The electronic properties of metals

- What is a metal, anyway?
- A metal conducts electricity (but some non-metals also do).
- A metal is opaque and looks shiny (but some non-metals also do).
- A metal conducts heat well (but some non-metals also do).

We will come up with a reasonable definition!

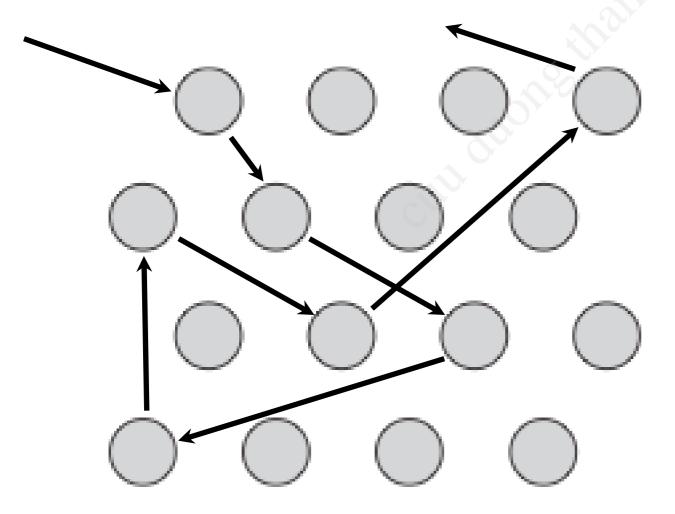
Electrical properties of metals: Classical approach (Drude theory)

at the end of this lecture you should understand....

- Basic assumptions of the classical theory
- DC electrical conductivity in the Drude model
- Hall effect
- Plasma resonance / why do metals look shiny?
- thermal conduction / Wiedemann-Franz law
- Shortcomings of the Drude model: heat capacity...

Drude's classical theory

- Theory by Paul Drude in 1900, only three years after the electron was discovered.
- Drude treated the (free) electrons as a classical ideal gas but the electrons should collide with the stationary ions, not with each other.



CuuDuongThanCong.con

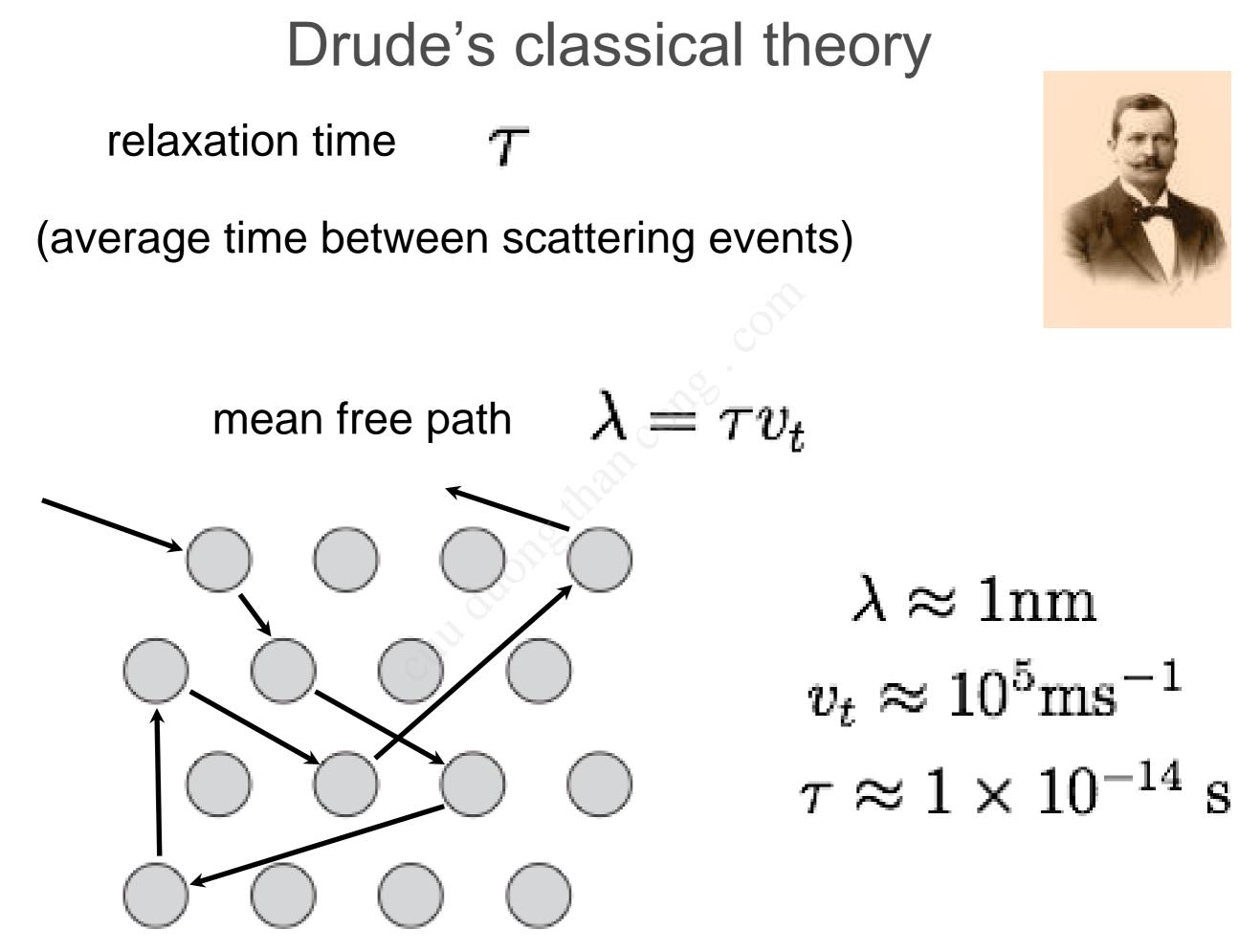
average rms speed

$$\frac{1}{2}mv_t^2 = \frac{3}{2}k_BT$$

$$v_t = \sqrt{\frac{3k_BT}{m}}$$

so at room temp.

$$v_t pprox 10^5 {
m ms}^{-1}$$



Conduction electron Density n

	Hotomo	metal	$Z_{\rm V}$	$n(10^{28} \text{ m}^{-3})$
	#atoms	Li	1	4.7
-	per	Na	1	2.65
	volume	K	1	1.4
		Rb	1	1.15
		\mathbf{Cs}	1	0.91
	as $Z_{V}\rho_m/A$ density atomic	Cu	1	8.47
		Ag	1	5.86
		Au	1	5.9
#valence		Be	2	24.7
electrons		Mg	2	8.61
per atom	o mass	Ba	2	3.15
por atom		Fe	2	17
		Al	3	18.1
		Pb	4	13.2
		Sb	5	16.5
		Bi	5	14.1

...this must surely be wrong....

- The electrons should strongly interact with each other. Why don't they?
- The electrons should strongly interact with the lattice ions.
 Why don't they?
- Using classical statistics for the electrons cannot be right. This is easy to see:

condition for using classical statistics

$$\lambda \ll l$$
 l is some Å

de Broglie wavelength of an electron:

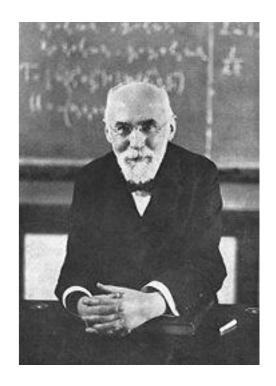
$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mE_{tr}}} = \frac{h}{\sqrt{2m\frac{3}{2}k_BT}} \text{ for room T } \lambda \approx 6 \times 10^{-9} \text{m}$$

CuuDuongThanCong.cor

but:

In a theory which gives results like this, there must certainly be a great deal of truth.

Hendrik Antoon Lorentz



So what are these results?

we apply an electric field. The equation of motion is

$$m_e rac{d \mathbf{v}}{dt} = -e \boldsymbol{\mathcal{E}}$$

integration gives
 $\mathbf{v}(t) = rac{-e \boldsymbol{\mathcal{E}} t}{m_e}$

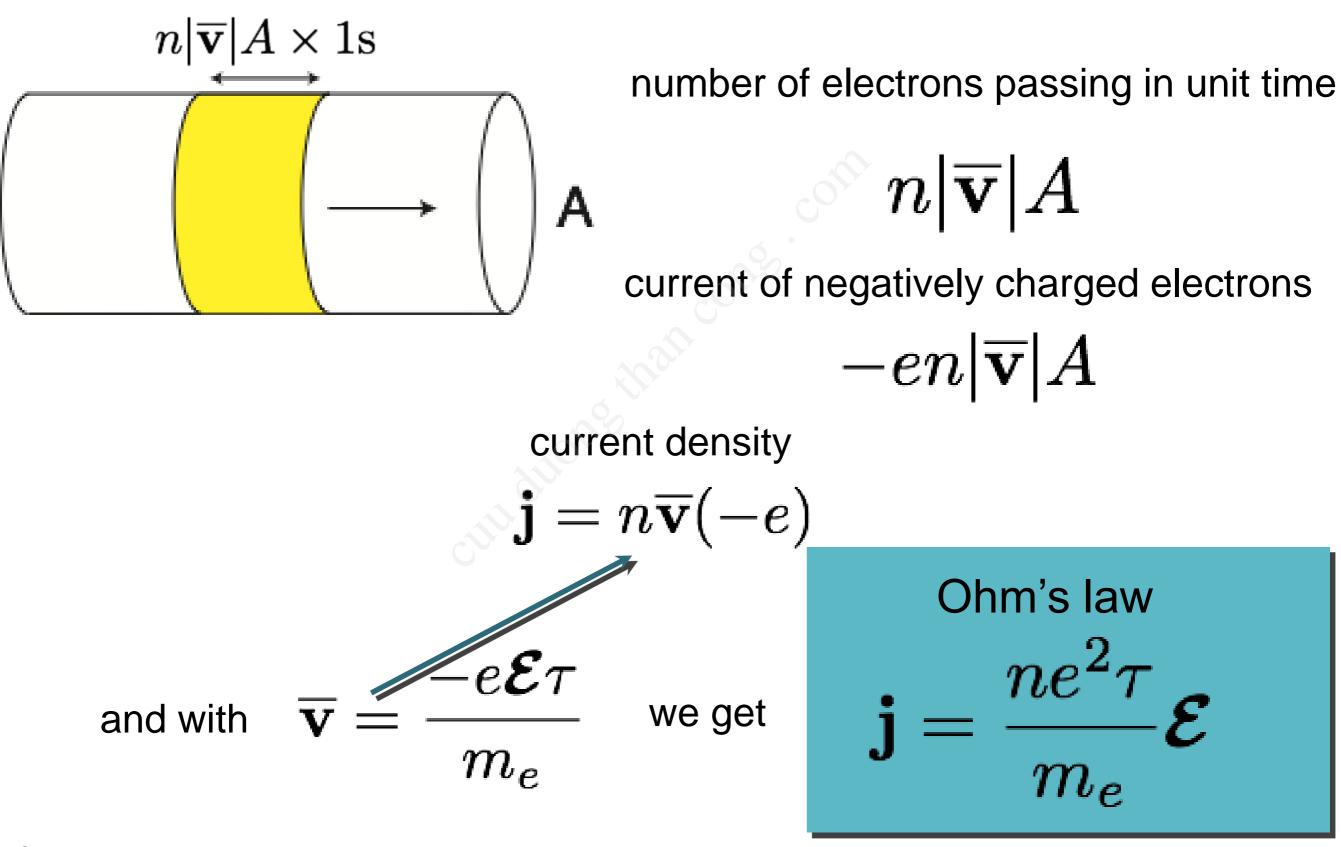
and if τ is the average time between collisions then the average drift speed is

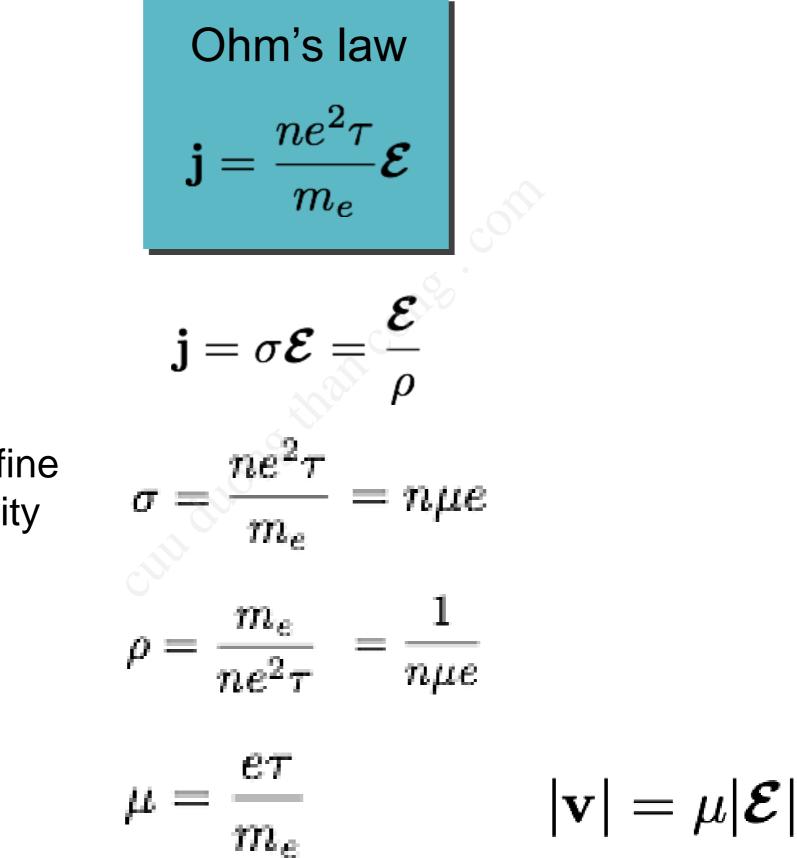
$$\overline{\mathbf{v}} = \frac{-e\boldsymbol{\mathcal{E}}\tau}{m_e}$$

for
$$\mathcal{E} \approx 10 \mathrm{Vm^{-1}}$$
 we get $\overline{v} = 10^{-2} \mathrm{ms^{-1}}$

CuuDuongThanCong.com

$$v_t = 10^5 {
m ms}^{-1}$$





and we can define the conductivity

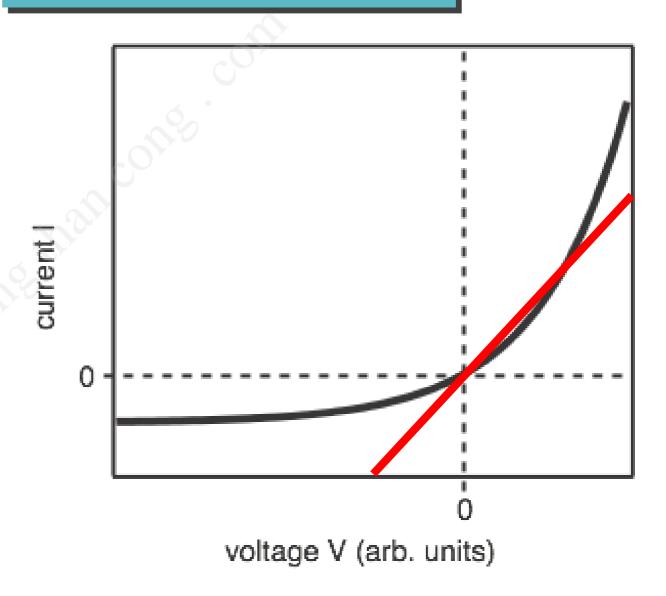
and the resistivity

and the mobility

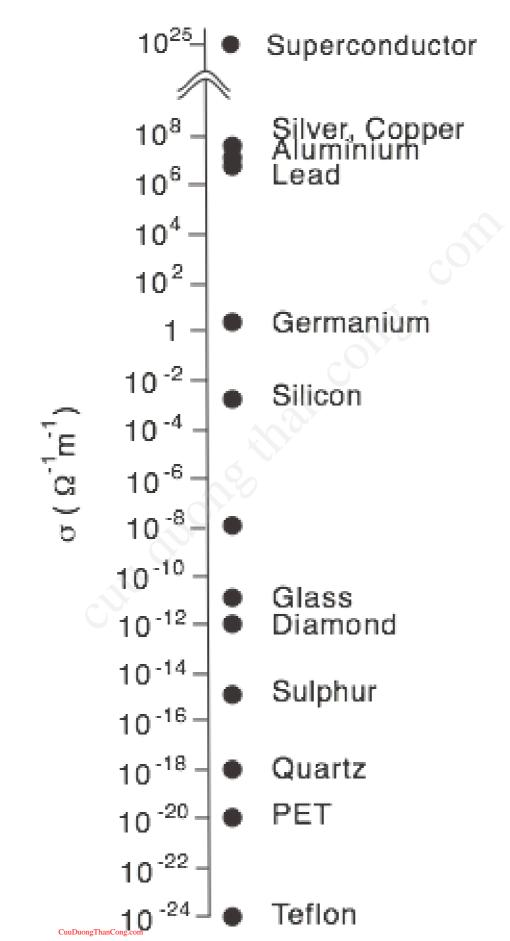
Ohm's law

$$\mathbf{j}=rac{ne^{2} au}{m_{e}}oldsymbol{\mathcal{E}}$$

- valid for metals
- valid for homogeneous semiconductors
- not valid for inhomogeneous semiconductors
- not valid for metal contacts to semiconductors



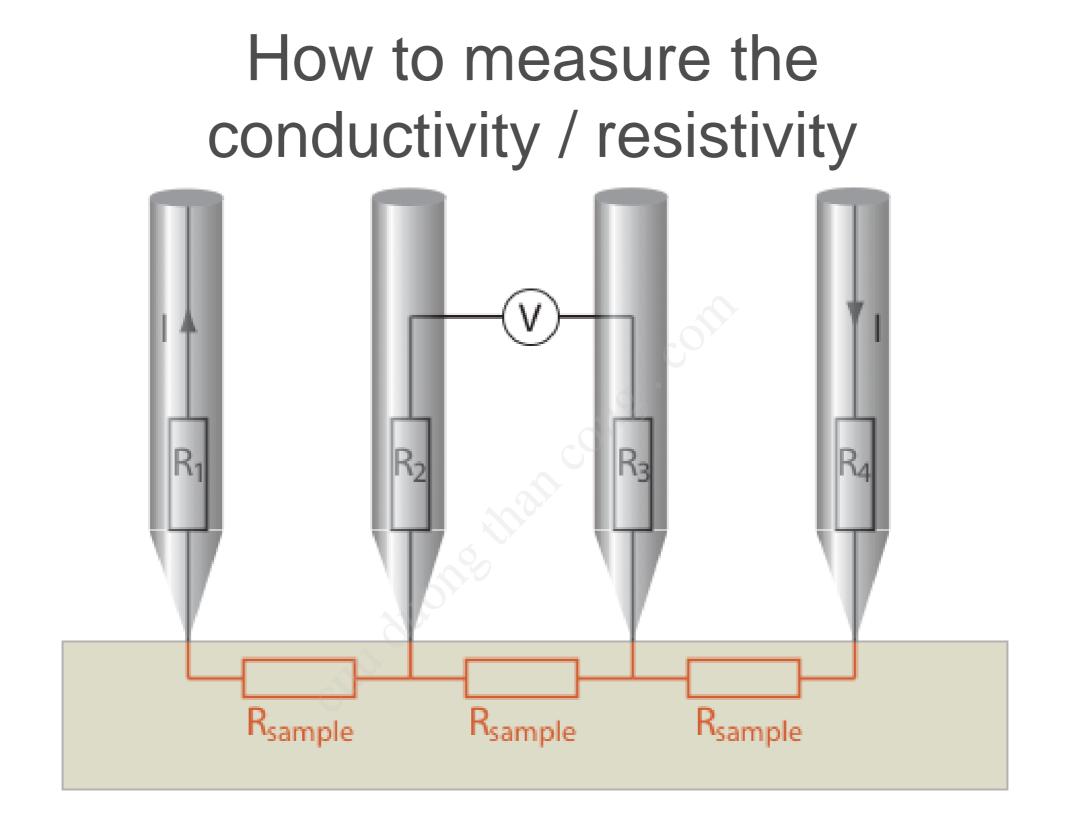
Electrical conductivity of materials



How to measure the conductivity / resistivity

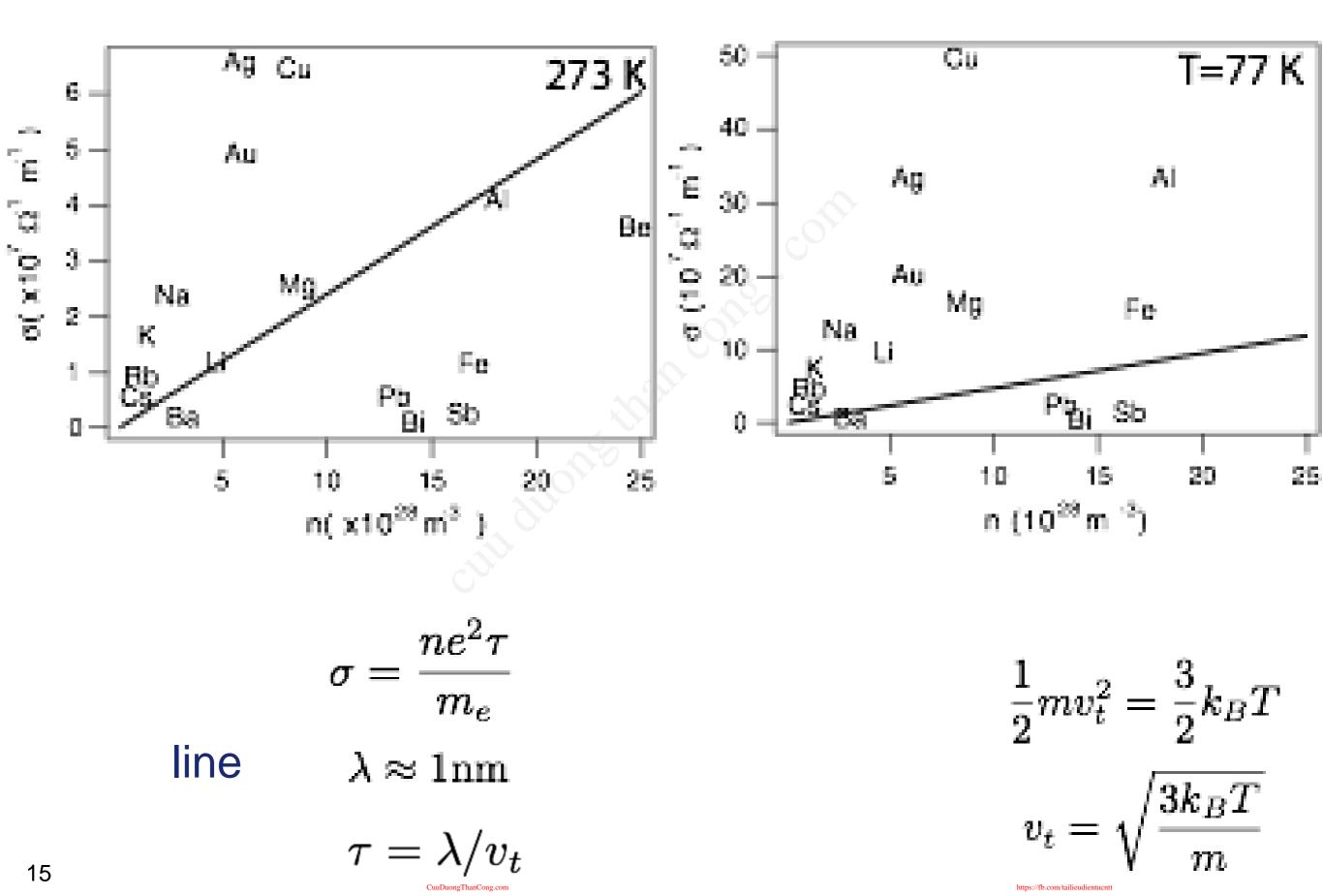


 A two-point probe can be used but the contact or wire resistance can be a problem, especially if the sample has a small resistivity.



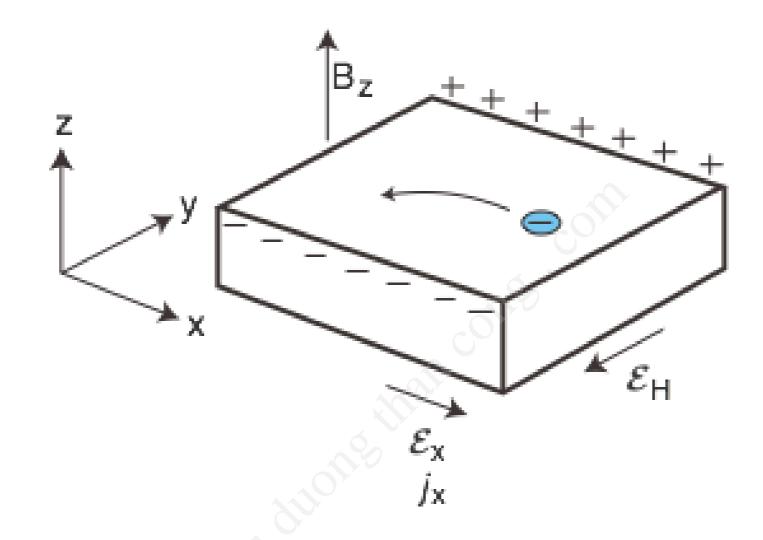
 The problem of contact resistance can be overcome by using a four point probe.

Drude theory: electrical conductivity



- Drude's theory gives a reasonable picture for the phenomenon of resistance.
- Drude's theory gives qualitatively Ohm's law (linear relation between electric field and current density).
- It also gives reasonable quantitative values, at least at room temperature.

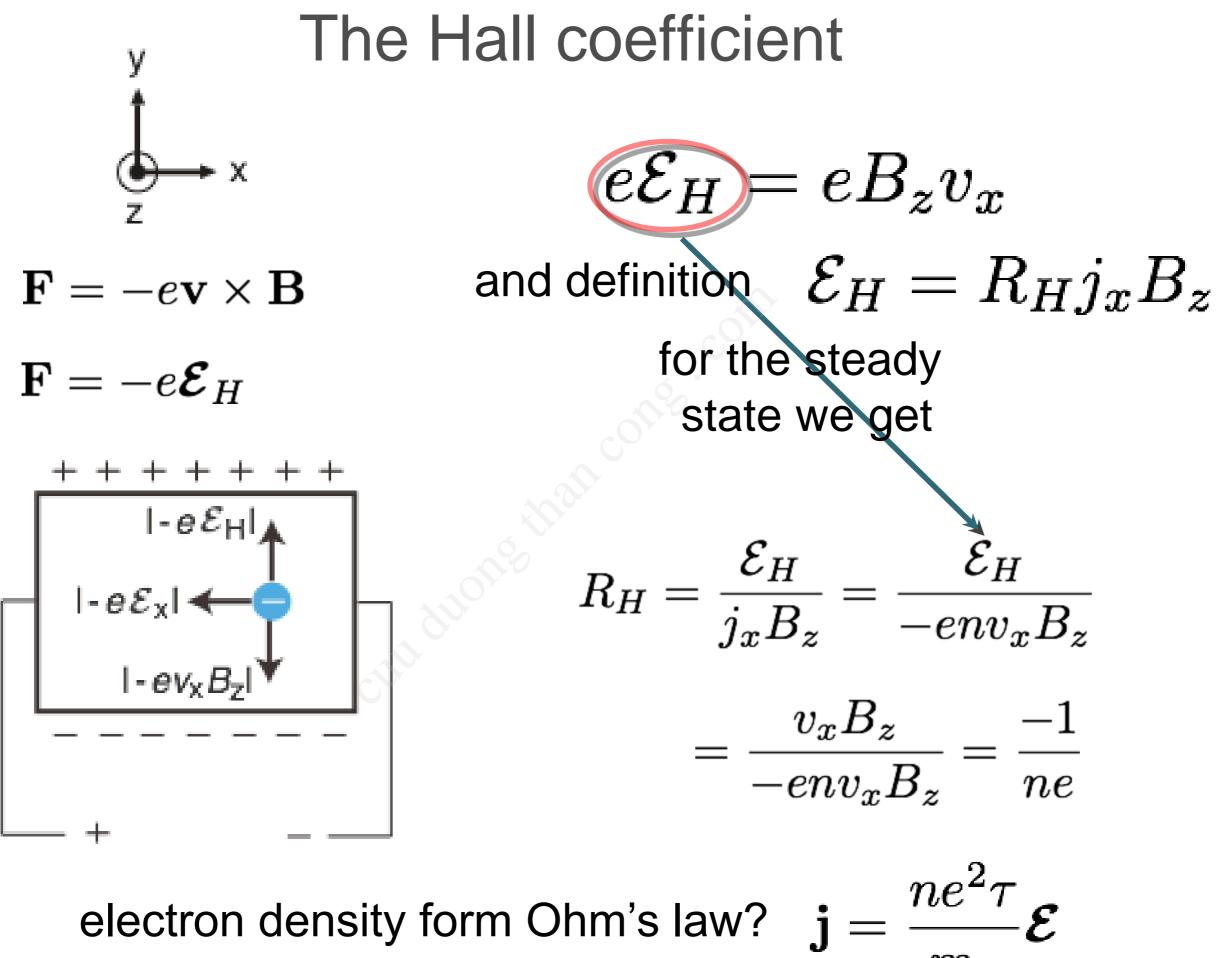
The Hall Effect



- Accumulation of charge leads to Hall field E_H.
- Hall field proportional to current density and B field

 $\mathcal{E}_H = R_H j_x B_z$

 R_H is called Hall coefficient

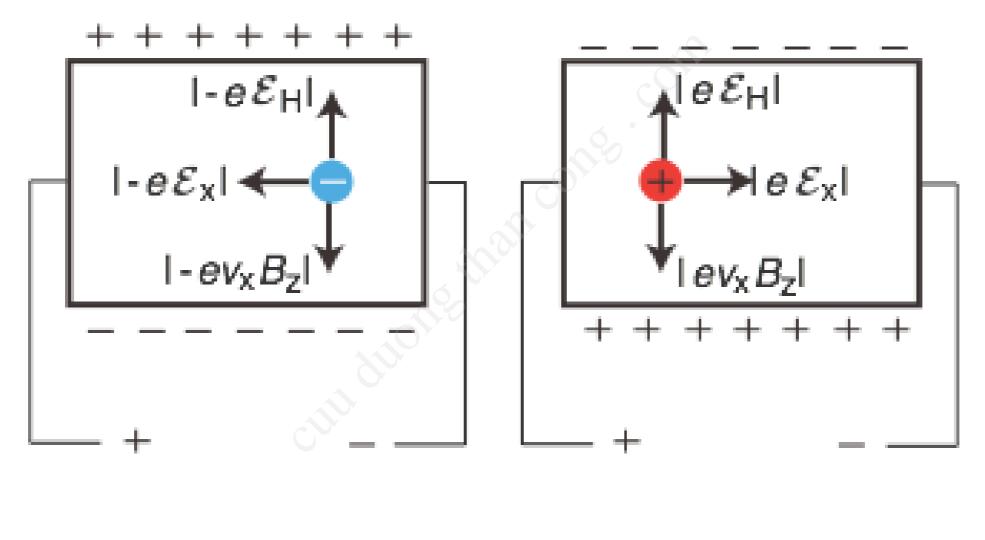


 m_e

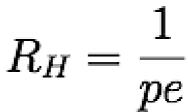
The Hall coefficient

metal	many R_{-} in units of $1/nc$	
	measured R_H in units of $-1/ne$	
Li	0.8	Ohm's law contains e ²
Na	1.2	
K	1.1	$ne^2\tau$
Rb	1.0	$\mathbf{j}=rac{ne^{2} au}{m_{e}}oldsymbol{\mathcal{E}}$
Cs	0.9	m_e
Cu	1.5	But for R _H the sign of e
Ag	1.3	
Au	1.5	is important.
Be	-0.2	a D 1
Mg	-0.4	$R_H = \frac{vB_z}{-envB_z} = \frac{-1}{ne}$
Al	-0.3	$-envB_z$ ne
Bi	38,923	

What would happen for positively charged carriers?



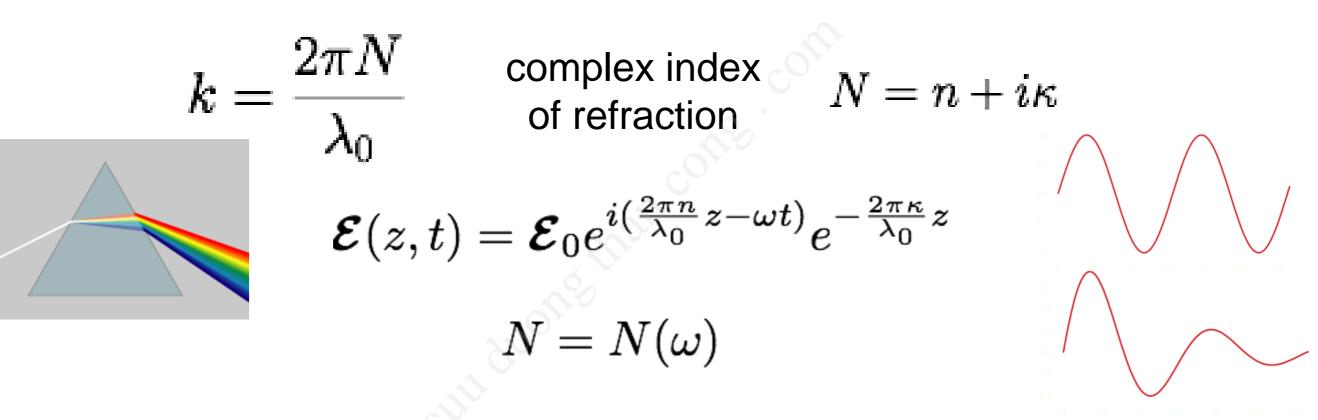
 $R_H = \frac{-1}{ne}$



Drude theory: why are metals shiny?

 Drude's theory gives an explanation of why metals do not transmit light and rather reflect it.

Some relations from basic optics
wave propagation in matterplane wave $\mathcal{E}(z,t) = \mathcal{E}_0 e^{i(kz-\omega t)}$



Maxwell relation $N = \sqrt{\epsilon} = \sqrt{\epsilon_r + i\epsilon_i}$

$$\boldsymbol{\mathcal{E}}(z,t) = \boldsymbol{\mathcal{E}}_0 e^{i((2\pi N/\lambda_0)z - \omega t)} = \boldsymbol{\mathcal{E}}_0 e^{i((\omega\sqrt{\epsilon}/c)z - \omega t)}$$

all the interesting physics in in the dielectric function!

Free-electron dielectric function

 $m_e \frac{d^2 x(t)}{dt^2} = -e\mathcal{E}_0 e^{-i\omega t}$ one electron in time-dependent field $x(t) = A e^{-i\omega t}$ Ansatz $A=rac{e\mathcal{E}_{0}}{m_{e}\omega^{2}}$ and get the dipole moment P(t) = -ex(t)for one electron is

and for a unit volume of solid it is
$$P(t)=-nex(t)=-neAe^{-i\omega t}=-rac{ne^2\mathcal{E}_0e^{-i\omega t}}{m_e\omega^2}$$

Free-electron dielectric function $P(t) = -\frac{ne^2 \mathcal{E}_0 e^{-i\omega t}}{m_e \omega^2}$ $D = \epsilon \epsilon_0 \mathcal{E} = \epsilon_0 \mathcal{E} + P$ we use $\epsilon = 1 + \frac{P(t)}{\epsilon_0 \mathcal{E}_0 e^{-i\omega t}}$ to get $\epsilon = 1 - \frac{ne^2}{\epsilon_0 m_e \omega^2} = 1$ so the final result is $\frac{ne^2}{m \cdot \epsilon_0} \qquad \begin{array}{c} \text{is called} \\ \text{the plasma frequency} \\ \text{the plasma frequency} \end{array}$

Meaning of the plasma frequency

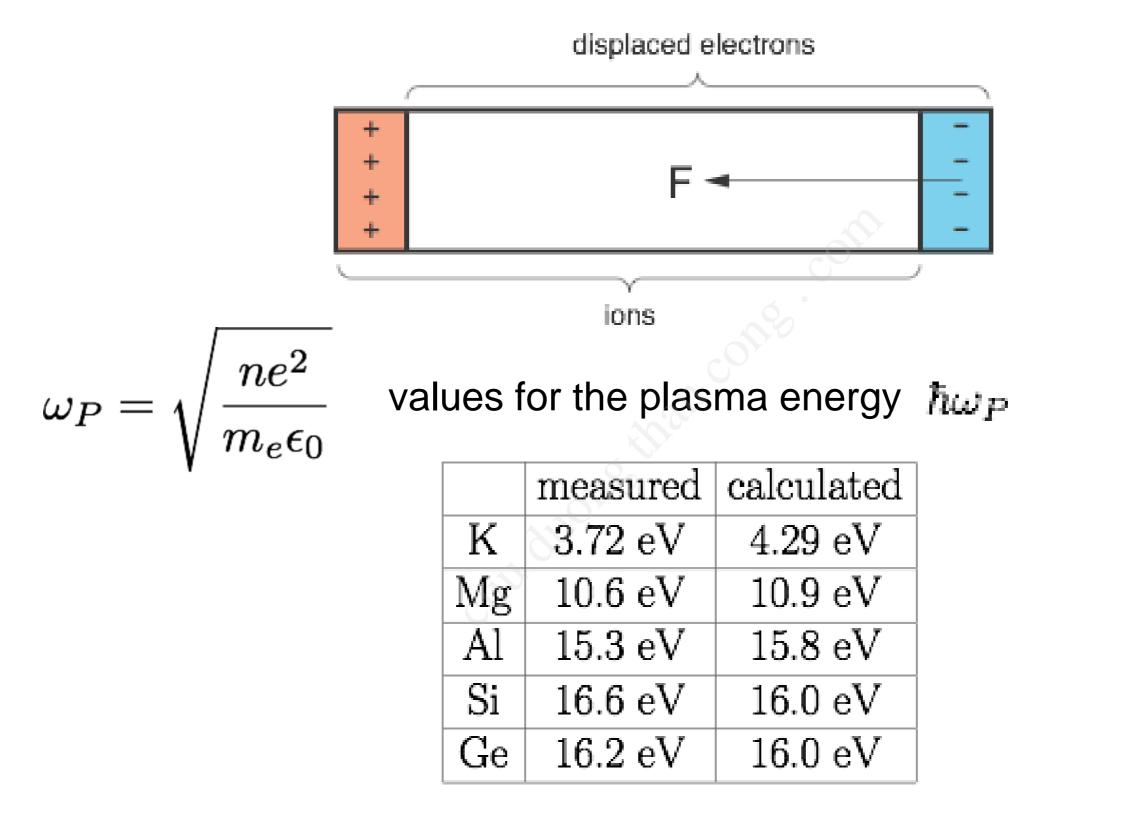
the dielectric function in the Drude model is

$$\epsilon(\omega) = (1 - \frac{\omega_P^2}{\omega^2}) \quad \text{with} \quad \omega_P^2 = \frac{ne^2}{m_e\epsilon_0}$$
remember
$$\boldsymbol{\mathcal{E}}(z, t) = \boldsymbol{\mathcal{E}}_0 e^{i((\omega\sqrt{\epsilon}/c)z - \omega t)}$$

$$\omega < \omega_P \quad \epsilon \text{ real and negative, no wave propagation}$$

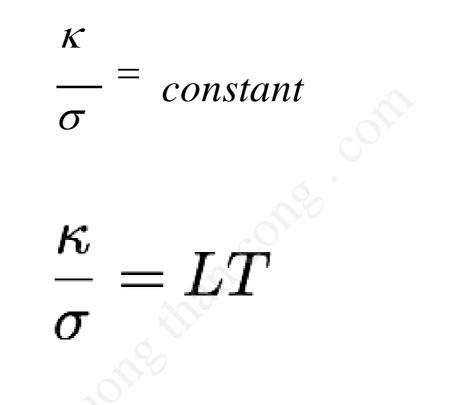
$$\omega > \omega_P \quad \epsilon \text{ real and positive, propagating waves}$$
metal is transparent

plasma frequency: simple interpretation



Iongitudinal collective mode of the whole electron gas

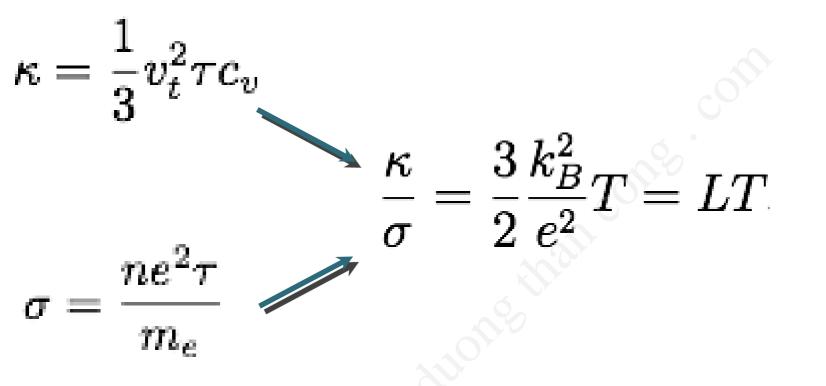
the Wiedemann-Franz law



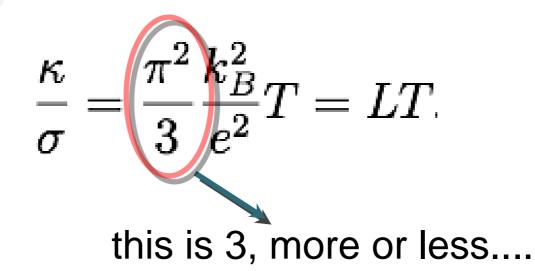
- Wiedemann and Franz found in 1853 that the ratio of thermal and electrical conductivity for ALL METALS is constant at a given temperature (for room temperature and above). Later it was found by L. Lorenz that this constant is proportional to the temperature.
- Let's try to reproduce the linear behaviour and to calculate L here.

The Wiedemann Franz law

estimated thermal conductivity (from a classical ideal gas)



the actual quantum mechanical result is



Comparison of the Lorenz number to experimental data at 273 K

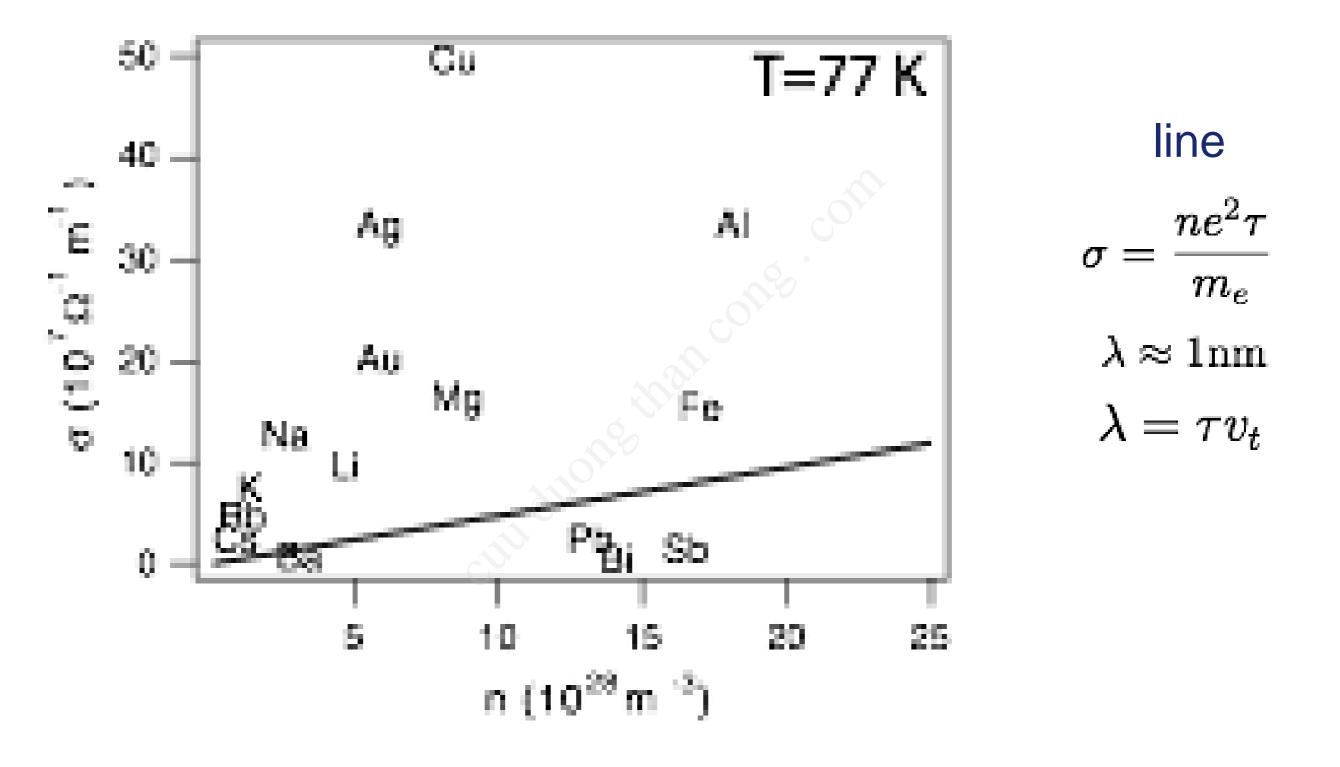
metal	10 ⁻⁸ Watt Ω K ⁻²		
Ag	2.31		
Au	2.35		
Cd	2.42		
Cu	2.23		
Mo	2.61		
Pb	2.47		
Pt	2.51		
Sn	2.52		
W	3.04		
Zn	2.31		

$$rac{\kappa}{\sigma}=rac{\pi^2}{3}rac{k_B^2}{e^2}T=LT$$

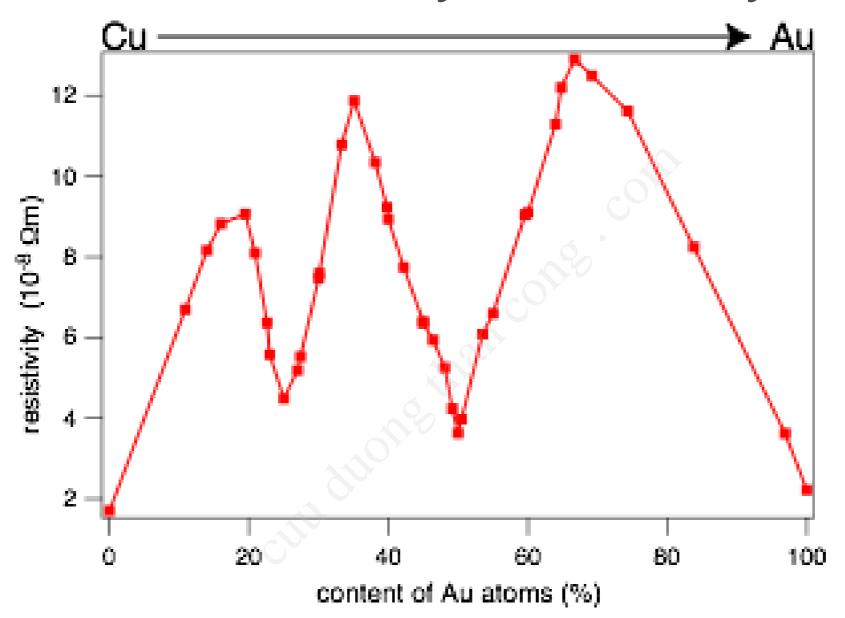
$$L = 2.45 \ 10^{-8} \text{ Watt } \Omega \text{ K}^{-2}$$

Failures of the Drude model

 Despite of this and many other correct predictions, there are some serious problems with the Drude model.



Failures of the Drude model: electrical conductivity of an alloy



- The resistivity of an alloy should be between those of its components, or at least similar to them.
- It can be much higher than that of either component.

Failures of the Drude model: heat capacity consider the classical energy for one mole of solid in a heat bath: each degree of freedom contributes with $\frac{1}{2}k_BT$ heat capacity energy $3 \times \frac{1}{2} N_{\rm A} k_{\rm B} T + 6 \times \frac{1}{2} N_{\rm A} k_{\rm B} T = \frac{9}{2} N_{\rm A} k_{\rm B} T$ monovalent $\frac{9}{5}N_{\rm A}k_{\rm B}$ $6 \times \frac{1}{2} N_{\rm A} k_{\rm B} T + 6 \times \frac{1}{2} N_{\rm A} k_{\rm B} T = 6 N_{\rm A} k_{\rm B} T$ divalent $6N_{\rm A}k_{\rm B}$ $\frac{15}{2}N_{\rm A}k_{\rm B}$ $9 \times \frac{1}{2} N_{\mathrm{A}} k_{\mathrm{B}} T + 6 \times \frac{1}{2} N_{\mathrm{A}} k_{\mathrm{B}} T = \frac{15}{2} N_{\mathrm{A}} k_{\mathrm{B}} T$ trivalent el. transl. ions vib.

Experimentally, one finds a value of about 3N_Ak_B at room temperature, independent of the number of valence electrons (rule of Dulong and Petit), as if the electrons do not contribute at all.
 ³³ 33

Many open questions:

- Why does the Drude model work so relatively well when many of its assumptions seem so wrong? In particular, the electrons don't seem to be scattered by each other. Why?
- How do the electrons sneak by the atoms of the lattice?
- Why do the electrons not seem to contribute to the heat capacity?
- Why is the resistance of an disordered alloy so high?