V) ∩ f−1(y)
)
. Since ϕ is a diffeomorphism, we can conclude that

ϕ(U ×V) ∩ f−1(y) is diffeomorphic to U. �

Preimage of a regular value.

PROPOSITION 20.4. If dim(M) = dim(N) and y is a regular value of f then
f−1(y) is a discrete set. In other words, f−1(y) is a zero dimensional manifold. Fur-
thermore if M is compact then f−1(y) is a finite set.

PROOF. If x ∈ f−1(y) then there is a neighborhood of x on which f is a bijec-
tion (a consequence of the Inverse function theorem, 20.19). That neighborhood
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128 DIFFERENTIAL TOPOLOGY

contains no other point in f−1(y). Thus f−1(y) is a discrete set, i.e. each point has
a neighborhood containing no other points.

If M is compact then the set f−1(y) is compact. A discrete compact space must
be finite (6.4). �

The following theorem is the Implicit function theorem for manifolds.

THEOREM 20.5 (level set at a regular value is a manifold). If y is a regular value
of f : M→ N then f−1(y) is a manifold of dimension dim(M)− dim(N).

PROOF. Let m = dim(M) and n = dim(N). The case m = n is already consid-
ered in 20.4. Now we assume m > n. Let x0 ∈ f−1(y0). Consider the diagram

M
f
// N

O

ϕ

OO

g
// W

ψ

OO

where g = ψ−1 ◦ f ◦ ϕ and ψ(w0) = y0. Since d fx0 is onto, dgϕ−1(x0)
is also onto.

Denote ϕ−1(x0) = (u0, v0) ∈ Rm−n ×Rn. Applying 20.3 to g, there is an open
neighborhood U of u0 in Rm−n and an open neighborhood V of v0 in Rn such that
U ×V is contained in O and (U ×V) ∩ g−1(w0) is diffeomorphic to U. Now

ϕ
(
(U ×V) ∩ g−1(w0)

)
= ϕ(U ×V) ∩

(
ϕ(g−1(w0))

)
= ϕ(U ×V) ∩

(
ϕ(ϕ−1( f−1(ψ(w0))))

)
= ϕ(U ×V) ∩ f−1(y).

Thus ϕ(U × V) ∩ f−1(y), which is an open neighborhood of x0 in f−1(y), is dif-
feomorphic to U. This ends the proof. �

EXAMPLE. To be able to follow the proof more easily the reader can try to
work it out for an example, such as the case where M is the graph of the function
z = x2 + y2, and f is the height function f ((x, y, z)) = z defined on M.

EXAMPLE. The n-sphere Sn is a subset of Rn+1 determined by the implicit
equation ∑n+1

i=1 x2
i = 1. Since 1 is a regular value of the function f (x1, x2, . . . , xn+1) =

∑n+1
i=1 x2

i we conclude that Sn is a manifold of dimension n.

Lie groups. The set Mn(R) of n × n matrices over R can be identified with
the Euclidean manifold Rn2

.
Consider the map det : Mn(R) → R. Let A = [ai,j] ∈ Mn(R). Since det(A) =

∑σ∈Sn(−1)σa1,σ(1)a2,σ(2) · · · an,σ(n) = ∑j(−1)i+jai,j det(Ai,j), we can see that det is
a smooth function.

Let us find the critical points of det. A critical point is a matrix A = [ai,j] at
which ∂ det

∂ai,j
(A) = (−1)i+j det(Ai,j) = 0 for all i, j. In particular, det(A) = 0. So 0 is

the only critical value of det.
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20. REGULAR VALUES 129

Therefore SLn(R) = det−1(1) is a manifold of dimension n2 − 1.
Furthermore we note that the group multiplication in SLn(R) is a smooth map

from SLn(R) × SLn(R) to SLn(R). The inverse operation is a smooth map from
SLn(R) to itself. We then say that SLn(R) is a Lie group.

DEFINITION. A Lie group is a smooth manifold which is also a group, for which
the group operations are compatible with the smooth structure, namely the group
multiplication and inversion are smooth.

Let O(n) be the group of orthogonal n× n matrices, the group of linear trans-
formation of Rn that preserves distances.

PROPOSITION. The orthogonal group O(n) is a Lie group.

PROOF. Let S(n) be the set of symmetric n× n matrices. This is clearly a man-
ifold of dimension n2+n

2 .
Consider the smooth map f : M(n) → S(n), f (A) = AAt. We have O(n) =

f−1(I). We will show that I is a regular value of f .
We compute the derivative of f at A ∈ f−1(I):

d fA(B) = lim
t→0

f (A + tB)− f (A)

t
= BAt + ABt.

We note that the tangents spaces of M(n) and S(n) are themselves. To check
whether d fA is onto for A ∈ O(n), we need to check that given C ∈ S(n) there is a
B ∈ M(n) such that C = BAt + ABt. We can write C = 1

2 C + 1
2 C, and the equation

1
2 C = BAt will give a solution B = 1

2 CA, which is indeed a solution to the original
equation. �

Problems.

20.6. Let f : R2 → R, f (x, y) = x2 − y2. Show that if a 6= 0 then f−1(a) is a 1-
dimensional manifold, but f−1(0) is not. Show that if a and b are both positive or both
negative then f−1(a) and f−1(b) are diffeomorphic.

20.7. Let f : R3 → R, f (x, y) = x2 + y2 − z2. Show that if a 6= 0 then f−1(a) is a
2-dimensional manifold, but f−1(0) is not. Show that if a and b are both positive or both
negative then f−1(a) and f−1(b) are diffeomorphic.

20.8. Show that the equation x5 + y4 + z3 = 1 determine a manifold in R3.

20.9. Is the intersection of the two surfaces z = x2 + y2 and z = 1− x2 − y a manifold?

20.10. Show that the height function (x, y, z) 7→ z on the sphere S2 has exactly two
critical points.

20.11. Show that if f achieves local extremum at x then x is a critical point of f .

20.12. Show that a smooth function on a compact manifold must have at least two
critical points.
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130 DIFFERENTIAL TOPOLOGY

20.13. Let dim(M) = dim(N), M be compact and S be the set of all regular values of
f : M → N. For y ∈ S, let | f−1(y)| be the number of elements of f−1(y). Show that the
map

S → N

y 7→ | f−1(y)|.
is locally constant. In other words, each regular value has a neighborhood where the num-
ber of preimages of regular values is constant.

20.14. Let M be a compact manifold and let f : M → R be smooth. Show that the set
of regular values of f is open.

20.15. Use regular value to show that the torus T2 is a manifold.

20.16. Find the regular values of the function f (x, y, z) = [4x2(1− x2)− y2]2 + z2 − 1
4

(and draw a corresponding level set).

20.17. Find a counter-example to show that 20.4 is not correct if regular value is re-
placed by critical value.

20.18.
√

If f : M → N is smooth, y is a regular of f , and x ∈ f−1(y), then ker d fx =

T f−1(y)x.

20.19 (inverse function theorem for manifolds). Let M and N be two manifolds of the
same dimensions, and let f : M → N be smooth. Show that if x is a regular point of f then
there is a neighborhood in M of x on which f is a diffeomorphism onto its image.

20.20. Show that S1 is a Lie group.

20.21. Show that the set of all invertible n × n-matrices GL(n; R) is a Lie group and
find its dimension.

20.22. In this problem we find the tangent spaces of SLn(R).

(a) Check that the derivative of the determinant map det : Mn(R) → R is repre-
sented by a gradient vector whose (i, j)-entry is (−1)i+j det(Ai,j).

(b) Determine the tangent space of SLn(R) at A ∈ SLn(R).
(c) Show that the tangent space of SLn(R) at the identity matrix is the set of all n× n

matrices with zero traces.
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21. CRITICAL POINTS AND THE MORSE LEMMA 131

21. Critical points and the Morse lemma

Partial derivatives. Let f : M → R. Let U be an open neighborhood in M
parametrized by ϕ. For each x = ϕ(u) we define the first partial derivatives:(

∂

∂xi
f
)
(x) =

∂

∂ui
( f ◦ ϕ)(u).

In other words,
(

∂
∂xi

f
)
(ϕ(u)) = ∂

∂ui
( f ◦ ϕ)(u). Of course this definition depends

on local coordinates.
If f is defined on Rm then this is the usual partial derivative.
To understand

(
∂

∂xi
f
)
(x) better, we can think that the parametrization ϕ brings

the coordinate system of Rm to the neighborhood U, then
(

∂
∂xi

f
)
(x) is the rate of

change of f (x) when the variable x changes along the path in U which is the com-
position of the standard path tei along the ith axis of Rm with ϕ.

We can write(
∂

∂xi
f
)
(x) =

∂

∂ui
( f ◦ ϕ)(u) = d( f ◦ ϕ)(u)(ei)

= (d f (x) ◦ dϕ(u)) (ei) = d f (x)(dϕ(u)(ei)).

Thus
(

∂
∂xi

f
)
(x) is the value of the derivative map d f (x) at the image of the

unit vector ei of Rm.

Gradient vector. The tangent space TMx inherits the Euclidean inner prod-
uct from the ambient space Rk. In this inner product space the linear map d fx :
TMx → R is represented by a vector in TMx which we called the gradient vector
∇ f (x). This vector is determined by the property 〈∇ f (x), v〉 = d fx(v) for any
v ∈ TMx. Notice that the gradient vector ∇ f (x) is defined on the manifold, not
depending on local coordinates.

In a local parametrization the vectors dϕ(u)(ei) = ∂ϕ
∂ui

(u) , 1 ≤ i ≤ m consti-
tutes a vector basis for TMx. In this basis the coordinates of ∇ f (x) are

〈∇ f (x), dϕ(u)(ei)〉 = d fx(dϕ(u)(ei)) =
∂ f
∂xi

(x).

In other words, in that basis we have the familiar formula∇ f = 〈 ∂ f
∂x1

, ∂ f
∂x1

, . . . , ∂ f
∂xm
〉.

This formula depends on local coordinates. It implies that ∇ f : M → Rm is a
smooth function.

We have several simple observations:

PROPOSITION. A point is a critical point if and only if the gradient vector at that
point is zero.

PROPOSITION. At a local extremum point the gradient vector must be zero.

Second derivatives. Since ∂
∂xi

f is a smooth function on U, we can take its
partial derivatives. Thus we define the second partial derivatives:
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132 DIFFERENTIAL TOPOLOGY

∂2 f
∂xi∂xj

(x) =
∂

∂xi

(
∂

∂xj
f

)
(x).

In other words,

∂2 f
∂xi∂xj

(ϕ(u)) =
∂

∂xi

(
∂

∂xj
f

)
(ϕ(u)) =

∂

∂ui

(
∂ f
∂xj
◦ ϕ

)
(u)

=
∂

∂ui

(
∂

∂uj
( f ◦ ϕ)

)
(u) =

∂2

∂ui∂uj
( f ◦ ϕ)(u).

Non-degenerate critical points. Consider the Hessian matrix of second par-
tial derivatives:

H f (x) =

(
∂2 f

∂xi∂xj
(x)

)
1≤i,j≤m

.

If this matrix is non-degenerate, then we say that x is a non-degenerate critical point
of f .

LEMMA 21.1. The non-degeneracy of a critical point does not depend on choices of
local coordinates.

PROOF. We can see that the problem is reduced to the case of functions on Rm.
If f : Rm → R and ϕ is a change of variables (i.e. a diffeomorphism) of Rm then
we have

∂

∂ui
( f ◦ ϕ)(u) = ∑

k

∂ f
∂xk

(x) · ∂ϕk
∂ui

(u).

Then

∂2

∂uj∂ui
( f ◦ ϕ)(u) = ∑

k

[(
∑

l

∂2 f
∂xl∂xk

(x) · ∂ϕl
∂uj

(u)

)
· ∂ϕk

∂ui
(u) +

∂ f
∂xk

(x) · ∂2 ϕ

∂uj∂ui
(u)

]

= ∑
k,l

∂2 f
∂xl∂xk

(x) · ∂ϕl
∂uj

(u) · ∂ϕk
∂ui

(u).

In other words: H( f ◦ ϕ)(u) = Jϕ(u)t[H f (ϕ(u))]Jϕ(u). This formula immediately
gives us the conclusion. �

Morse lemma.

THEOREM (Morse’s lemma). Suppose that f : M → R is smooth and p is a non-
degenerate critical point of f . There is a local coordinate ϕ in a neighborhood of p such that
ϕ(p) = 0 and in that neighborhood

f (x) = f (p)− ϕ(x)2
1 − ϕ(x)2

2 − · · · − ϕ(x)2
k + ϕ(x)2

k+1 + ϕ(x)2
k+2 + · · ·+ ϕ(x)2

m.

In other words, in a neighborhood of 0,
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21. CRITICAL POINTS AND THE MORSE LEMMA 133

( f ◦ ϕ−1)(u) = ( f ◦ ϕ−1)(0)− u2
1 − u2

2 − · · · − u2
k + u2

k+1 + u2
k+2 + · · ·+ u2

m.

If we abuse notations by using local coordinates and write xi for ui = ϕ(x)i then we can
write

f (x) = f (p)− x2
1 − x2

2 − · · · − x2
k + x2

k+1 + x2
k+2 + · · ·+ x2

m.

The number k does not depend on the choice of such local coordinates and is called the index
of the non-degenerate critical point p.

EXAMPLE. Non-degenerate critical points of index 0 are local minima, and the
ones with maximum indexes are local maxima.

PROOF. Since we only need to prove the formula for f ◦ ϕ−1, we only need to
work in Rm.

First, we write

f (x) = f (0) +
∫ 1

0

d
dt

f (tx) dt

= f (0) +
m

∑
i=1

∫ 1

0

(
∂ f
∂xi

(tx)
)

xi dt

= f (0) +
m

∑
i=1

xi

∫ 1

0

(
∂ f
∂xi

(tx)
)

dt.

A result of Analysis (see for example [Lan97, p. 276]) tells us that the functions
gi(x) =

∫ 1
0

(
∂

∂xi
f (tx)

)
dt are smooths. Notice that gi(0) = ∂ f

∂xi
(0) = 0. Further-

more
∂gi
∂xj

(x) =
∫ 1

0

∂2 f
∂xj∂xi

(tx)t dt,

therefore ∂gi
∂xj

(0) = 1
2

∂2 f
∂xj∂xi

(0).

Apply this construction once again to gi we obtain smooth functions gi,j such

that gi,j(0) = 1
2

∂2 f
∂xi∂xj

(0) and

f (x) = f (0) +
m

∑
i,j=1

xixjgi,j(x).

Set hi,j = (gi,j + gj,i)/2 then hi,j = hj,i, hi,j(0) = 1
2

∂2 f
∂xi∂xj

(0), and

f (x) = f (0) +
m

∑
i,j=1

xixjhi,j(x).

The rest of the proof is a simple completing the square. Since the matrix(
hi,j(0)

)
is non-degenerate by a permutation of variables if necessary, we can as-

sume that h1,1(0) 6= 0. Then there is a neighborhood of 0 such that h1,1(x) does not
change its sign. In that neighborhood, if h1,1(0) > 0 then
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134 DIFFERENTIAL TOPOLOGY

f (x) = f (0)+ h1,1(x)x2
1 + ∑

1<j
(h1,j(x) + hj,1(x))x1xj + ∑

1<i,j
hi,j(x)xixj

= f (0)+ h1,1(x)x2
1 + 2 ∑

1<j
h1,j(x)x1xj + ∑

1<i,j
hi,j(x)xixj

= f (0)+
(√

h1,1(x)x1

)2
+ 2
√

h1,1(x)x1
∑1<j h1,j(x)xj√

h1,1(x)
+ ∑

1<i,j
hi,j(x)xixj

= f (0)+

[√
h1,1(x)x1 + ∑

1<j

h1,j(x)√
h1,1(x)

xj

]2

−
(

∑
1<j

h1,j(x)√
h1,1(x)

xj

)2

+ ∑
1<i,j

hi,j(x)xixj.

Similarly, if h1,1(0) < 0 then

f (x) = f (0)−
[√
−h1,1(x)x1 −∑

1<j

h1,j(x)√
−h1,1(x)

xj

]2

+

(
∑
1<j

h1,j(x)√
−h1,1(x)

xj

)2

+ ∑
1<i,j

hi,j(x)xixj.

Combining both cases, we define the new variables:

v1 =
√
|h1,1(x)|x1 + sign(h1,1(0)) ∑

1<j

h1,j(x)√
|h1,1(x)|

xj,

vi = xi, i > 1.

Since
∂v1

∂x1
(0) =

√
|h1,1(0)| 6= 0

the Jacobian matrix
(

∂vi
∂xj

(0)
)

is non-singular. By the Inverse function theorem,

there is a neighborhood of 0 where the correspondence x 7→ v is a diffeomorphism,
that is, a change of variables. With the new variables we have

f (v) = f (0) + sign(h1,1(0))v2
1 + ∑

1<i,j
h′i,j(v)vivj.

By a direct calculation, we can check that in these variables

H f (0) =

(
sign(h1,1(0)) 0

0 (2h′i,j(0))1<i,j≤m

)
.

Using 21.1 we conclude that the matrix (h′i,j(0))1<i,j≤m must be non-singular. Thus
the induction process can be carried out. Finally we can permute the variables such
that in the final form of f the negative signs are in front.

�

Problems.
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21. CRITICAL POINTS AND THE MORSE LEMMA 135

21.2. Show that the gradient vector is always normal to level surfaces.

21.3. Give a generalization of the method of Lagrange multipliers to manifolds.

21.4. For the specific case of f (x) = ∑1≤i,j≤m ai,jxixj where ai,j are real numbers, to
prove the Morse’s lemma we can use a diagonalization of a quadratic form or a symmetric
matrix, considered in Linear Algebra. The change of variables corresponds to using a new
vector basis consisting of eigenvectors of the matrix.

21.5. Recover the classification of critical points from Calculus.
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136 DIFFERENTIAL TOPOLOGY

22. Flows

Vector fields.

DEFINITION. A smooth tangent vector field on a manifold M ⊂ Rk is a smooth
map V : M→ Rk such that V(x) ∈ TMx for each x ∈ M.

EXAMPLE. If f : M → R is smooth then the gradient ∇ f is a smooth vector
field on M.

An integral curve at a point x ∈ M with respect to the vector field V is a smooth
path γ : (a, b) → M such that 0 ∈ (a, b), γ(0) = x, and γ′(t) = V(γ(t)) for all
t ∈ (a, b). It is a path going through x and at every moment takes the vector of the
given vector field as its velocity vector. An integral curve of a vector field is tangent
to the vector field. Integral curves are also called solution curves, trajectories, or flow
lines.

In a local coordinate around x, a vector field on that neighborhood corre-
sponds to a vector field on Rm, and an integral curve in that neighborhood cor-
responds to an integral curve on Rm. Thus, by using local coordinate, we can
consider a local integral curve as a solution to the differential equation γ′(t) =

V(γ(t)) in Rm subjected to the initial condition γ(0) = x, or in more common
notations:  dx

dt = V(x),

x(0) = x0.

Flows. For each x ∈ M, let φ(t, x), or φt(x), be an integral curve at x, with t
belongs to an interval J(x). We have a map

φ : D = {(t, x) | x ∈ M, t ∈ J(x)} ⊂ R×M → M

(t, x) 7→ φt(x),

with the properties φ0(x) = x, and d
dt (φ)(t, x) = V(φ(t, x)). This map φ is called a

flow (dòng) generated by the vector field V.

THEOREM. For each smooth vector field there exists a unique smooth flow, in the
sense that any two integral curves at the same point must agree on the intersection of their
domains. The domain of this flow can be taken to be an open set.

This theorem is just an interpretation of the theorem in Differential Equations
on the existence, uniqueness, and dependence on initial conditions of solutions to
differential equations, see for example [HS74], [Lan97].

THEOREM (Group law). Given x ∈ M, if φt(x) is defined on (−ε, ε) then for
s ∈ (−ε, ε) such that s + t ∈ (−ε, ε) we have

φt+s(x) = φt(φs(x)).

PROOF. Define γ(t) = φt+s(x). Then γ(0) = φs(x), and γ′(t) = d
dt (φ)(t +

s, x) = V(φ(t + s, x)) = V(γ(t)). Thus γ(t) is an integral curve at φs(x). But
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22. FLOWS 137

φt(φs(x)) is another integral curve at φs(x). By uniqueness of integral curves, γ(t)
must agree with φt(φs(x)) on their common domains. �

THEOREM. If φt : M→ M is defined for t ∈ (−ε, ε) then it is a diffeomorphism.

PROOF. Since the flow φ is smooth the map φt is smooth. Its inverse map φ−t

is also smooth. �

When every integral curve can be extended without bound in both directions,
in other words, for all x the map φt(x) is defined for all t ∈ R, we say that the flow
is complete. If the flow is complete then φt is defined for all t ∈ R, we can think of
φt as moving every point along integral curves for an amount of time t.

THEOREM. On a compact manifold any flow is complete.

PROOF. Although a priori each integral curve has its own domain, first we
will show that for a compact manifold all integral curves can have same domains.
Since the domain D of the flow can be taken to be an open subset of R×M, each
x ∈ M has an open neighborhood Ux and a corresponding interval (−εx, εx) such
that (−εx, εx)×Ux is contained in D. The collection {Ux | x ∈ M} is an open cover
of M therefore there is a finite subcover. That implies that there is a positive real
number ε such that for every x ∈ M the integral curve φt(x) is defined on (−ε, ε).

Now φt(x) can be extended inductively by intervals of length ε/2 to be defined
on R. For example, if t > 0 then there is n ∈ N such that n ε

2 ≤ t < (n + 1) ε
2 , if

n ≥ 2 then define
φt(x) = φt−n ε

2

(
φn ε

2
(x)
)

,

where φn ε
2
(x) = φ ε

2

(
φ(n−1) ε

2
(x)
)

. �

THEOREM. Let M be a compact smooth manifold and f : M → R be smooth. If the
interval [a, b] only contains regular values of f then the level sets f−1(a) and f−1(b) are
diffeomorphic.

PROOF. The idea of the proof is to construct a diffeomorphism from f−1(a) to
f−1(b) by pushing along the flow lines of the gradient vector field of f . However
since ∇ f (x) can be zero outside of f−1([a, b]) we need a modification to ∇ f .

Suppose that a < b. By 20.14 there are intervals [a, b] ⊂ (c, d) ⊂ [c, d] ⊂ (h, k)
such that (h, k) contains only regular values of f . Thus on f−1((h, k)) the vector
∇ f (x) never vanish.

By 22.4 there is a smooth function ψ that is 1 on f−1([c, d]) and is 0 outside
f−1((h, k)). Let F = ψ

∇ f
||∇ f ||2 , then F is a well-defined smooth vector field on M.

Notice that F is basically a rescale of ∇ f .
Let φ be the flow generated by F. We have:

d
dt

f (φt(x)) = d fφt(x)

(
d
dt

φt(x)
)
= 〈∇ f (φt(x)), F(φt(x))〉 = ψ(φt(x)).

Fix x ∈ f−1(a). Since φt(x) is continuous with respect to t and φ0(x) = x, there is
an ε > 0 such that φt(x) ∈ f−1((c, d)) for t ∈ [0, ε). Let ε0 be the supremum (or
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138 DIFFERENTIAL TOPOLOGY

∞) of the set of such ε. Then for t ∈ [0, ε0) we have φt(x) ∈ f−1((c, d)), and so

d
dt

f (φt(x)) = ψ(φt(x)) = 1.

This means the flow line is going at constant speed 1. We get f (φt(x)) = t + a for
t ∈ [0, ε0). If ε0 ≤ b − a then by continuity f (φε0(x)) = ε0 + a ≤ b < d. This
implies there is ε′ > ε0 such that f (φt(x)) < d for t ∈ [ε0, ε′), a contradiction.
Thus ε0 > b− a. We now observe that f (φb−a(x)) = b. Thus φb−a maps f−1(a) to
f−1(b), so it is the desired diffeomorphism. �

THEOREM 22.1 (Homogeneity of manifolds). On a connected manifold there is a
self diffeomorphism that brings any given point to any given point.

PROOF. First we can locally bring any point to a given point without outside
disturbance. That translates to a problem on Rn: we will show that for any c ∈
B(0, 1) there is a diffeomorphism h : Rn → Rn such that h|Rn\B(0,1) = 0 and
h(0) = c.

By 22.2 there is a smooth function f : Rn → R such that f |B′(0,||c||) = 1 and
f |Rn\B(0,1) = 0. Consider the vector field F : Rn → Rn, F(x) = f (x)c. This is a
smooth vector field with compact support. The flow generated by this vector field
is a smooth map φ : R×Rn → Rn such that

φ0(x) = x,
d
dt

φt(x) = F(φt(x)).

�

Problems.

22.2.
√

The following is a common smooth function:

f (x) =

e−1/x, if x > 0

0, if x ≤ 0.

(a) Show that f (x) is smooth.
(b) Let a < b and let g(x) = f (x− a) f (b− x). Then g is smooth, g(x) is positive on

(a, b) and is zero everywhere else.
(c) Let

h(x) =

∫ x
−∞ g(x) dx∫ ∞
−∞ g(x) dx

.

Then h(x) is smooth, h(x) = 0 if x ≤ a, 0 < h(x) < 1 if a < x < b, and h(x) = 1 if
x ≥ b.

(d) The function

k(x) =
f (x− a)

f (x− a) + f (b− x)
also has the above properties of h(x).

(e) In Rn, construct a smooth function whose value is 0 outside of the ball of radius
b, 1 inside the ball of radius a, where 0 < a < b, and between 0 and 1 in between
the two balls.
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22. FLOWS 139

22.3 (Smooth Urysohn lemma). Let A ⊂ U ⊂ Rn where A is compact and U is open.
Show that there exists a smooth function ϕ : Rn → R such that 0 ≤ ϕ(x) ≤ 1, ϕ|A = 1,
ϕ|Rn\U = 0.

22.4 (Smooth Urysohn lemma for manifolds). Let M be a smooth manifold, A ⊂ U ⊂
M where A is compact and U is open in M. Show that there is a smooth function ϕ : M→ R

such that 0 ≤ ϕ(x) ≤ 1, ϕ|A = 1, ϕ|M\U = 0.
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23. Manifolds with boundaries

The closed half-space Hm = {(x1, x2, . . . , xm) ∈ Rm | xm ≥ 0} ⊂ Rm whose
topological boundary is ∂Hm = {(x1, x2, . . . , xm) ∈ Rm | xm = 0} is our model for
a manifold with boundary.

DEFINITION. A subspace M of Rk is called a manifold with boundary of dimen-
sion m if each point in M has a neighborhood diffeomorphic to either Rm or Hm,
where in the second case the point is sent to ∂Hm. The set of all points of the first
type is called the interior of M. The set of all points of the second type is called the
boundary of M, denoted by ∂M.

A point belongs to either the interior or the boundary, not both, because of the
following:

LEMMA. Hm is not diffeomorphic to Rm.

PROOF. Suppose f : Rm → Hm is a diffeomorphism. For any x ∈ Rm, d fx

is non-singular, therefore by the Inverse function theorem f is a diffeomorphism
from an open ball containing x onto an open ball containing f (x). Thus f (x) must
be an interior point (in topological sense) of Hm. This implies that f cannot be
onto Hm, a contradiction.

Alternatively we can use Invariance of dimension 9.26. �

REMARK. The boundary of a manifold is generally not the same as its topo-
logical boundary.

REMARK. On convention, when we talk about a manifold we still mean a man-
ifold as earlier defined, that is, with no boundary. A manifold with boundary can
have empty boundary, in which case it is a manifold.

PROPOSITION. The interior of an m-manifold with boundary is an m-manifold with-
out boundary. The boundary of an m-manifold with boundary is an (m − 1)-manifold
without boundary.

PROOF. The part about the interior is clear. Let us consider the part about the
boundary.

Let M be an m-manifold and let x ∈ ∂M. Let ϕ be a diffeomorphism from a
neighborhood U of x in M to Hm. We can check that if y ∈ U then ϕ(y) ∈ ∂Hm

if and only if y ∈ ∂M. Thus the restriction ϕ|U∩∂M is a diffeomorphism from a
neighborhood of x in ∂M to ∂Hm, which is diffeomorphic to Rm−1. �

The tangent space of a manifold with boundary M is defined as follows. It x is an
interior point of M then TMx is defined as before. If x is a boundary point then
there is a parametrization ϕ : Hm → M, where ϕ(0) = x. Notice that by continuity
ϕ has well-defined partial derivatives at 0. This implies that the derivative dϕ0 :
Rm → Rk is well-defined. Then TMx is still defined as dϕ0(R

m). The Chain rule
still holds. The notion of critical point is defined exactly as for manifolds.
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23. MANIFOLDS WITH BOUNDARIES 141

THEOREM 23.1. Let M be an m-dimensional manifold without boundary. Let f :
M → R be smooth and let y be a regular value of f . Then the set f−1([y, ∞)) is an
m-dimensional manifold with boundary f−1(y).

PROOF. Let N = f−1([y, ∞)). Since f−1((y, ∞)) is an open subspace of M, it
is an m-manifold without boundary.

The crucial case is when x ∈ f−1(y). Let ϕ be a parametrization of a neigh-
borhood of x in M, with ϕ(0) = x. Let g = f ◦ ϕ. As in the proof of 20.5, by
the Implicit function theorem, there is an open ball U in Rm−1 containing 0 and
an open interval V in R containing 0 such that in U × V the set g−1(y) is a graph
{(u, h(u)) | u ∈ U} where h is smooth.

y
f

g

U

V

x

ϕ

Since (U × V) \ g−1(y) consists of two connected components, exactly one of
the two is mapped via g to (y, ∞), otherwise x will be a local extremum point
of f , and so d fx = 0, violating the assumption. In order to be definitive, let us
assume that W = {(u, v) | v ≥ h(u)} is mapped by g to [y, ∞). Then ϕ(W) =

ϕ(U × V) ∩ f−1([y, ∞)) is a neighborhood of x in N parametrized by ϕ|W . On
the other hand W is diffeomorphic to an open neighborhood of 0 in Hm. To show
this, consider the map ψ(u, v) = (u, v − h(u)) on U × V. Then ψ is a smooth
bijection on open subspaces of Rm, whose Jacobian is non-singular, therefore is
a diffeomorphism. The restriction ψ|W is a diffeomorphism to ψ(U × V) ∩Hm.
Thus x is a boundary point of N. �

EXAMPLE. Let f be the height function on S2 and let y be a regular value. Then
the set f−1((−∞, y]) is a disk with the circle f−1(y) as the boundary.

EXAMPLE. If y is a regular value of the height function on D2 then f−1(y) is a
1-dimensional manifold with boundary on ∂D2.

EXAMPLE. The closed disk Dn is an n-manifold with boundary.

THEOREM 23.2. Let M be an m-dimensional manifold with boundary, let N be an
n-manifold with or without boundary. Let f : M → N be smooth. Suppose that y ∈ N is
a regular value of both f and f |∂M. Then f−1(y) is an (m− n)-manifold with boundary
∂M ∩ f−1(y).
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142 DIFFERENTIAL TOPOLOGY

PROOF. That f−1(y) \ ∂M is an (m− n)-manifold without boundary is already
proved in 20.5.

We consider the crucial case of x ∈ ∂M ∩ f−1(y).

y
fx

U

Ũ

g̃ϕ

Tg̃−1(y)u

∂Hm

FIGURE 23.3.

y
fx

U

Ũ

g̃ϕ

Tg̃−1(y)u

∂Hm

FIGURE 23.4.

The map g can be extended to g̃ defined on an open neighborhood Ũ of 0 in
Rm. As before, g̃−1(y) is a graph of a function of (m − n) variables so it is an
(m− n)-manifold without boundary.

Let p : g̃−1(y) → R be the projection to the last coordinate (the height func-
tion). We have g−1(y) = p−1([0, ∞)) therefore if we can show that 0 is a regular
value of p then the desired result follows from 23.1 applied to g̃−1(y) and p. For
that we need to show that the tangent space Tg̃−1(y)u at u ∈ p−1(0) is not con-
tained in ∂Hm. Note that since u ∈ p−1(0) we have u ∈ ∂Hm.

Since g̃ is regular at u, the null space of dg̃u on TŨu = Rm is exactly Tg̃−1(y)u,
of dimension m− n. On the other hand, g̃|∂Hm is regular at u, which implies that
the null space of dg̃u restricted to T(∂Hm)u = ∂Hm has dimension (m − 1) − n.
Thus Tg̃−1(y)u is not contained in ∂Hm. �

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


23. MANIFOLDS WITH BOUNDARIES 143

Problems.

23.5. Check that Rm cannot be diffeomorphic to Hm.

23.6. Show that the subspace {(x1, x2, . . . , xm) ∈ Rm | xm > 0} is diffeomorphic to Rm.

23.7. A simple regular path is a map γ : [a, b] → Rm such that γ is injective, smooth,
and γ(k)(t) 6= 0 for all t ∈ [a, b]. Show that the trace of a simple closed regular path is a
smooth 1-dimensional manifold with boundary.

23.8. Suppose that M is an n-manifold without boundary. Show that M× [0, 1] is an
(n + 1)-manifold with boundary. Show that the boundary of M × [0, 1] consists of two
connected components, each of which is diffeomorphic to M.

23.9. Let M be a compact smooth manifold and f : M → R be smooth. Show that if
the interval [a, b] only contains regular values of f then the sublevel sets f−1((−∞, a]) and
f−1((−∞, b]) are diffeomorphic.
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144 DIFFERENTIAL TOPOLOGY

24. Sard theorem

Sard theorem. We use the following result from Analysis:

THEOREM (Sard Theorem). The set of critical values of a smooth map from Rm to
Rn is of Lebesgue measure zero.

For a proof see for instance [Mil97]. Sard theorem also holds for smooth func-
tions from Hm to Rn. This is left as a problem.

Since a set of measure zero must have empty interior, we have:

COROLLARY. The set of regular values of a smooth map from Rm to Rn is dense in
Rn.

An application of Sard theorem for manifolds is the following:

THEOREM. If M and N are two manifolds with boundary and f : M→ N is smooth
then the set of all regular values of f is dense in N. In particular f has a regular value in
N.

PROOF. Consider any open subset V of N parametrized by ψ : V′ → V. Then
f−1(V) is an open submanifold of M. We only need to prove that f | f−1(V) has a
regular value in V. Let C be the set of all critical points of f | f−1(V).

We can cover f−1(V) (or any manifold) by a countable collection I of parametrized
open neighborhoods. This is possible because a Euclidean space has a countable
topological basis (see 2.17).

For each U ∈ I we have a commutative diagram:

U
f
// V

U′

ϕU

OO

gU // V′

ψ

OO

where U′ is an open subset of Hm and V′ is an open subset of Hn. From this
diagram, x is a critical point of f in U if and only if ϕ−1

U (x) is a critical point of gU .
Thus the set of critical points of gU is ϕ−1

U (C ∩U).
Now we write

f (C) =
⋃

U∈I
f (C ∩U) =

⋃
U∈I

ψ(gU(ϕ−1(C ∩U))) = ψ

(⋃
U∈I

gU(ϕ−1(C ∩U))

)
.

By Sard Theorem the set gU(ϕ−1
U (C ∩U)) is of measure zero. This implies that the

set D =
⋃

U∈I gU(ϕ−1
U (C ∩U)) is of measure zero, since a countable union of sets

of measure zero is a set of measure zero. As a consequence D must have empty
topological interior.

Since ψ is a homeomorphism, ψ(D) = f (C) must also have empty topological
interior. Thus f (C)  V, so there must be a regular value of f in V. �
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24. SARD THEOREM 145

If N ⊂ M and f : M → N such that f |N = idN then f is called a retraction
from M to N and N is a retract of M.

LEMMA 24.1. Let M be a compact manifold with boundary. There is no smooth map
f : M → ∂M such that f |∂M = id∂M. In other words there is no smooth retraction from
M to its boundary.

PROOF. Suppose that there is such a map f . Let y be a regular value of f .
Since f |∂M is the identity map, y is also a regular value of f |∂M. By Theorem 23.2
the inverse image f−1(y) is a 1-manifold with boundary f−1(y) ∩ ∂M = {y}. But
a 1-manifold cannot have boundary consisting of exactly one point. This result is
contained in the classification of compact one-dimensional manifolds. �

THEOREM 24.2 (Classification of compact one-dimensional manifolds). A smooth
compact connected one-dimensional manifold is diffeomorphic to either a circle, in which
case it has no boundary, or an arc, in which case its boundary consists of two points.

See [Mil97] for a proof.
Repeating of the proof for the continuous Brouwer fixed point theorem as in

16.3, we get:

COROLLARY 24.3 (smooth Brouwer fixed point theorem). A smooth map from
the disk Dn to itself has a fixed point.

PROOF. Suppose that f does not have a fixed point, i.e. f (x) 6= x for all x ∈ Dn.
The straight line from f (x) to x will intersect the boundary ∂Dn at a point g(x).
Then g : Dn → ∂Dn is a smooth function which is the identity on ∂Dn. That is
impossible, by 24.1. �

A proof for the continuous version of the theorem using the smooth version
can be found in [Mil97].

Problems.

24.4. Show that Sard theorem also holds for smooth functions from Hm to Rn.

24.5. Show that a smooth loop on S2 (i.e. a smooth map from S1 to S2) cannot cover
S2. Similarly, there is no smooth surjective maps from R to Rn with n > 1. In other words,
there is no smooth space filling curves, in contrast to the continuous case (compare 9).

24.6. Check that the function g in the proof of 24.3 is smooth.

24.7. Let A be an n× n matrix whose entries are all nonnegative real numbers. We will
derive the Frobenius theorem which says that A must have a real nonnegative eigenvalue.

(a) Suppose that A is not singular. Check that the map v 7→ Av
||Av|| brings Q =

{(x1, x2, . . . , xn) ∈ Sn−1 | xi ≥ 0, 1 ≤ i ≤ n} to itself.
(b) Prove that Q is homeomorphic to the closed ball Dn−1.
(c) Use the continuous Brouwer fixed point theorem to prove that A has a real non-

negative eigenvalue.
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25. Orientation

Orientation on vector spaces. On a finite dimensional real vector space,
two vector bases are said to determine the same orientation of the space if the
change of bases matrix has positive determinant. Being of the same orientation is
an equivalence relation on the set of all bases. With this equivalence relation the
set of all bases is divided into two equivalence classes. If we choose one of the two
classes as the preferred one, then we say the vector space is oriented and the chosen
equivalence class is called the orientation (or the positive orientation).

Thus any finite dimensional real vector space is orientable (i.e. can be oriented)
with two possible orientations.

EXAMPLE. The standard positive orientation of Rn is represented by the basis

{e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1)}.

Unless stated otherwise, Rn is always oriented this way.

Let T be an isomorphism from an oriented finite dimensional real vector space
V to an oriented finite dimensional real vector space W. Then T brings a basis of
V to a basis of W. There are only two possibilities. Either T brings a positive basis
of V to a positive basis of W, or T brings a positive basis of V to a negative basis
of W. In the first case we say that T is orientation-preserving, and in the second case
we say that T is orientation-reversing.

Orientation on manifolds. Roughly, a manifold is oriented if at each point an
orientation for the tangent space is chosen and this orientation should be smoothly
depended on the point.

DEFINITION. A manifold M is said to be oriented if at each point x an orien-
tation for the tangent space TMx is chosen and at each point there exists a local
coordinate (U, ϕ) such that for each x in U the derivative dϕx : TMx → Rm is
orientation-preserving.

Thus in this local coordinate the orientation of TMx is given by the basis{ ∂ϕ
∂x1

(x), ∂ϕ
∂x2

(x), . . . , ∂ϕ
∂xm

(x)
}

where ∂ϕ
∂x1

(x) = dϕ−1
ϕ(x)(ei). Roughly, the local coor-

dinate brings the orientation of Rm to the manifold.
If a manifold is oriented then the set of orientations of its tangent spaces is

called an orientation of the manifold and the the manifold is said to be orientable.
Another approach to orientation of manifold is to orient each parametrized

neighborhood then require that the orientations on overlapping neighborhoods
agree. Concisely, suppose that ϕ : U → M is a parametrization of a neighborhood
in M. At each point, the orientation on TMx is given by the image of the standard
basis of Rn via dϕu, i.e. it is given by the basis

{ ∂ϕ
∂u1

(u), ∂ϕ
∂u2

(u), . . . , ∂ϕ
∂un

(u)
}

where
∂ϕ
∂ui

(u) = dϕu(ei). Suppose that ψ : V → M parametrizes an overlapping neigh-
borhood. Since dψv = d(ψ ◦ ϕ−1)v ◦ dϕu, the consistency requirement is that the
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25. ORIENTATION 147

map d(ψ ◦ ϕ−1)v must be orientation preserving on Rm. In other words, we can
say that the change of coordinates must be orientation preserving.

EXAMPLE. If a manifold is parametrized by one parametrization, that is, it is
covered by one local coordinate, then it is orientable, since we can take the unique
parametrization to bring an orientation of Rm to the entire manifold. In particular,
any open subset of Rk is an orientable manifold.

EXAMPLE. The graph of a smooth function f : D → Rl , where D ⊂ Rk is
an open set, is an orientable manifold, since this graph can be parametrized by a
single parametrization, namely x 7→ (x, f (x)).

PROPOSITION. If f : Rk → R is smooth and a is a regular value of f then f−1(a) is
an orientable manifold.

PROOF. Let M = f−1(a). If x ∈ M then ker d fx = TMx, so the gradient vector
∇ f (x) is perpendicular to TMx. In other words the gradient vector is always per-
pendicular to the level set. In particular, ∇ f (x) does not belong to TMx. Choose
the orientation on TMx represented by a basis b(x) = {b1(x), . . . , bk−1(x)} such
that the ordered set {b1(x), . . . , bk−1(x),∇ f (x)} is a positive basis in the standard
orientation of Rk. That means det (b1(x), . . . , bk−1(x),∇ f (x)) > 0.

We check that this orientation is smoothly depended on the point. Let ϕ :
Rk−1 → U ⊂ M be a local parametrization of a neighborhood U of x, with
ϕ(0) = x. We can assume that basis

{ ∂ϕ
∂u1

(0), ∂ϕ
∂u2

(0), . . . , ∂ϕ
∂uk−1

(0)
}

is in the same
orientation as b(x), if that is not the case we can interchange two variables of ϕ. We
can check that

{ ∂ϕ
∂u1

(u), ∂ϕ
∂u2

(u), . . . , ∂ϕ
∂uk−1

(u)
}

is in the same orientation as b(ϕ(u))

for all u ∈ Rk−1. Indeed, consider det
(

∂ϕ
∂u1

(u), ∂ϕ
∂u2

(u), . . . , ∂ϕ
∂uk−1

(u),∇ f (ϕ(u))
)

.

This is a continuous real function on u ∈ Rk−1 whose value at 0 is positive, there-
fore its value is always positive. �

EXAMPLE. The sphere is orientable.

EXAMPLE. The torus is orientable.

PROPOSITION. A connected orientable manifold has exactly two orientations.

PROOF. Suppose the manifold M is orientable. There is an orientation o on M.
Then −o is a different orientation on M. Suppose that o1 is an orientation on M,
we show that o1 is either o or −o.

If two orientations agrees at a point they must agree locally around that point.
Indeed, from the definition there is a neighborhood V of x and a local coordinates
ϕ : V → Rm that brings the orientation o1 to the standard orientation of Rm,
and a local coordinates ψ : V → Rk that brings the orientation o to the standard
orientation of Rm. Assuming ϕ(x) = ψ(x) = 0, then det J(ψ−1 ◦ ϕ) is smooth on
Rm and is positive at 0, therefore it is always positive. That implies o1 and o agree
on V.
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148 DIFFERENTIAL TOPOLOGY

Let U be the set of all points x in M such that the orientation of TMx with
respect to o1 is the same with the orientation of TMx with respect to o. Then U is
open in M. Similarly the complement M \U is also open. Since M is connected,
either U = M or U = ∅. �

Orientable surfaces. A two dimensional smooth manifold in R3 is called a
(smooth) surface. A surface is two-sided if there is a smooth way to choose a unit
normal vector N(p) at each point p ∈ S. That is, there is a smooth map N : S→ R3

such that at each p ∈ S the vector N(p) has length 1 and is perpendicular to TSp.

PROPOSITION. A surface is orientable if and only if it is two-sided.

PROOF. If the surface S is orientable then its tangent spaces could be oriented
smoothly. That means at each point p ∈ S there is a local parametrization r(u, v)
such that {ru(u, v), rv(u, v)} gives the orientation of TSp. Then the unit normal

vector
ru(u, v)× rv(u, v)
||ru(u, v)× rv(u, v)|| is defined smoothly on the surface.

Conversely, if there is a smooth unit normal vector N on the surface then we
orient each tangent plane TSp by a basis {v1, v2} such that {v1, v2, N(p)} is in the
same orientation as the standard orientation of R3. For each point p take a local
parametrization r : R2 → S, r(0, 0) = p, such that {ru(0, 0), rv(0, 0)} is in the orien-
tation of TSp (take any local parametrization, if it gives the opposite orientation at
p then just switch the variables). Since 〈ru(u, v)× rv(u, v), N(r(u, v))〉 is smooth,
its sign does not change, and since the sign at (0, 0) is positive, the sign is always
positive. Thus {ru(u, v), rv(u, v)} is in the orientation of TSr(u,v). That means the
orientation is smooth. �

Now we are able to prove a famous fact, that the Mobius band (see 9.4) is not
orientable.

FIGURE 25.1. The Mobius band is not orientable and is not two-sided.

Visually, if we pick a normal vector to the surface at a point in the center of
the Mobius band, then move that normal vector smoothly along the center circle
of the band. When we come back at the initial point after one loop, we realize
that the normal vector is now in the opposite direction. That demonstrate that the
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25. ORIENTATION 149

Mobius surface is not two-sided. Similarly if we choose an orientation at a point
then move that orientation continuously along the band then when we comeback
the orientation has been switched.

We can write this argument rigorously below.

THEOREM 25.2. The Mobius band is not orientable.

PROOF. Recall a parametrization of a neighborhood of the (open) Mobius band
M from Figure 9.6:

ϕ1 : (0, 2π)× (−1, 1) → M

(s, t) 7→
(
(2 + t cos

s
2
) cos s, (2 + t cos

s
2
) sin s, t sin

s
2

)
.

This parametrization misses a subset of M, namely the interval [1, 3] on the x-axis.
So we need one more parametrization to cover this part. We can take

ϕ2 : (−π, π)× (−1, 1) → M

(s, t) 7→
(
(2 + t cos

s
2
) cos s, (2 + t cos

s
2
) sin s, t sin

s
2

)
.

Thus ϕ2 is given by the same formula as ϕ1, but on a different domain. This
parametrization misses the subset {−2} × {0} × [−1, 1] of M.

Suppose that M is orientable. Take an orientation for M. Then either ϕ1 agrees
with this orientation or disagrees with this orientation over the entire connected
domain of ϕ1. The same is true for ϕ2. That implies that ϕ1 and ϕ2 either in-
duce the same orientations over their entire domains, or they induces the opposite
orientations over their domains.

Calculating directly, we get the normal vector given by ϕ1 at the point ϕ1(s, 0)
on the center circle is:

(ϕ1)s × (ϕ1)t(s, 0) =
(

2 cos s sin
s
2

, 2 sin s sin
s
2

,−2 cos
s
2

)
.

The normal vector given by ϕ2 at the point ϕ2(s, 0) on the center circle is by the
same formula:

(ϕ2)s × (ϕ2)t(s, 0) =
(

2 cos s sin
s
2

, 2 sin s sin
s
2

,−2 cos
s
2

)
.

At the point (0, 2, 0) = ϕ1(
π
2 , 0) = ϕ2(

π
2 , 0) the two normal vectors agree, but at

(0,−2, 0) = ϕ1(
3π
2 , 0) = ϕ2(−π

2 , 0) they are opposite. Thus ϕ1 and ϕ2 do not give
the same orientation, a contradiction. �

Orientation on the boundary of an oriented manifold. Suppose that M is a
manifold with boundary and the interior of M is oriented. We orient the boundary
of M as follows. Suppose that under an orientation-preserving parametrization ϕ

the point ϕ(x) is on the boundary ∂M of M. Then the orientation {b2, b3, . . . , bn}
of ∂Hn such that the ordered set {−en, b2, b3, . . . , bn} is a positive basis of Rn will
induce the positive orientation for T∂Mϕ(x) through dϕ(x). This is called the outer
normal first orientation of the boundary.
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150 DIFFERENTIAL TOPOLOGY

Problems.

25.3. Show that two diffeomorphic manifolds are are either both orientable or both
unorientable.

25.4. Suppose that f : M → N is a diffeomorphism of connected oriented manifolds
with boundary. Show that if there is an x such that d fx : TMx → TN f (x) is orientation-
preserving then f is orientation-preserving.

25.5. Let f : Rk → Rl be smooth and let a be a regular value of f . Show that f−1(a) is
an orientable manifold.

25.6. Consider the map −id : Sn → Sn with x 7→ −x. Show that −id is orientation-
preserving if and only if n is odd.
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26. TOPOLOGICAL DEGREES OF MAPS 151

26. Topological degrees of maps

Let M and N be boundaryless, oriented manifolds of the same dimensions m.
Further suppose that M is compact.

Let f : M → N be smooth. Suppose that x is a regular point of f . Then
d fx is an isomorphism from TMx to TN f (x). Let sign(d fx) = 1 if d fx preserves
orientations, and sign(d fx) = −1 otherwise.

For any regular value y of f , let

deg( f , y) = ∑
x∈ f−1(y)

sign(d fx).

Notice that the set f−1(y) is finite because M is compact (see 20.4).
This number deg( f , y) is called the Brouwer degree (bậc Brouwer) 15 or topolog-

ical degree of the map f with respect to the regular value y.
From the Inverse Function Theorem 20.19, each regular value y has a neigh-

borhood V and each preimage x of y has a neighborhood Ux on which f is a dif-
feomorphism onto V, either preserving or reversing orientation. Therefore we can
interpret that deg( f , y) counts the algebraic number of times the function f covers the
value y.

EXAMPLE. Consider f : R → R, f (x) = x2. Then deg( f , 1) = 0. This could
be explained geometrically from the graph of f , as f covers the value 1 twice in
opposite directions at x = −1 and x = 1.

EXAMPLE. Consider f (x) = x3 − x with the regular value 0. From the graph
of f we see that f covers the value 0 three times in positive direction at x = −1 and
x = 1 and negative direction at x = 0, therefore we see right away that deg( f , 0) =
1.

On the other hand, if we consider the regular value−1 then f covers this value
only once in positive direction, thus deg( f , 1) = 1.

Homotopy invariance. In this section we will show that the Brouwer degree
does not depend on the choice of regular values and is invariant under smooth
homotopy.

LEMMA. Let M be the boundary of a compact oriented manifold X, oriented as the
boundary of X. If f : M → N extends to a smooth map F : X → N then deg( f , y) = 0
for every regular value y.

PROOF. (a) Assume that y is a regular value of F. Then F−1(y) is a 1-dimensional
manifold of dimension 1 whose boundary is F−1(y) ∩ M = f−1(y), by Theorem
23.1.

By the Classification of one-dimensional manifolds, F−1(y) is the disjoint union
of arcs and circles. Let A be a component that intersects M. Then A is an arc with
boundary {a, b} ⊂ M.

15L. E. J. Brouwer (1881–1966) is a Dutch mathematician. He had many important contributions in the
early development of topology, and founded Intuitionism.
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152 DIFFERENTIAL TOPOLOGY

We will show that sign(det(d fa)) = − sign(det(d fb)). Taking sum over all arc
components of F−1(y) would give us deg( f , y) = 0.

An orientation on A. Let x ∈ A. Recall that TAx is the kernel of dFx : TXx →
TNy. We will choose the orientation on TAx such that this orientation together
with the pull-back of the orientation of TNy via dFx is the orientation of X. Let
(v2, v3, . . . , vn+1) be a positive basis for TNy. Let v1 ∈ TAx such that {v1, dF−1

x (v2), . . . , dF−1
x (vn+1)}

is a positive basis for TXx. Then v1 determine the positive orientation on TAx.
At x = a or at x = b we have d fx = dFx|TMx . Therefore d fx is orientation-

preserving on TMx oriented by the basis {d f−1
x (v2), . . . , d f−1

x (vn+1)}.
We claim that exactly one of the two above orientations of TMx at x = a or

x = b is opposite to the orientation of TMx as the boundary of X. This would
show that sign(det(d fa)) = − sign(det(d fb)).

Observe that if at a the orientation of TAa is pointing outward with respect to
X then b the orientation of TAb is pointing inward, and vice versa. Indeed, since
A is a smooth arc it is parametrized by a smooth map γ(t) such that γ(0) = a and
γ(1) = b. If we assume that the orientation of TAγ(t) is given by γ′(t) then it is
clear that at a the orientation is inward and at b it is outward.

(b) Suppose now that y is not a regular value of F. There is a neighborhood
of y in the set of all regular values of f such that deg( f , z) does not change in this
neighborhood. Let z be a regular value of F in this neighborhood, then deg( f , z) =
deg(F, z) = 0 by (a), and deg( f , z) = deg( f , y). Thus deg( f , y) = 0. �

LEMMA. If f is smoothly homotopic to g then deg( f , y) = deg(g, y) for any common
regular value y.

PROOF. Let I = [0, 1] and X = M × I. Since f be homotopic to g there is a
smooth map F : X → N such that F(x, 0) = f (x) and F(x, 1) = g(x).

The boundary of X is (M× {0}) t (M× {1}). Then F is an extension of the
pair f , g from ∂X to X, thus deg(F|∂X , y) = 0 by the above lemma.

Note that one of the two orientations of M× {0} or M× {1} as the boundary
of X is opposite to the orientation of M (this is essentially for the same reason
as in the proof of the above lemma). Therefore deg(F|∂X , y) = ±(deg( f , y) −
deg(g, y)) = 0, so deg( f , y) = deg(g, y). �

LEMMA 26.1 (Homogeneity of manifold). Let N be a connected boundaryless
manifold and let y and z be points of N. Then there is a self diffeomorphism h : N → N
that is smoothly isotopic to the identity and carries y to z.

We do not present a proof for this lemma. The reader can find a proof in
[Mil97, p. 22].

THEOREM 26.2. Let M and N be boundaryless, oriented manifolds of the same di-
mensions. Further suppose that M is compact and N is connected. The Brouwer degree of
a map from M to N does not depend on the choice of regular values and is invariant under
smooth homotopy.
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26. TOPOLOGICAL DEGREES OF MAPS 153

Therefore from now on we will write deg( f ) instead of deg( f , y).

PROOF. We have already shown that degree is invariant under homotopy.
Let y and z be two regular values for f : M → N. Choose a diffeomorphism h

from N to N that is isotopic to the identity and carries y to z.
Note that h preserves orientation. Indeed, there is a smooth isotopy F : N ×

[0, 1] → N such that F0 = h and F1 = id. Let x ∈ N, and let ϕ : Rm → N be
an orientation-preserving parametrization of a neighborhood of x with ϕ(0) = x.
Since dFt(x) ◦ dϕ0 : Rm ×R is smooth with respect to t, the sign of dFt(x) does not
change with t.

As a consequence, deg( f , y) = deg(h ◦ f , h(y)).
Finally since h ◦ f is homotopic to id ◦ f , we have deg(h ◦ f , h(y)) = deg(id ◦

f , h(y)) = deg( f , h(y)) = deg( f , z). �

EXAMPLE. Let M be a compact, oriented and boundaryless manifold. Then the
degree of the identity map on M is 1. On the other hand the degree of a constant
map on M is 0. Therefore the identity map is not homotopic to a constant map.

EXAMPLE 26.3 (Proof of the Brouwer fixed point theorem via the Brouwer
degree). We can prove that Dn+1 cannot retract to its boundary (this is 24.1 for the
case of Dn+1) as follows. Suppose that there is such a retraction, a smooth map
f : Dn+1 → Sn that is the identity on Sn. Define F : [0, 1]× Sn by F(t, x) = f (tx).
Then F is a smooth homotopy from a constant map to the identity map on the
sphere. But these two maps have different degrees.

THEOREM (The fundamental theorem of Algebra). Any non-constant polynomial
with real coefficients has at least one complex root.

PROOF. Let p(z) = zn + a1zn−1 + a2zn−2 + · · · + an−1z + an, with ai ∈ R,
1 ≤ i ≤ n. Suppose that p has no root, that is, p(z) 6= 0 for all z ∈ C. As a
consequence, an 6= 0.

For t ∈ [0, 1], let

qt(z) = (1− t)nzn + a1(1− t)n−1tzn−1 + · · ·+ an−1(1− t)tn−1z + antn.

Then qt(z) is continuous with respect to the pair (t, z). Notice that if t 6= 0
then qt(z) = tn p((1− t)t−1z), and q0(z) = zn while q1(z) = an.

If we restrict z to the set {z ∈ C | |z| = 1} = S1 then qt(z) has no roots, so qt(z)
|qt(z)|

is a continuous homotopy of maps from S1 to itself, starting with the polynomial
zn and ending with the constant polynomial an

|an | . But these two polynomials have
different degrees, a contradiction. �

EXAMPLE. Let v : S1 → R2, v((x, y)) = (−y, x), then it is a nonzero (not zero
anywhere) tangent vector field on S1.

Similarly we can find a nonzero tangent vector field on Sn with odd n.

THEOREM 26.4 (The Hairy Ball Theorem). If n is even then every smooth tangent
vector field on Sn has a zero.
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154 DIFFERENTIAL TOPOLOGY

PROOF. Suppose that v is a nonzero tangent smooth vector field on Sn. Let
w(x) = v(x)

||v(x)|| , then w is a unit smooth tangent vector field on Sn.
Notice that w(x) is perpendicular to x. On the plane spanned by x and w(x)

we can easily rotate vector x to vector −x. Precisely, let Ft(x) = cos(t) · x + sin(t) ·
w(x) with 0 ≤ t ≤ π, then F is a homotopy on Sn from x to −x. But the degrees of
these two maps are different, see 26.14. �

Problems.

26.5. Find the topological degree of a polynomial on R. Notice that although the do-
main R is not compact, the topological degree is well-defined for polynomial.

26.6. Let f : S1 → S1, f (z) = zn, where n ∈ Z. We can also consider f as a vector-
valued function f : R2 → R2, f (x, y) = ( f1(x, y), f2(x, y)). Then f = f1 + i f2.

(a) Recalling the notion of complex derivative and the Cauchy-Riemann condition,
check that det(J fz) = | f ′(z)|2.

(b) Check that all values of f are regular.
(c) Check that deg( f , y) = n for all y ∈ S1.

26.7. Show that deg( f , y) is locally constant on the subspace of all regular values of f .

26.8. What happens if we drop the condition that N is connected in Theorem 26.2?
Where do we use this condition?

26.9. Let M and N be oriented boundaryless manifolds, M is compact and N is con-
nected. Let f : M → N. Show that if deg( f ) 6= 0 then f is onto, i.e. the equation f (x) = y
always has a solution.

26.10. Let ri : Sn → Sn be the reflection map

ri((x1, x2, . . . , xi, . . . , xn+1)) = (x1, x2, . . . ,−xi, . . . , xn+1).

Compute deg(ri).

26.11. Let f : Sn → Sn be the map that interchanges two coordinates:

f ((x1, x2, . . . , xi, . . . , xj, . . . , xn+1)) = (x1, x2, . . . , xj, . . . , xi, . . . , xn+1).

Compute deg( f ).

26.12. Suppose that M, N, P are compact, oriented, connected, boundaryless m-manifolds.

Let M
f→ N

g→ P. Then deg(g ◦ f ) = deg( f )deg(g).

26.13. Let M be a compact connected smooth manifold. Let f : M→ M be smooth.

(a) Show that if f is bijective then deg f = ±1.
(b) Let f 2 = f ◦ f . Show that deg( f 2) ≥ 0.

26.14. Let r : Sn → Sn be the antipodal map

r((x1, x2, . . . , xn+1)) = (−x1,−x2, . . . ,−xn+1).

Compute deg(r).

26.15. Let f : S4 → S4, f ((x1, x2, x3, x4, x5)) = (x2, x4,−x1, x5,−x3). Find deg( f ).

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


26. TOPOLOGICAL DEGREES OF MAPS 155

26.16. Find a map from S2 to itself of any given degree.

26.17. If f , g : Sn → Sn be smooth such that f (x) 6= −g(x) for all x ∈ Sn then f is
smoothly homotopic to g.

26.18. Let f : M → Sn be smooth. Show that if dim(M) < n then f is homotopic to a
constant map.

26.19 (Brouwer fixed point theorem for the sphere). Let f : Sn → Sn be smooth. If
deg( f ) 6= (−1)n+1 then f has a fixed point.

26.20. Show that any map of from Sn to Sn of odd degree carries a certain pair of
antipodal points to a pair of antipodal point.
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156 DIFFERENTIAL TOPOLOGY

Guide for further reading

We have closely followed John Milnor’s masterpiece [Mil97]. Another excel-
lent text is [GP74]. There are not many textbooks such as these two books, pre-
senting differential topology to undergraduate students.

The book [Hir76] is a technical reference for some advanced topics. The book
[DFN85] is a masterful presentation of modern topology and geometry, with some
enlightening explanations, but it sometimes requires knowledge of many topics.
The book [Bre93] is rather similar in aim, but is more like a traditional textbook.

An excellent textbook for differential geometry of surfaces is [dC76].

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


Suggestions for some problems

1.7: There is an infinitely countable subset of B.
1.13:

⋃∞
n=1[n, n + 1] = [1, ∞).

1.17: Use the idea of the Cantor diagonal argument in the proof of 1.3. In this case
the issue of different presentations of same real numbers does not appear.

1.18: Proof by contradiction.
2.18: Show that each ball in one metric contains a ball in the other metric with the

same center.
3.16: Consider a map from the unit ball to the space, such as: x 7→ 1

1− ||x|| x.

3.26: Compare the subinterval [1, 2π) and its image via ϕ.
4.17: Use the characterization of connected subspaces of the Euclidean line.
4.24: Let A be countable and x ∈ R2 \ A. There is a line passing through x that does

not intersect A (by an argument involving countability of sets).
4.30: Use 3.15 to modify each letter part by part.
5.11: Consider the set of all irrational numbers.
5.21: Let C be a countable subset of [0, Ω). The set

⋃
c∈C[0, c) is countable while the

set [0, Ω) is uncountable. This implies C is bounded from above.
6.9: Use Lebesgue’s number.
6.12: See the proof of 6.1.
6.14: Use 6.12.
6.15: Use 6.14.
6.17: Let X be a compact metric space, and let I be an open cover of X. For each

x ∈ X there is an open set Ux ∈ I containing x. There is a number εx > 0 such
that the ball B(x, 2εx) is contained in Ux. The collection {B(x, εx) | x ∈ X} is an
open cover of X, therefore there is a finite subcover {B(xi, εi) | 1 ≤ i ≤ n}. Let
ε = min{εi | 1 ≤ i ≤ n}. Suppose that y ∈ B(x, ε). There is an i0, 1 ≤ i0 ≤ n, such
that x ∈ B(xi0 , εi0 ). We have d(y, xi0 ) ≤ d(y, x) + d(x, xi0 ) < ε + εi0 ≤ 2ε. This
implies y belongs to the element Uxi0

of I, and so B(x, ε) is contained in Uxi0
.

6.20: Use6.19.
6.27: Use 6.12
6.28: Use 6.27.
6.30: (⇐) Use 6.15 and 5.8.
6.31: Show that if U is an open set of X containing Y then U contains Xn for some n.

Use 6.15. Look at the Topologist’s sine curve.
7.6: Look at their bases.
7.12: Only need to show that the projection of an element of the basis is open.
7.14: Use 7.2 to prove that the inclusion map is continuous.
7.15: Use 7.14.

157
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158 SUGGESTIONS FOR SOME PROBLEMS

7.16: Let (xi) and (yi) be in ∏i∈I Xi. Let γi(t) be a continuous path from xi to yi. Let
γ(t) = (γi(t)).

7.17: (b) Use 7.14. (c) Fix a point x ∈ ∏i∈I Xi. Use (b) to show that the set Ax

of points that differs from x at at most finitely many coordinates is connected.
Furthermore Ax is dense in ∏i∈I Xi.

7.18: Use 7.14. It is enough to prove for the case an open cover of X×Y by open sets
of the form a product of an open set in X with an open set in Y. For each “slice”
{x} × Y there is finite subcover {Ux,i × Vx,i | 1 ≤ i ≤ nx}. Take Ux =

⋂nx
i=1 Ux,i.

The collection {Ux | x ∈ X} covers X so there is a subcover {Uxj | 1 ≤ j ≤ n}. The
collection {Uxj ,i ×Vxj ,i | 1 ≤ i ≤ nxj , 1 ≤ j ≤ n} is a finite subcover of X×Y.

7.24: (⇐) Use 6.15 and the Urysohn lemma 8.1.
8.5: (⇐) Use 6.15 and the Urysohn lemma 8.1.
8.6: Use 6.28 and 6.13.
8.10: Use 8.9.
8.11: See 7.1 and 7.3.
8.13: Use 6.27. Use a technique similar to the one in 7.18.
9.15: To give a rigorous argument we can simply describe the figure below.

B

A

C

A′

B′

C′

A

C

B′

C′

A′

C′

B

C

The map from X = ([0, 1]× [0, 1]) \
(
[0, 1]× { 1

2}
)

to Y = [0, 2]× [0, 1
2 ) given by

(x, y) 7→

(x, y), y < 1
2 ,

(x + 1, 1− y), y > 1
2 ,

is bijective and is continuous. The induced map to Y/(0, y) ∼ (2, y) is surjective
and is continuous. Then its induced map on X/(0, y) ∼ (1, 1 − y) is bijective
and is continuous, hence is a homeomorphism between X/(0, y) ∼ (1, 1− y) and
Y/(0, y) ∼ (2, y).

9.19: The idea is easy to be visualized in the cases n = 1 and n = 2. Let S+ =

{x = (x1, x2, . . . , xn+1) ∈ Sn | x1 ≥ 0}, the upper hemisphere. Let S0 = {x =

(x1, x2, . . . , xn+1) ∈ Sn | x1 = 0}, the equator. Let f : Sn → S+ be given by
f (x) = x if x ∈ S+ and f (x) = −x otherwise. Then the following diagram is
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SUGGESTIONS FOR SOME PROBLEMS 159

commutative:

Sn f //

��

p◦ f

((

S+

p
��

Sn/x ∼ −x
f̃ // S+/x ∼ −x, x ∈ S0

Then it is not difficult to show that S+/x ∼ −x, x ∈ S0 is homeomorphic to
RPn = Dn/x ∼ −x, x ∈ ∂Dn.

9.25: Examine the following diagram, and use 9.1 to check that the maps are contin-
uous.

X //

��

X/R1

yy

// (X/R1)/R̃2

ppX/(R1 ∪ R2)

44

10.15: One approach is using 3.20.
11.22: Deleting an open disk is the same as deleting the interior of a triangle.
11.25: Count edges from of the set of triangles. Count vertices from the set of trian-

gles. Count edges from the set of vertices, notice that each vertex belongs to at
most (v− 1) edges.

15.6: Consider the dihedral group D3. In particular consider the subgroup of the

group of invertible 2× 2 matrices generated by

(
− 1

2 −
√

3
2

−
√

3
2 − 1

2

)
(a rotation of

an angle 2π
3 ) and

(
−1 0
0 1

)
(a reflection).

15.2: See [Hat01, p. 52].
16.10: Use Mayer-Vietoris sequence.
16.7: First take a deformation retraction to a sphere.
16.8: Show that R3 \ S1 is homotopic to Y which is a closed ball minus a circle inside.

Show that Y = S1 ∨ S2, [Hat01, p. 46]. Or write Y as a union of two halves, each
of which is a closed ball minus a straight line, and use the Van Kampen theorem.

16.16: Let S be a convex compact subset of Rn. Suppose that p0 ∈ IntS. For x ∈ Sn−1,
let px be the intersection of the ray from p0 in the direction of x with the boundary
of S. Rigorously let tx = sup {t ∈ R+ | p0 + tx ∈ S} and let px = p0 + txx. Check
that the map Dn → S sending the straight segment [0, x] linearly to [p0, px] is
well-defined and is bijective. To prove that it is a homemorphism it is easier to
consider the inverse map.

17.5: Let X be the simplical complex, A be the set of vertices path-connected to the
vertex v0 by edges, U be the union of simplexes containing vertices in A. Let B be
the set of vertices not path-connected to the vertex v0 by edges, V be the union of
simplexes containing vertices in B. Then U and V are closed and disjoint.

17.6: Use problem 17.5.
18.6: The torus is given by the equation (

√
x2 + y2 − b)2 + z2 = a2 where 0 < a < b.

18.7: Consider a neighborhood of a point on the y-axis. Can it be homeomorphic to
an open neighborhood in R?

18.13: See 4.3.
18.14: See 3.25 and 22.2.
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160 SUGGESTIONS FOR SOME PROBLEMS

18.15: Use the Implicit function theorem.
20.19: Consider

M
f // N

U

ϕ

OO

ψ−1◦ f ◦ϕ// V

ψ

OO

Since d fx is surjective, it is bijective. Then d(ψ−1 ◦ f ◦ ϕ)u = dψ−1
f (x) ◦ d fx ◦ dϕu is

an isomorphism. The Inverse function theorem can be applied to ψ−1 ◦ f ◦ ϕ.
20.13: Each x ∈ f−1(y) has a neighborhood Ux on which f is a diffeomorphism. Let

V = [
⋂

x∈ f−1(y) f (Ux)] \ f (M \⋃x∈ f−1(y) Ux). Consider V ∩ S.
20.22: Use Problem 20.18.
22.2: Show that f (n)(x) = e−1/xPn(1/x) where Pn(x) is a polynomial.
22.3: Cover A by finitely many balls Bi ⊂ U. For each i there is a smooth function ϕi

which is positive in Bi and is zero outside of Bi.
26.19: If f does not have a fixed point then f will be homotopic to the reflection map.
26.17: Note that f (x) and g(x) will not be antipodal points. Use the homotopy

Ft(x) =
(1− t) f (x) + tg(x)
||(1− t) f (x) + tg(x)|| .

26.18: Using Sard Theorem show that f cannot be onto.
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atlas, 118

attaching cells, 73

Axiom of choice, 8

basis, 13

Borsuk-Ulam theorem, 25

boundary, 13

Brouwer degree, 151

Brouwer fixed point theorem, 97, 108, 145

Cantor diagonal argument, 6

Cantor set, 9

Cartesian product, 8

cell, 73

cell complex, 73

skeleton, 73

chain, 112

boundary, 105

closed, 105

cycle, 105

exact, 105

chain complex, 106

exact, 106

chart, 118

Classification of compact one-dimensional

manifolds, 145

closure, 13

compact

locally, 40, 42

compactification, 39

Alexandroff, 39

one-point, 39

connected

simply, 92

continuous map, 17

contractible space, 86

convergent, 32

covering map, 93

covering space, 93

critical point, 126

non-degenerate, 132

critical value, 126

curve on a manifold, 125

CW-complex, 73

deformation retract, 85

deformation retraction, 85

dense

subspace, 34

derivative, 123

diagram

commutative, 58

diffeomorphic, 117

diffeomorphism, 117

disk, 73

embedding, 19

equivalence

homotopy, 85

Euler characteristic, 74

filter, 35

filter-base, 35

finite intersection property, 37

first partial derivatives, 131

flow, 136

complete, 137

free product, 99

fundamental group, 89

Hairy Ball Theorem, 153

Hausdorff distance, 34

Hilbert cube, 45

homeomorphism, 17

Homogeneity of manifolds, 138

homogeneous, 82, 152

homology

simplicial, 113

singular, 106
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homology group

relative, 110

homotopy, 84

imbedding, 19

immersion, 62

interior, 12

Invariance of dimension, 65, 70, 117

invariant

homotopy, 91

topological, 24, 74

isometry, 21

Jacobian, 121

Jordan curve theorem, 65

Klein bottle, 62

Lebesgue’s number, 37

Lie group, 129

lift of path, 93

local coordinate, 118

local parametrization, 118

loop, 86

manifold

orientable, 146

orientation, 146

smooth, 117

submanifold, 119

topological, 69

with boundary, 140

map

closed, 20

discrete, 28

homotopic, 84

open, 20

smooth, 117

Mayer-Vietoris sequence, 107

metric

equivalent, 15

metrizable, 30

Mobius band, 61, 148

neighborhood, 11

net, 31

universal, 66

norm, 12

order

dictionary, 7

lower bound, 7

minimal, 7

smallest, 7

total, 7

partion of unity, 52

path, 25, 86

composition, 88

homotopy, 86

inverse, 88

Peano curve, 65

Poincaré conjecture, 116

point

contact, 12

interior, 12

limit, 12

point-wise convergence topology, 52, 56

polyhedron, 71

pre-compact, 37

projective plane, 61

projective space, 61

regular point, 126

regular value, 126

relation, 3

equivalence, 4

minimal equivalence, 64

retract, 85, 145

retraction, 85, 145

Sard Theorem, 144

second partial derivatives, 131

separation axioms, 30

set

closed, 12

countable, 4

directed, 31

equivalence, 4

indexed collection, 3

indexed family, 3

open, 11

ordered, 7

well-ordered, 9

simplex, 71

standard, 71

simplicial complex, 71

singular chain, 104

singular simplex, 104

Sorgenfrey’s line, 16

space

completely regular, 47

first countable, 33
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Hausdorff, 30

homeomorphic, 17

homotopic, 85

Niemytzki, 56

normal, 30

quotient, 58

regular, 30

subspace, 18

tangent, 122

Space filling curve, 65

sphere, 19

star-shaped, 85

stereographic projection, 19

Stone-Cech compactification, 47

subbasis, 13

support, 52

surface, 71, 76

connected sum, 76

fundamental polygon, 77

genus, 76

non-orientable, 76

orientable, 76

two-sided, 148

tangent vector, 122

The fundamental theorem of Algebra, 153

Tiestze extension theorem, 54

topological degree, 110, 151

topological dimension, 65

topological group, 42

topological invariant, 74

topological space

connected, 23

connected component, 23

topological vector space, 49

Topologist’s sine curve, 26

topology

coarser, 13

compact-open, 53

discrete, 11

Euclidean, 12

finer, 13

finite complement, 14

generated by subsets, 14

ordering, 14

product, 44

quotient, 58

relative, 18

subspace, 18

trivial, 11

Zariski, 50

torus, 59

total boundedness, 37

triangulation, 71

union

disjoint, 49

Urysohn lemma, 51

manifold, 139

smooth, 139

Urysohn Metrizability Theorem, 66

vector field, 136

Zorn lemma, 8
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You may say I’m a dreamer

But I’m not the only one

I hope someday you’ll join us ...

John Lennon, Imagine.
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