The electronic properties of Metals: quantum mechanical approach

1

Outline

- Basic assumptions: Born-Oppenheimer and one-electron approximations.
- Intuitive picture for how the energy levels in a solid are formed from those in the atom.
- Calculate the quantum mechanical eigenvalues and wave functions for one electron in some simple potential of all the others and the ions.
- Fill up these eigenvalues using the Fermi-Dirac statistics.

The Born-Oppenheimer principle / the adiabatic approximation

$$H = -\sum_{R_i} \frac{\hbar^2 \nabla_i^2}{2M} - \sum_{r_j} \frac{\hbar^2 \nabla_j^2}{2m_e} + \frac{e^2}{4\pi\epsilon_0} \Big\{ \sum_{R_i \neq R_j} \frac{(Z - Z_V)^2}{|\mathbf{R}_i - \mathbf{R}_j|} + \sum_{r_i \neq r_j} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} - \sum_{R_i \neq r_j} \frac{(Z - Z_V)}{|\mathbf{R}_i - \mathbf{r}_j|} \Big\}$$

 We discuss the motions of the electrons and the ions separately. We start out by discussion the electronic states for a fixed lattice of ions in their equilibrium position.

One electron approximation

 Solving the Schrödinger equation for an all-electron wave function in a rigid lattice is still hopeless. We assume an effective one-electron potential.

$$-\frac{\hbar^2 \nabla^2}{2m_e} \psi(\mathbf{r}) + U(\mathbf{r})\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

we know for sure that

$$U(\mathbf{r}) = U(\mathbf{r} + \mathbf{R})$$

...but not much more

The idea of energy bands: Na consider one atom of Na: 11 electrons

- Focus only on the valence (outer) electrons (3s).
- What happens when we move them together?

CuuDuongThanCong.con

The idea of energy bands: Na consider two Na atoms / a Na molecule: 2 3s electrons $\frac{2}{2}$

- Levels split up in bonding and anti bonding molecular orbitals and are occupied according to the Pauli principle.
- The distance between the atoms must be such that there is an energy gain. $\frac{1}{7}$

The idea of energy bands: Na consider many (N) Na atoms (only 3s level)

- N levels with very similar energies, like in a super-giant molecule. We can speak of a "band" of levels.
- Every band has N levels. We can put 2N electrons into it (but we have only N electrons from N Na atoms).

The idea of energy bands: Si or diamond

The free electron model

- Completely different approach: consider now free electrons in a box.
- The depth of the box is the minimum potential energy in the solid.

$$-rac{\hbar^2
abla^2}{2m_e} \psi(\mathbf{r}) + U(\mathbf{r})\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

We might just as well require that

$$U(\mathbf{r}) = 0$$

The free electron model

cube of side length L,

volume of the solid

 $V = L^3$

electron density *n* and total number of electrons *N*

$$n = \frac{N}{V}$$

The free electron model

cube of side length L, periodic boundary conditions

Schrödinger equation

$$-\frac{\hbar^2 \nabla^2}{2m_e} \psi(\mathbf{r}) = E \psi(\mathbf{r})$$

energy levels

$$E(\mathbf{k}) = \frac{\hbar^2 k^2}{2m_e} = \frac{\hbar^2}{2m_e} (k_x^2 + k_y^2 + k_z^2)$$

boundary conditions give

$$\mathbf{k} = (k_x, k_y, k_z) = \left(\frac{n_x 2\pi}{L}, \frac{n_y 2\pi}{L} \frac{n_z 2\pi}{L}\right)$$

order of energy level separation

$$\frac{\hbar^2}{2m_e} \left(\frac{2\pi}{L}\right)^2$$

200n_v=n_z=0 150 energy / h²/2L²m_e 100 -50 -0 -10 15 -15 10 R, -6 n_x k_x / (2π/L)

2 electrons per k-point. If the electron density is N/V, we have to distribute N electrons on N/2 k-points.

CuuDuongThanCong.co

15

The Fermi energy

highest occupied
energy
$$E_{\max} = \frac{\hbar^2 k_{\max}^2}{2m_e} = \frac{\hbar^2}{2m_e} \left(\frac{2\pi}{L}\right)^2 n_{\max}^2$$

= Fermi energy E_F
with $n_{\max} = \left(\frac{3N}{8\pi}\right)^{1/3}$ and the
electron density $n = \frac{N}{V} = \frac{N}{L^3}$
 $E_F = \frac{\hbar^2}{2m_e} (3\pi^2 n)^{2/3} = \frac{\hbar^2 k_F^2}{2m_e}$
 $|\mathbf{k}|_{\max}$ is also called k_F

$$E_{\rm F} = \frac{\hbar^2 k_{\rm F}^2}{2m_e} = \frac{\hbar^2}{2m_e} \left(\frac{2\pi}{L}\right)^2 n_{\rm max}^2$$

The Fermi energy

element	E _F (eV)
Na	3.22
Cu	7.00
AI	11.63

The Fermi velocity

$$\frac{1}{2}m_e v_F^2 = E_F \qquad \text{and} \quad E_F = \frac{\hbar^2}{2m_e} \left(3\pi^2 n\right)^{2/3}$$

$$v_F = \sqrt{\frac{2E_F}{m_e}}$$

 The Fermi velocity does (to first order) not depend on the temperature!

The Fermi velocity

1	element	E _F (eV)	v⊧(ms⁻¹)
$\frac{1}{2}m_e v_F^2 = E_F$	Na	3.22	1.07 10 ⁶
$v_F^2 = \frac{2E_F}{m_e}$	AI	11.63	2.02 10 ⁶
	Cu	7.00	1.57 10 ⁶

The density of states: free electrons We can now calculate the density of states.

we have
$$E(N) = \frac{\hbar^2}{2m_e} \left(\frac{3\pi^2 N}{V}\right)^{2/3}$$
$$N(E) = \frac{V}{3\pi^2} \left(\frac{2m_e}{\hbar^2}\right)^{3/2} E^{3/2}$$
$$g(E)dE = \frac{dN}{dE}dE = \frac{V}{2\pi^2} \left(\frac{2m_e}{\hbar^2}\right)^{3/2} E^{1/2}dE$$

https://fb.com/tailieudientucntt

The Fermi-Dirac distribution

• How are the electronic states populated at finite temperature?

The Fermi-Dirac distribution

• At T=0 all the states are filled up to the highest occupied state. This state is called the Fermi energy E_F . It is equal to the chemical potential μ at T=0.

CuuDuongThanCong.con

The Fermi-Dirac distribution

$$f(E,T) = \frac{1}{e^{(E-E_F)/k_BT} + 1}$$

$$k_BT \ln[\frac{1}{f(E,T)} - 1] = E - E_F$$

$$k_BT \ln[\frac{1}{0.1} - 1] = 2.2k_BT$$

$$k_BT \ln[\frac{1}{0.1} - 1] = 2.2k_BT$$

The 'Fermi trap' effect

Heat capacity of the electrons: estimate

correct result which is

$$C_V = rac{\pi^2}{3} k_B^2 T g(E_F)$$

CuuDuongThanCong.

Comparison of the Dulong-Petit law to experiment

	-1 77 K (JK ⁻¹)	273 K (JK)
classical value	24.9	24.9
copper	12.5	24.3
aluminium	9.1	23.8
gold	19.10	25.2
lead	23.6	26.7
iron	8.1	24.8
sodium	20.4	27.6
silicon	5.8	21.8
Values	of one mole of sub	octanco

values of one mole of substance

 At high temperatures the Dulong-Petit law works quite well, also for metals.

Heat capacity of a metal: lattice + electrons

• two contributions: lattice and electrons

CuuDuongThanCong.o

 electrons unimportant at high T but dominating at sufficiently low T
 29

Thermal conduction by electrons very similar to the phonon expression

Free electron quantum version of Wiedemann Franz

$$rac{\kappa}{\sigma} = LT$$
 $\kappa = rac{1}{3}v_t^2 au c_v$ $\sigma = rac{ne^2 au}{m_e}$

We must use the Fermi velocity and the correct heat capacity for the electrons. We know (almost) all this.

we get...

$$\frac{\kappa}{\sigma} = \frac{\pi^2}{3} \frac{k_B^2}{e^2} T = LT$$

so that $L = 2.45 \ 10^{-8} \ Watt \ \Omega \ K^{-2}$

https://fb.com/tailieudientucntt

The Wiedemann Franz law: Drude model

estimated thermal conductivity (from a classical ideal gas)

but now we have

$$\frac{\kappa}{\sigma} = \frac{\pi^2}{3} \frac{k_B^2}{e^2} T = LT$$

Comparison of the Lorenz number to experimental data at 273 K

metal	10 ⁻⁸ Watt Ω K ⁻²
Ag	2.31
Au	2.35
Cd	2.42
Cu	2.23
Мо	2.61
Pb	2.47
Pt	2.51
Sn	2.52
W	3.04
Zn	2.31

$$rac{\kappa}{\sigma}=rac{\pi^2}{3}rac{k_B^2}{e^2}T=LT$$

$$L = 2.45 \ 10^{-8} \text{ Watt } \Omega \text{ K}^{-2}$$

free electron model

naive band picture

Bloch waves

Schrödinger equation for a periodic potential $U(\mathbf{r}) = U(\mathbf{r} + \mathbf{R})$

$$-\frac{\hbar^2 \nabla^2}{2m_e} \psi(\mathbf{r}) + U(\mathbf{r})\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

solutions have the form of Bloch waves

Felix Bloch, ₃Nobel 1952
examples of Bloch waves

$$\psi(\vec{r}) = u_{\vec{k}}(\vec{r})e^{i\vec{k}\vec{r}} \quad u_{\vec{k}}(\vec{r}) = u_{\vec{k}}(\vec{r} + \vec{R})$$
we assume that $u_{\vec{k}}(\vec{r})$ does not depend on \vec{k}
k very small

$$\psi(\vec{r}) \quad \psi(\vec{r})\psi^{*}(\vec{r})$$

$$\psi(\vec{r})\psi^{*}(\vec{r})$$

$$\psi(\vec{r})\psi^{*}(\vec{r})$$

$$\psi(\vec{r})\psi^{*}(\vec{r})$$

periodic boundary conditions

crystal with cubic unit cell, side length a, N units in each direction

$$\mathbf{k} = (k_x, k_y, k_z) = \left(\frac{n_x 2\pi}{Na}, \frac{n_y 2\pi}{Na} \frac{n_z 2\pi}{Na}\right)$$
$$= \frac{n_x 2\pi}{Na} \hat{\mathbf{x}} + \frac{n_y 2\pi}{Na} \hat{\mathbf{y}} + \frac{n_z 2\pi}{Na} \hat{\mathbf{z}}$$
$$= \frac{n_x}{N} \mathbf{b}_1 + \frac{n_y}{N} \mathbf{b}_2 + \frac{n_z}{N} \mathbf{b}_3$$

general crystal structure, N units in each direction

$$\mathbf{k} = rac{n_x}{N} \mathbf{b}_1 + rac{n_y}{N} \mathbf{b}_2 + rac{n_z}{N} \mathbf{b}_3$$
 $\{\mathbf{G}\} \subset \{\mathbf{k}\}$

Proof of Bloch's theorem

Schrödinger equation in new form

$$\sum_{\mathbf{k}} e^{i\mathbf{k}\mathbf{r}} \left\{ \left(\frac{\hbar^2 k^2}{2m_e} - E \right) c_{\mathbf{k}} + \sum_{\mathbf{G}} U_{\mathbf{G}} c_{\mathbf{k}-\mathbf{G}} \right\} = 0$$

every term has to vanish

$$\left(\frac{\hbar^2 k^2}{2m_e} - E\right) c_{\mathbf{k}} + \sum_{\mathbf{G}} U_{\mathbf{G}} c_{\mathbf{k}-\mathbf{G}} = 0$$

a set of equations for every k in the first Brillouin zone

For example, if $U_{G'} \neq 0$ in the first equation, we will also have

$$\left(\frac{\hbar^2(|\mathbf{k}-\mathbf{G}'|^2}{2m_e}-E\right)c_{\mathbf{k}-\mathbf{G}'} + \sum_{\mathbf{G}}U_{\mathbf{G}}c_{\mathbf{k}-\mathbf{G}'-\mathbf{G}} = 0$$

CuuDuongThanCong.con

a set of equations for every k in the first Brillouin zone

$$\left(\frac{\hbar^2 k^2}{2m_e} - E\right)c_{\mathbf{k}} + \sum_{\mathbf{G}} U_{\mathbf{G}}c_{\mathbf{k}-\mathbf{G}} = 0$$

$$\left(\frac{\hbar^2(|\mathbf{k} - \mathbf{G}'|^2}{2m_e} - E\right)c_{\mathbf{k}-\mathbf{G}'} + \sum_{\mathbf{G}} U_{\mathbf{G}}c_{\mathbf{k}-\mathbf{G}'-\mathbf{G}} = 0$$

and so on....

$$\psi_{\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\mathbf{r}} \left(\sum_{\mathbf{G}} c_{\mathbf{k}-\mathbf{G}} e^{-i\mathbf{G}\mathbf{r}}\right)$$

use periodicity of the lattice

$$\psi(\mathbf{r}) = \sum_{\mathbf{k}} c_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}}$$
 $U(\mathbf{r}) = \sum_{\mathbf{G}} U_{\mathbf{G}} e^{i\mathbf{G}\mathbf{r}}$
 $U_{-\mathbf{G}} = U_{\mathbf{G}}^{*}$

Schrödinger equation in new form

$$\sum_{\mathbf{k}} e^{i\mathbf{k}\mathbf{r}} \left\{ \left(\frac{\hbar^2 k^2}{2m_e} - E \right) c_{\mathbf{k}} + \sum_{\mathbf{G}} U_{\mathbf{G}} c_{\mathbf{k}-\mathbf{G}} \right\} = 0$$

every term has to vanish

42

$$\left(\frac{\hbar^2 k^2}{2m_e} - E\right)c_{\mathbf{k}} + \sum_{\mathbf{G}} U_{\mathbf{G}}c_{\mathbf{k}-\mathbf{G}} = 0 \qquad \psi_{\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\mathbf{r}} \left(\sum_{\mathbf{G}} c_{\mathbf{k}-\mathbf{G}}e^{-i\mathbf{G}\mathbf{r}}\right)$$

Symmetry of Bloch functions

$$\psi_{\mathbf{k}}(\mathbf{r}) = \sum_{\mathbf{G}} c_{\mathbf{k}-\mathbf{G}} e^{i(\mathbf{k}-\mathbf{G})\mathbf{r}}$$

shift by a reciprocal lattice vector gives the same

periodicity of Bloch waves

 $\psi_{\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{\mathbf{k}}(\mathbf{r})$ does NOT have lattice periodicity $\psi_{\mathbf{k}}(\mathbf{r})\psi_{\mathbf{k}}^{*}(\mathbf{r})$ does have lattice periodicity

Nearly free electrons in one dimension

Schrödinger equation for one k is

CuuDuongThanCong.cor

$$\left(\frac{\hbar^2 k^2}{2m_e} - E\right)c_k + \sum_g U_g c_{k-g} = \left(\frac{\hbar^2 k^2}{2m_e} - E\right)c_k + Uc_{k-g} + Uc_{k+g} = 0$$

solutions

$$\psi_k(x) = \sum c_{k-g} e^{i(k-g)x}$$

General Strategy

$$H\psi(x) = E\psi(x)$$

 $\psi(x) = \sum_{k} c_k \phi_k(x)$
multiply from the left with $\phi_{k'}^*$
and integrate over all x
 $\int \phi_{k'}^* H\psi(x) dx = E \int \phi_{k'}^* \psi(x) dx = E c_{k'}$
gives
 $\sum_{k} V_k c_k = E c_{k'}$

Generate one of these equations for every k.

$$\begin{aligned} & \text{Explicit calculation} \\ & -\frac{\hbar^2}{2m_e} \frac{\partial^2}{\partial x^2} \psi_k(x) + U(x) \psi_k(x) = E \psi_k(x) \\ & U(x) = U e^{-igx} + U e^{igx} \\ & \text{assume that} \\ \psi_k(x) = e^{i(k-g)x} c_{k-g} + e^{ikx} c_k + e^{i(k+g)r} c_{k+g} \\ & \text{calculate} \\ & \int_L e^{-ikx} H \psi_k(x) dx = \int_L e^{-ikx} \left(-\frac{\hbar^2}{2m_e} \frac{\partial^2}{\partial x^2} \psi_k(x) + U(x) \psi_k(x) \right) dx = \int_L e^{-ikx} E \psi_k(x) dx \end{aligned}$$

 $= c_k E$

gives $\left(\frac{\hbar^2 k^2}{2m_e} - E\right)c_k + Uc_{k-g} + Uc_{k+g} = 0$

CuuDuongThanCong.co

3 equations, very small U

5 equations, very small U

bottom line: free electrons plus symmetry $E(\mathbf{k} + \mathbf{G}') = E(\mathbf{k})$

Potential of finite size

Potential of finite size

opening of absolute band gaps!

https://fb.com/tailieudientucntt

Potential of finite size

opening of absolute band gaps!

https://fb.com/tailieudien

A qualitative argument: Bragg-reflection for nearly free electrons

Bragg-reflection for nearly free electrons consider only one direction (x)

free electron wave function

$$\psi(r) = e^{ikr}$$

with a de Broglie wavelength

$$k = rac{2\pi}{\lambda} \qquad \lambda = rac{2\pi}{k}$$

Bragg condition $n\lambda = n\frac{2\pi}{k} = 2d\sin\Theta$ with $\theta = 90^{\circ}, -90^{\circ}$

this gives a Bragg condition for electron waves:

$$k=\pm \frac{n\pi}{d}$$

Bragg-reflection for nearly free electrons

Bragg reflection results in standing, not traveling electron waves

in general:
$$\psi(x) \propto e^{ikx} + Ae^{-ikx}$$
 with $|A| = 1$

$$\Psi(+) = \exp(i\frac{\pi}{d}x) + \exp(-i\frac{\pi}{d}x) = 2\cos(\frac{\pi}{d}x)$$
$$\Psi(-) = \exp(i\frac{\pi}{d}x) - \exp(-i\frac{\pi}{d}x) = 2i\sin(\frac{\pi}{d}x)$$

...yet another point of view

...yet another point of view

Band structures of real materials: Al

Band structures of real materials: Al

Band structures of real materials: Si and GaAs

Band structures of real materials: Si and GaAs

Metals and insulators / semiconductors

Metals and insulators / semiconductors

- A metal has a finite density of states at the chemical potential (Fermi energy).
- A semiconductor must have an absolute gap in its band structure (only necessary criterion, not sufficient).
- The number of electrons per unit cell must be such that all the bands are exactly filled up to this gap.

metal or semiconductor?

filling the bands - electron counting

N unit cells -> N possible (different) k values $k = \frac{2\pi}{aN}n$

2N possible states per band and k-point (because of spin)

2 valence electrons per unit cell fill one band

An odd number of valence electrons per unit cell results in a metal

electron counting: examples

AI: fcc, 1 atom per unit cell, 3 electrons per atom metal

Si: fcc, 2 atoms per unit cell, 4 electrons per atom semiconductor

Electron counting

 example 3: Be, hcp structure, 2 atoms per unit cell, 4 valence electrons per unit cell, METAL.

semimetals: graphene, structure

semimetals: graphene, band structure

4 electrons per atom, 2 atoms per cell -> 8 electrons per cell, 4 occupied bands sp²: 6 states per atom, 12 states per unit cell, 6 σ states, 6 σ * states (not shown) p_z orbitals: 2 states per atom, 4 states per unit cell, 2 π states, 2 π * states

The quantum number k: crystal momentum

- k has both an interpretation as wave vector and (three) quantum numbers.
- It is tempting to interpret ħk as the electron's momentum but this is wrong

$$\psi_{\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\mathbf{r}}u_{\mathbf{k}}(\mathbf{r})$$

 $-i\hbar\nabla\psi_{\mathbf{k}}(\mathbf{r}) = \hbar\mathbf{k}\psi_{\mathbf{k}}(\mathbf{r}) - e^{i\mathbf{k}\mathbf{r}}i\hbar\nabla u_{\mathbf{k}}(\mathbf{r})$

The quantum number k: crystal momentum

But ħk is still useful. It is called the "crystal momentum"

example: scattering of electron by phonon

Transport properties

$$\psi_{ec{k}}(ec{r}) = u_{ec{k}}(ec{r}) e^{iec{k}ec{r}}$$

- Localised electrons must be described as packages of Bloch waves.
- Bloch electrons travel through the (perfect) crystal without any scattering at all.

Classical motion in an electric field kinetic energy change with time

kinetic energy change with time (Bloch electron)

equation of motion

$$\hbar \frac{dk}{dt} = -e\mathcal{E}.$$

remember also

79

 $v_g = \frac{1}{\hbar} \frac{dE}{dk}$

group velocity of an electron

$$\begin{split} v_g &= \frac{d\omega(k)}{dk} = \frac{1}{\hbar} \frac{dE(k)}{dk} \\ &\text{acceleration} \\ a &= \frac{dv_g}{dt} = \frac{1}{\hbar} \frac{d}{dt} \frac{dE(k)}{dk} = \frac{1}{\hbar} \frac{d^2 E(k)}{dk^2} \frac{dk}{dt} \\ a &= -\frac{1}{\hbar^2} \frac{d^2 E(k)}{dk^2} e \mathcal{E}. \quad \hbar \frac{dk}{dt} = -e \mathcal{E}. \end{split}$$
 and with $m^* = \hbar^2 \left(\frac{d^2 E(k)}{dk^2}\right)^{-1} \qquad m^* a = -e \mathcal{E}.$

The effective mass is essentially the inverse curvature of the band.

Negative effective mass
and with
$$m^* = \hbar^2 \left(\frac{d^2 E(k)}{dk^2}\right)^{-1}$$
 $m^* a = -e\mathcal{E}$
 $m^* = \hbar^2 \left(\frac{d^2 E(k)}{dk^2}\right)^{-1} < 0$
 $-|m^*|a = -e\mathcal{E}$ $|m^*|a = e\mathcal{E}$
 $\downarrow^{++++++++}$
 $\downarrow^{-eE_{H}}$ $\downarrow^{-eE_{H}}$ $\downarrow^{-eE_{H}}$ $\downarrow^{-eE_{H}}$ $\downarrow^{-eE_{H}}$

perfect lattice Bloch waves propagate freely $du(\vec{n}) = u_{i}(\vec{n}) e^{i\vec{k}\vec{r}}$

$$\psi_{\vec{k}}(\vec{r}) = u_{\vec{k}}(\vec{r})e^{ikr}$$

causes of scattering / finite resistance

- Any kind of deviation from the perfect lattice
- Point defects, extended defects, vacancies, substitutional atoms in the lattice....
- Thermal vibrations (like static distortions on the electron's time scale)

give rise to relaxation time T

Failures of the Drude model: electrical conductivity of an alloy

- The resistivity of an alloy should be between those of its components, or at least similar to them.
- It can be much higher than that of either component.

Temperature-dependence of the resistivity

- At higher temperatures the resistivity increases because of stronger lattice vibrations / more phonons to scatter from.
- At low temperature the resistivity saturates because of the defects and impurities.

Modified Drude formula

mean free path by lattice imperfections

Modified Drude formula

electron density from partially filled bands

Electronic structure of Bi

- almost an insulator
- small energy scales and small effective masses
- strong spin-orbit interaction but two electrons per band.

 $R_H = \frac{-1}{ne}$

Focus on photoemission

Angle-resolved photoemission (ARPES)

- Measure the energy and emission angle of the photoemitted electrons outside the surface.
- Calculate the energy and the k-vector outside the surface.
- Infer the energy and the k-vector inside the solid, i.e. the bands. https://fb.com/tailieudientucnt

electron analyzers: hemispherical analyzer

Band structure of Al

measure E, **k** outside the solid deduce E(**k**) inside the solid

CuuDuongThanCong.com

