Bonds between atoms: contents
at the end of this lecture you should understand....

bonding In general, attractive and repulsive forces,
cohesive energy

lonic bonding

covalent bonding

metallic bonding

hydrogen bonding and van der Waals bonding

relationship between bonding type and some physical
properties of a solid (in particular melting point)
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Bonding In solids: the general idea

valence electrons (of the outer shell) achieve bonding (like
INn chemistry)

decrease in total energy stabilises the solid (the solid’s
energy Is lower than that of sum of atoms it is made of)

so the energy gain by the bonding must be higher than the
energy It costs to promote electrons from the atomic orbitals
to the electronic states of the solid.

this energy difference is a measure for the strength of the
bond. It Is called the cohesive energy.

cohesive energy = energy of atoms - energy of solid
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lonic bonding

® form positive and negative ions (here Na* and CI)

® bonding is achieved by electrostatic force and a classical
treatment Is (partially) meaningful.

example NaCl (rock salt): cubic structure
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Turning Atoms In lons

example: NaCl

how much energy does it cost?

lonization energy Na: 5.1 eV
electron affinity Cl: 3.6 eV

net energy cost: (5.1 eV - 3.6 eV) = 1.5 eV per pair
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lonic bonding

example: NaCl

what Is the energy gain?

potential energy:
2

€
E oulomb — Na+ -
Coulomy dmeqa Cl
this amounts to 5.1 eV per pair H
a=28A

so the total gain Is
5.1eV-15eV=3.6¢eV
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lonic bonding
example: NaCl

but this was just a molecule: what about the

electrostatic energy gain in the solid?
E:'E é\
E = +12 ¢ ;I

dregar/2 *\1"

d
next we get 8 more Cl ions and the total becomes

2
e 12 &
FE = X | 6 — - ——
dmega ( V2 7 \/ﬁ)

consider the centre Na ion

energy gain from next 6 ClI: g;
E:E ® Nat

E=—-6 "
dmepa Lcr

energy loss from next 12 Na:
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lonic bonding

example: NaCl

eventually the series converges |
and we get (for one ion) gr
9 2 °Na+

e C f
EF=-1.74 = -M -
7 8471'600, df-lﬂ'fga "CI

M is called the Madelung constant. -
ﬁ]is specific for a given structure.
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lonic bonding
2 2

= —1.748 = — Mgy

dmeqga dmeqga

so the total lattice energy for one mole of NaCl

because there are Na and Cl ions

N
\Q\ENEL X Nﬂr CF & | "i' ,
Biyor = 5> L5 A
\4

LT
to count ever ‘ '

1 \palr (;Jnly ovncg ‘\1" 1
This gives 861 kdmol . The experiment gives 776 kJmoI

Note: this Is the lattice energy, not the cohesive energy
(the lattice energy minus the energy to turn atoms into ions).
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® The existence of a (non-classical) repulsive force causes
the real cohesive energy to be slightly smaller (10%) than
the value calculated by the Coulomb potential.
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Covalent bonding

® A detailed view on the hydrogen molecule,
identical particles (later in connection with
magnetism, see online note on
www.philiphofmann.net).

® A simple view on other covalent bonds.
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The covalent bond: simple picture
- |
— C—
Ci— |

The covalent bond: less simple picture
(hydrogen molecule)

h*V: R*VE € 1 1 1 1 1 1
e e o — +=+ - - }
2m 2m 4’?!'&.[; |R.Jq_—1‘1| |RB —I'g| R |1"1 —I'g| |RJ4_—I'2| |RB —I‘1|

H —

U(ry,ra) = %m(rl)qﬁﬂ(rg) £ $a(rs)d5(r))

12 (see note on www.philiphofmann.net)
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The covalent bond: simple picture
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The covalent bond: simple picture
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The covalent bond: a closer look at C

® electron
configuration: 2 s
and 2 p electrons

| 3
® formation of four sp

hybrid orbitals as
linear combination
between the s and
three p orbitals

® directional character
of p orbitals\,}is also
found in sp orbitals.
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| N€ covalent bonad. sp bonading

methane

. diamond
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Bonding In most semiconductors

® Tetrahedral (sp?®) configuration almost ubiquitous: diamond,
Si, Ge, llI-V (GaAs, AlAs, InP), II-VI (CdS, CdTe)

17


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Bonding In most semiconductors

® Tetrahedral (sp?®) configuration almost ubiquitous: diamond,
Si, Ge, llI-V (GaAs, AlAs, InP), II-VI (CdS, CdTe)
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The covalent bond: sp bonding

2 .
® formation of three sp hybrid orbitals as linear combination
between the s and two p orbitals. One p-orbital remains
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)4
The covalent bond: sp bonding

graphene / graphite bucky-balls

carbon nanotubes
(rolled-up graphene)
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Covalent bonding

® Cohesive energies similar to ionic bonding, in the eV range.

® Very directional bonding.
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Metallic bonding
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metals / non-metals
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® the boundaries can be disputed

® simple metals, transition metals, noble metals
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Metallic bonding (simple metals)

® outer electrons are delocalized and act as “glue” between
positively charged ion cores

® generally found for elements with one, two or three valence
electrons.

® cohesive energies in the eV range
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Metallic bonding (simple metals):
more characteristics

smaller cohesive energies than in ionic crystals
larger ionic radii, e.g. for Na: 3.82 A (metal) and 1.94 A (NaCl)
bonding has no directional preference

closed-packed atomic configurations are preferred: best
possible overlap between the orbitals, no “holes” in the
potential

25


http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Metallic bonding: why Is this so favorable?

272
(2 V mw- U(r)¥(r) = E¥(r)
>
N\
kinetic energy (or Hamiltonian for a free particle)

« (negative) average curvature of wave function
“flatter” wave function -> lower energy

\ﬂ@ip > R /2
N

less localization -> smaller p variation
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Metallic bonding: why Is this so favorable?
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4s and 3d have very similar energies

Transition metals

4s electrons form delocalized metallic bonds

3d electrons form more local (covalent-like) bonds

higher cohesive energies

L™
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Bonds between molecules

molecular solids are very common (but not at RT)
ice

plastic

DNA

what makes molecules bond to each other?
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Bonds between molecules: hydrogen bonds

H
O

H

permanent dipole
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Bonds between molecules: hydrogen bonds
LY T

® H is positively charged but also very small: another “real”
bond cannot be established without overlap of electron

clouds (in this sense it Is too big in this drawing).

® H bonding is important in ice, DNA... but not very strong
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Bonds between molecules: van der Waals force

1 1
U=-E-p=-E-dEx -——a—
roor
El p=aE1
Grannnnnlihuna >
attract

® dipole moment caused by fluctuations

® this is always present as an attractive force (even between
He atoms as In this case)

® itis very weak and depends on the distance as r®
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Bond type and physical properties

® How does the bond type affect the
properties of a solid such as:

® mechanical strength / melting point
® electrical conductivity
® thermal conductivity

® optical properties
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Bond type and physical properties
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Summary

® We have looked at different types of bonding: ionic,
metallic, covalent, H-bonds, van der Waals bonds.

® In reality, intermediate bonding scenarios are often found.

® We have some ideas about the relation between between
the bonding type and the physical properties (at least for
the melting point).
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