Giải Tích Số

Ngày 6 tháng 11 năm 2015

Introduction

Mathematical Preliminaries and Error Analysis

Mathematical Preliminaries

Errors Analysis

Introduction

Bisection method

Fixed-Point Iteration

Lagrange Polynomial

Numerical Differention

First derivative

Second derivative

Numerical integration

Quadrature formula

A closed Newton-Cotes Formula

A open Newton-Cotes formula

Modeling and Simulation of Physical Processes

- ▶ Describe the physical phenomenon
- Model the physical phenomenon to become mathematical equations (PDE)
- Simulate the mathematical equations (discrete solution)
- Compare the discrete solution and experiment result

Example

Equations for conservation law of mass and momentum

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) &= 0 \\ \partial_t (\rho u) + \partial_x (\rho u^2) &= 0 \end{cases} (x, t) \in \mathbb{R} \times (0, +\infty)$$

with the initial condition

$$\begin{cases} \rho(x,0) &= \rho^{in}(x) \\ u(x,0) &= u^{in}(x) \end{cases}$$

where $\rho(x, t)$ is density field and u(x, t) velocity field. The first equation is for the conservation of mass and the second one for the conservation of momentum.

Limits and Continuity

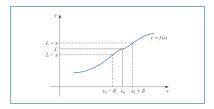
Definition

A function f defined on a set X of real number has the **limit** L at x_0 , written

$$\lim_{x\to x_0} f(x) = L$$

if, given any real number $\varepsilon>0$, there exists a real number $\delta>0$ such that

$$|f(x) - L| < \varepsilon$$
, whenever $x \in X$ and $0 < |x - x_0| < \delta$



Limits and Continuity (Cont.)

Definition

Let f be a function defined on a set X of real numbers and $x_0 \in X$. Then f is **continuous** at x_0 if

$$\lim_{x \to x_0} f(x) = f(x_0)$$

The function f is **continuous on the set** X if it is continuous at each number in X.

Definition

Let $\{x_n\}_{n=1}^{\infty}$ be a infinity of real number. This sequence has the **limit** x (converges to x) if, for any $\varepsilon > 0$, there exists a positive integer $N(\varepsilon)$ such that $|x_n - x| < \varepsilon$, whenever $n > N(\varepsilon)$. The notation

$$\lim_{n\to\infty} x_n = x$$
 or $x_n \to x$ as $n \to \infty$

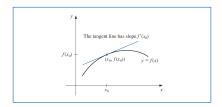
Differentiability

Definition

Let f be a function defined on a open interval containing x_0 . The function f is **differentiable** at x_0 if

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

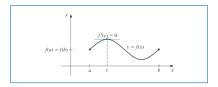
exists. The number $f'(x_0)$ is called the **derivative** of f at x_0 .



Differentiability (Cont.)

Theorem (Rolle's Theorem)

Suppose $f \in C([a,b])$ and f is differentiable on (a,b). If f(a) = f(b), then a number c in (a,b) exists with f'(c) = 0.

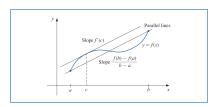


Differentiability (Cont.)

Theorem (Mean Value Theorem)

If $f \in C([a,b])$ and f is differentiable on (a,b), then a number c in (a,b) exists with

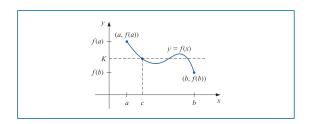
$$f'(c) = \frac{f(b) - f(a)}{b - a}$$



Differentiability (Cont.)

Theorem (Intermediate Value Theorem)

If $f \in C([a,b])$ and K is any number between f(a) and f(b). then there exists a number c in (a,b) such that f(c)=K



Exercise:

- 1.1/ Show that the following equations have at least one solution in the given intervals
- a. $x\cos x 2x^2 + 3x 1 = 0$, [0.2, 0.3] and [1.2, 1.3]
- b. $(x-2)^2 Inx = 0$, [1, 2] and [e, 4]
- c. $2xcos(2x) (x-2)^2 = 0$, [2, 3] and [3, 4]
- d. $x (lnx)^x = 0$, [4, 5]
- 1.2/ Show that f'(x) = 0 at least once in the given intervals a.

$$f(x) = 1 - e^x + (e - 1)\sin(\frac{\pi}{2}x), [0, 1]$$

b.
$$f(x) = (x - 1) \tan x + x \sin \pi x$$
, [0, 1]

Integration

Definition (Riemann Integral)

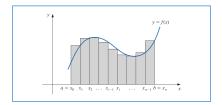
The **Riemann integral** of the function f on the interval [a, b] is the following limit, provided it exists:

$$\int_{a}^{b} f(x) dx = \lim_{\max \Delta x_{i} \to 0} \sum_{i=1}^{n} f(z_{i}) \Delta x_{i}$$

where the numbers x_0, x_1, \dots, x_n satisfy

$$a = x_0 \le x_1 \le \cdots \le x_n = b$$
, where $x_i = x_i - x_{i-1}$, for each

i = 1, 2, ..., n, and z_i is arbitrarily chosen in the interval $[x_{i-1}, x_i]$.



Taylor Polynomials

Theorem (Taylor's Theorem)

Suppose $f \in C^n([a,b])$, that $f^{(n+1)}$ exists on [a,b], and $x_0 \in [a,b]$. For every $x \in [a,b]$, there exists a number $\xi(x)$ between x_0 and x with

$$f(x) = P_n(x) + R_n(x)$$

where

$$P_n = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

and

$$R_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)^{n+1}$$

Taylor Polynomials

Example

Let f(x) = cosx and $x_0 = 0$. Determine

- (a) the second Taylor polynomial for f about x_0 ; and
- (b) the third Taylor polynomial for f about x_0 .

Exercise:

1.3/ Let
$$f(x) = x^3$$

- a. Find the second Taylor polynomial $P_2(x)$ about $x_0 = 0$
- b. Find $R_2(0.5)$. Estimate error when using $P_2(0.5)$ to approximate f(0.5)
- 1.4/ Find the third Taylor polynomial $P_3(x)$ for the function $f(x) = \sqrt{x+1}$ about $x_0 = 0$. Approximate $\sqrt{0.5}, \sqrt{1.5}$ using $P_3(x)$.
- 1.5/ Let $f(x) = 2x \cos(2x) (x-2)^2$ and $x_0 = 0$
- a. Find the third Taylor polynomial $P_3(x)$ and use it to approximate f(0.4).
- b. Use the error formula in Taylor's Theorem to find an upper bound for the error $|f(0.4) P_3(0.4)|$.
- 1.6/ Using a Taylor polynomial about $\pi/4$ to approximate $\cos 42^o$ to an accuracy of 10^{-6} .

Absolute Error and Relative Error

Definition

Suppose that p^* is an approximation to p.

absolute error =
$$|p - p^*|$$
, relative error = $\frac{|p - p^*|}{p}$

$$\label{eq:relative error} \textbf{relative error} = \frac{|\textit{current approximation} - \textit{previous approximation}|}{\textit{current approximation}}$$

Definition (Truncation Error)

Difference between true result and result produced by given algorithm

Errors Analysis

Exercise:

- 1.7/Compute the absolute error and relative error in approximations of p and p^* .
- a. $p = \pi$, $p^* = 22/7$
- b. p = e, $p^* = 2.718$
- c. $p = e^1 0$, $p^* = 22000$
- d. p = 8!, $p^* = 39900$

Exercise:

- 1.8/ Suppose p^* must approximate p with relative error at most 10^{-3} . Find the largest interval in which p^* must lie for each value of p
- a. p = 150
- b. p = 900
- c. p = 1500
- d. p = 90
- 1.9/ Suppose p^* must approximate p with relative error at most 10^{-4} . Find the largest interval in which p^* must lie for each value of p
- a. $p=\pi$
- b. $p = \sqrt{2}$
- c. p = e
- d. $p = \sqrt[3]{7}$

Errors Analysis

Exercise (at home):

1.10/ Use the Intermediate Value Theorem and Roll's Theorem to show that the graph of $f(x) = x^3 + 2x + k$ crosses the x-axis exactly once, regardless of the value of the constant k.

1.11/Prove

Theorem (the Generalized Roll's Theorem)

Suppose $f \in C([a,b])$ is n times differentiable on (a,b). If f(x)=0 at n+1 distinct numbers $a \le x_0 < x_1 < ... < x_n \le b$, then a number c in (x_0,x_n) and hence in (a,b) exists with $f^{(n)}(c)=0$.

Introduction

Mathematical Preliminaries and Error Analysis

Mathematical Preliminaries

Errors Analysis

Introduction

Bisection method

Fixed-Point Iteration

Lagrange Polynomial

Numerical Differention

First derivative

Second derivative

Numerical integration

Quadrature formula

A closed Newton-Cotes Formula

A open Newton-Cotes formula

We consider the model of the growth of a population. The population $\mathcal{N}(t)$ at time t satisfies

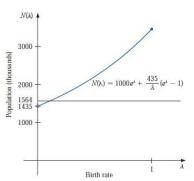
$$\frac{dN(t)}{dt} = \lambda N(t) + \upsilon$$

where λ is constant birth rate and υ is constant immigration rate. The solution is

$$\mathit{N}(t) = \mathit{N}_0 e^{\lambda t} + rac{\upsilon}{\lambda} (e^{\lambda t} - 1)$$

Suppose initial population N(0)=1,000,000, immigration rate 435,000, population after one year N(1)=1,564,000. Let determine the birth rate of this population λ . We have

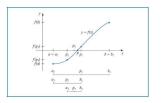
$$1,564,000=1,000,000e^{\lambda}+rac{435,000}{\lambda}(e^{\lambda}-1)$$



Definition

Suppose f is a continuous function on [a,b] and f(a).f(b) < 0, then it exists $p \in (a,b)$ that f(p) = 0 (by Intermediate Value Theorem). Bisection is the method calling for a repeated halving of subintervals [a,b].

Description



Set
$$a_1 = a$$
 and $b_1 = b$ and let $p_1 = a_1 + \frac{b_1 - a_1}{2}$

- ▶ If $f(p_1) = 0$, then $p = p_1$
- ▶ If $f(p_1) \neq 0$, then
 -If $f(p_1).f(a_1) > 0$, set $a_2 = p_1$, $b_2 = b_1$ -If $f(p_1).f(a_1) < 0$, set $a_2 = a_1$, $b_2 = p_1$

Repeat this process to the interval $[a_2, b_2]$.

Algorithm of Bisection

INPUT: function f, endpoints a, b, tolerance TOL, maximum number of iterations N_0

OUTPUT: approximation solution p or message of failure.

Step 1: Set
$$i = 1$$
, $FA = f(a)$.

Step 2: While
$$i \leq N_0$$

-Step 2.1: Set
$$p = a + \frac{b-a}{2}$$
, $FP = f(p)$

-Step 2.2: If
$$FP = 0$$
 or $(b - a)/2 < TOL$
then OUTPUT(p) and STOP

-Step 2.3: Set
$$i = i + 1$$
.

-Step 2.4: If
$$FA.FP > 0$$
 then set $a = p$, $FA = FP$, else $b = p$.

Step 3: OUTPUT (Method fail after
$$N_0$$
 iterations), STOP.

NOTE: We should use sign(FA).sign(FP) > 0 instead of FA.FP > 0 to avoid overflow.

Stopping criteria

$$|p_N - p_{N-1}| < \varepsilon \tag{1}$$

$$\frac{|p_N - p_{N-1}|}{|p_N|} < \varepsilon, \quad p_N \neq 0$$
 (2)

$$|f(p_N)| < \varepsilon \tag{3}$$

Example

Find root of
$$f(x) = x^3 + 4x^2 - 10 = 0$$
 in [1, 2]. $f(1) = -5$, $f(2) = 14$.

n	a_n	b_n	p_n	$f(p_n)$
1	1.0	2.0	1.5	2.375
2 3	1.0	1.5	1.25	-1.79687
3	1.25	1.5	1.375	0.16211
4	1.25	1.375	1.3125	-0.84839
5	1.3125	1.375	1.34375	-0.35098
6	1.34375	1.375	1.359375	-0.09641
7	1.359375	1.375	1.3671875	0.03236
8	1.359375	1.3671875	1.36328125	-0.03215
9	1.36328125	1.3671875	1.365234375	0.000072
10	1.36328125	1.365234375	1.364257813	-0.01605
11	1.364257813	1.365234375	1.364746094	-0.00799
12	1.364746094	1.365234375	1.364990235	-0.00396
13	1.364990235	1.365234375	1.365112305	-0.00194

Theorem (2.1)

Suppose $f \in C[a,b]$ and f(a).f(b) < 0. The Bisection method generates a sequence $\{p_n\}_{n=1}^{\infty}$ approximating a zero p of f with

$$|p_n-p|\leq rac{b-a}{2^n}, \quad ext{when} \quad n\geq 1.$$

Exercise

2.1/ Use Bisection method to find approximation solutions with $TOL=10^{-5}$ for the following problems

a.
$$x - 2^{-x} = 0, x \in [0, 1]$$

b.
$$e^x - x^2 + 3x - 2 = 0$$
, $x \in [0, 1]$

c.
$$2x\cos(2x) - (x+1)^2 = 0$$
 $x \in [-3, -2]$ and $x \in [-1, 0]$

d.
$$x\cos(x) - 2x^2 + 3x - 1 = 0$$
 $x \in [0.2, 0.3]$ and $x \in [1.2, 1.3]$

2.2/ a. Plot the graphs of
$$y = e^x - 2$$
 and $y = \cos(e^x - 2)$.

b. Use Bisection method to find approximation solutions of $e^x - 2 = \cos(e^x - 2)$ with relative error less than 10^{-5} in [0.5, 1.5].

Definition

The number p is a **fixed point** for a given function g if g(p) = p.

Note: Root-finding problem and fixed-point problem are equivalent.

$$g(x) = x - f(x)$$

Example: Determine fixed points of the function $g(x) = x^2 - 2$

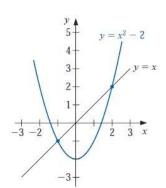
Example

Determine fixed points of the function $g(x) = x^2 - 2$.

Solution:

$$g(p) = p^2 - 2 = p \iff p^2 - p - 2 = (p+1)(p-2) = 0$$

 $\Rightarrow p = -1 \text{ or } p = 2$

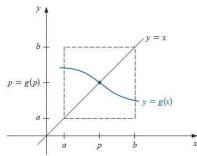


Theorem (2.2)

- (i) Existence If $g \in C[a, b]$ and $g(x) \in [a, b]$, $\forall x \in [a, b]$, then g has at least one fixed point in [a, b].
- (ii) Uniqueness If, in addition, g'(x) exists on (a, b) and

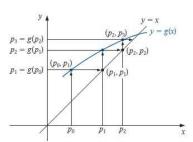
$$|g'(x)| \le k < 1, \quad \forall x \in (a, b)$$

then there is exactly one fixed point $p \in [a, b]$



Fixed-point iteration

Let g be continuous, p_0 be an initial approximation. Put $p_n=g(p_{n-1}), \forall n\geq 1$. If $p_n\to p$, then p=g(p)



Algorithm of Fixed-point iteration

INPUT: function g, initial approximation p_0 , tolerance TOL, maximum number of iterations N_0

OUTPUT: approximation solution p or message of failure.

Step 1: Set i = 1.

Step 2: While $i \leq N_0$

-Step 2.1: Set $p = g(p_0)$

-Step 2.2: If $|p - p_0| < TOL$ then OUTPUT(p) and STOP

-Step 2.3: Set i = i + 1.

-Step 2.4: Set $p_0 = p$.

Step 3: OUTPUT (Method fail after N_0 iterations), STOP.

Theorem (2.3)

Let $g \in C[a, b]$ and $g(x) \in [a, b], \forall x \in [a, b]$. Suppose g'(x) exists on (a, b) and

$$|g'(x)| \le k < 1, \quad \forall x \in (a, b)$$

then $\forall p_0 \in [a, b]$, the sequence defined by $p_n = g(p_{n-1}), n \ge 1$ converges to the unique fixed point $p \in [a, b]$.

Corllory (2.3)

Let g satisfies the hypotheses of Theorem 2.3, then

$$|p_n - p| \le k^n \max\{p_0 - a, b - p_0\}$$

and

$$|p_n - p| \le \frac{k^n}{1 - k} |p_1 - p_0|, \quad \forall n \ge 1.$$

Example

Find the solution of the equation
$$x^3 + 4x^2 - 10 = 0$$
 in $[1, 2]$.
 $a/x = g_1(x) = x - x^3 - 4x^2 + 10$ $b/x = g_2(x) = \left(\frac{10}{x} - 4x\right)^{1/2}$
 $c/x = g_3(x) = \frac{1}{2} \left(10 - x^3\right)^{1/2}$ $d/x = g_4(x) = \left(\frac{10}{4+x}\right)^{1/2}$
 $e/x = g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$

n	(a)	(b)	(c)	(d)	(e)
0	1.5	1.5	1.5	1.5	1.5
1	-0.875	0.8165	1.286953768	1.348399725	1.373333333
2	6.732	2.9969	1.402540804	1.367376372	1.365262015
3	-469.7	$(-8.65)^{1/2}$	1.345458374	1.364957015	1.365230014
4	1.03×10^{8}		1.375170253	1.365264748	1.365230013
4			1.360094193	1.365225594	
6			1.367846968	1.365230576	
6 7 8 9			1.363887004	1.365229942	
8			1.365916734	1.365230022	
9			1.364878217	1.365230012	
10			1.365410062	1.365230014	
15			1.365223680	1.365230013	
20			1.365230236		
25			1.365230006		
30			1.365230013		

Exercise

2.3/ The following four methods are proposed to compute $7^{1/5}$. Rank them in order, based on their apparent speed of convergence, $p_0 = 1$.

a.
$$p_n = p_{n-1} \left(1 + \frac{7 - p_{n-1}^5}{p_{n-1}^2} \right)^3$$

b. $p_n = p_{n-1} - \frac{p_{n-1}^5 - 7}{p_{n-1}^2}$
c. $p_n = p_{n-1} - \frac{p_{n-1}^5 - 7}{5p_{n-1}^4}$
d. $p_n = p_{n-1} - \frac{p_{n-1}^5 - 7}{12}$

c.
$$p_n = p_{n-1} - \frac{p_{n-1}^5 - 7}{5p_{n-1}^4}$$

d.
$$p_n = p_{n-1} - \frac{p_{n-1}^5 - 7}{12}$$
.

2.4/
$$f(x) = x^4 - 3x^2 - 3 = 0$$
, $x \in [1, 2]$, use a fixed point iteration method to determine a solution accurate to with thin 10^{-2} , $p_0 = 1$.

Exercise (Home)

- 2.5/ Let $f(x) = (x-1)^{10}$, p = 1 and $p_n = 1 + 1/n$. Show that $|f(p_n)| < 10^{-3}$, n > 1 but $|p p_n| < 10^{-3}$ requires that n > 1000.
- 2.6/ The function defined by $f(x) = \sin(\pi x)$ has solutions at every integer. Show that when $a \in (-1,0), b \in (2,3)$, the Bisection method converges to
- a. 0, if a + b < 2 b. 2, if a + b > 2 c. 1, if a + b = 2
- 2.7/ a. Show that for A > 0, then the sequence

$$x_n = \frac{1}{2}x_{n-1} + \frac{A}{2x_{n-1}}, \quad \forall n \ge 1,$$

converges to \sqrt{A} whenever $x_0 > 0$.

b. What happens if $x_0 < 0$.

Introduction

Mathematical Preliminaries and Error Analysis

Mathematical Preliminaries

Errors Analysis

Introduction

Bisection method

Fixed-Point Iteration

Lagrange Polynomial

Numerical Differention

First derivative

Second derivative

Numerical integration

Quadrature formula

A closed Newton-Cotes Formula

A open Newton-Cotes formula

Let consider the population of Vietnam:

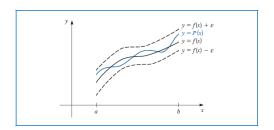
	1980		1	1		I
Population (10 ³)	53722	59872	66016	71995	77635	83106

What is population of Vietnam in 1997? 2015?

Theorem (3.1 (Weierstrass Approximation))

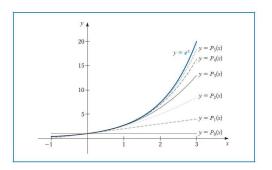
Let $f \in C[a, b]$. For each $\varepsilon > 0$, there exist a polynomial P(x) such that

$$|f(x) - P(x)| < \varepsilon \quad \forall x \in [a, b]$$



Example

Recall Taylor polynomial for $f(x) = e^x$ about $x_0 = 0$ $P_0(x) = 1, P_1(x) = 1 + x, P_2(x) = 1 + x + \frac{x^2}{2}, P_3(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$ $P_4(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24}, P_5(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120}$



Example

Taylor polynomial for
$$f(x) = \frac{1}{x}$$
 about $x_0 = 1$

$$f^{(k)}(x) = (-1)^k \cdot k! \cdot x^{-k-1},$$

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(1)}{k!} (x-1)^k = \sum_{k=0}^n (-1)^k (x-1)^k$$

$$\frac{n}{P_n(3)} \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & -1 & 3 & -5 & 11 & -21 & 43 & -85 \end{vmatrix}$$

Lagrange interpolating polynomials

Give two points $(x_0, y_0), (x_1, y_1)$. We define the functions:

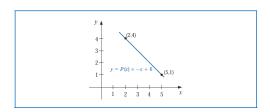
$$L_0(x) = \frac{x - x_1}{x_0 - x_1}$$
 and $L_1(x) = \frac{x - x_0}{x_1 - x_0}$

The linear Lagrange interpolating polynomial through (x_0, y_0) and (x_1, y_1) is

$$P(x) = L_0(x)y_0 + L_1(x)y_1 = \frac{x - x_1}{x_0 - x_1}y_0 + \frac{x - x_0}{x_1 - x_0}y_1$$

Example

Find the linear Lagrange interpolating polynomial that passes through the points (2,4) and (5,1).



Lagrange interpolating polynomials

For each k = 0, 1, ..., n, we define a function

$$L_{n,k}(x) = \frac{(x - x_0)...(x - x_{k-1})(x - x_{k+1})...(x - x_n)}{(x_k - x_0)...(x_k - x_{k-1})(x_k - x_{k+1})...(x_k - x_n)}$$

that

$$L_{n,k}(x_i) = \begin{cases} 0 & , i \neq k \\ 1 & , i = k \end{cases}$$

Theorem (3.2)

If $x_0, x_1, ..., x_n$ are n + 1 distinct numbers and a function f that $f(x_k)$, k = 0, ..., n are given.

Then there exists a unique polynomial P(x) of degree at most n such that $P(x_k) = f(x_k)$ and

$$P(x) = f(x_0)L_{n,0}(x) + \dots + f(x_n)L_{n,n}(x) = \sum_{k=0}^{n} f(x_k)L_{n,k}(x)$$

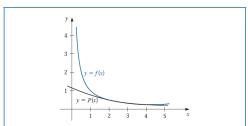
where

$$L_{n,k}(x) = \frac{(x - x_0)...(x - x_{k-1})(x - x_{k+1})...(x - x_n)}{(x_k - x_0)...(x_k - x_{k-1})(x_k - x_{k+1})...(x_k - x_n)}$$

Example

- Give $x_0 = 2$, $x_1 = 2.75$, $x_2 = 4$. Find the second Lagrange interpolating polynomial for f(x) = 1/x.
- Use this polynomial to approximate f(x) = 1/3.

$$P(x) = \frac{1}{22}x^2 - \frac{35}{88}x + \frac{49}{44}$$
$$P(3) = \frac{29}{88} \approx 0.32055$$



Theorem (3.3)

If $x_0, x_1, ..., x_n$ are n + 1 distinct numbers in the interval [a, b] and $f \in C^{n+1}[a, b]$.

Then for $x \in [a, b]$, there exists a number $\xi(x) \in (a, b)$ that

$$f(x) = P_n(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)(x-x_1)...(x-x_n)$$

where

$$P_n(x) = \sum_{k=0}^n f(x_k) L_{n,k}(x)$$

$$L_{n,k}(x) = \prod_{i=0}^{n} \frac{(x-x_i)}{(x_k-x_i)}$$

if $x=x_k$, for any k=0,1,...,n then $f(x_k)=P(x_k)$. If $x\neq x_k$, for all k=0,1,...,n, we define the function g for t in [a,b] by

$$g(t) = f(t) - P(t) - [f(x) - P(x)] \frac{(t - x_0)(t - x_1)...(t - x_n)}{(x - x_0)(x - x_1)...(x - x_n)}$$
$$= f(t) - P(t) - [f(x) - P(x)] \prod_{i=0}^{n} \frac{(t - x_i)}{(x - x_i)}$$

 $t=x,x_0,...,x_n$ then g(x)=0, $g(x_k)=0$ k=0,...,n. Thus $g\in C^{n+1}[a,b]$, and g is zero at the n+2 distinct numbers $x,x_0,x_1,...,x_n$. By Generalized Rolle's Theorem 1.10, there exists a number $\xi\in(a,b)$ for which $g^{(n+1)}(\xi)=0$

$$0 = g^{(n+1)}(\xi) = f^{(n+1)}(\xi) - P^{(n+1)}(\xi)$$
$$- [f(x) - P(x)] \frac{d^{n+1}}{dt^{n+1}} \left[\prod_{i=0}^{n} \frac{(t - x_i)}{(x - x_i)} \right]_{t=\xi}$$
with
$$\frac{d^{n+1}}{dt^{n+1}} \left[\prod_{i=0}^{n} \frac{(t - x_i)}{(x - x_i)} \right] = \frac{(n+1)!}{\prod_{i=0}^{n} (x - x_i)}$$

then

$$0 = f^{(n+1)}(\xi) - 0 - [f(x) - P(x)] \frac{(n+1)!}{\prod\limits_{i=0}^{n} (x - x_i)}$$

Exercise

```
3.1/ Let x_0 = 0, x_1 = 0.6, x_2 = 0.9. Find L_{1.0}, L_{1.1} and
L_{2,0}, L_{2,1}, L_{2,2} to approximate f(0.45) and find absolute error
following function:
a/\cos(x)
b/ \sqrt{(1+x)}
c/\ln(x+1)
d/tan(x) 3.2/Let x_0 = 1, x_1 = 1.25, x_2 = 1.6. Find L_{1,0}, L_{1,1} and
L_{2,0}, L_{2,1}, L_{2,2} to approximate f(1.4) and find absolute error
following function:
a / sin(\pi x)
b/ \sqrt[3]{(x-1)}
c / log_{10}(3x - 1)
d / e^{2x} - x.
```

We would like to determine the length of the curve given by $f(x) = \sin(x)$ from 0 to 10. From the caculus, this length is

$$L = \int_0^{10} \sqrt{1 + (f'(x))^2} dx = \int_0^{10} \sqrt{1 + \cos^2(x)} dx$$

How to compute the integration????

The derivative of the function f at x_0 is

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

When h is small, we can write

$$f'(x_0) \simeq \frac{f(x_0+h)-f(x_0)}{h}$$

In this approximation, we can not dertimine the the error between the approximated value and exact value. To appromate $f'(x_0)$, we suppose first that $x_0 \in (a,b)$, where $f \in C^2([a,b])$, and that $x_1 = x_0 + h$ for some $h \neq 0$ that is sufficiently small to ensure that $x_1 \in [a,b]$. Using Taylor serries, there exists $\xi \in (x_0,x_1)$ such that

$$f(x_0+h)=f(x_0)+f'(x_0)h+\frac{h^2}{2}f''(\xi)$$

Thus

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{h}{2}f''(\xi)$$

Since $f \in C^2([a,b])$, there exists positive constant M such that |f''(x)| < M, thus $|\frac{h}{2}f''(\xi)| < Mh/2$. We can rewrite

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} + 0(h)$$

For h is small, $\frac{f(x_0+h)-f(x_0)}{h}$ is used to appromate the value $f'(x_0)$ with an error O(h).

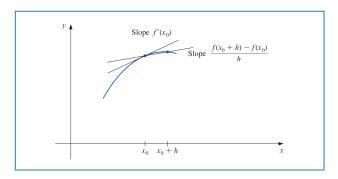
For h > 0, we can write

$$f'(x_0) \simeq \frac{f(x_0 + h) - f(x_0)}{h}$$
 forward-difference formula

$$f'(x_0) \simeq \frac{f(x_0) - f(x_0 - h)}{h}$$
 backward-difference formula

Example:

Use the forward-difference formula to approximate the derivative of $f(x) = \ln x$ at $x_0 = 1.8$ using h = 0.1, h = 0.05, and h = 0.01, and determine bounds for the approximation errors.



Hình: Forward difference

Three endpoint formula

Given three 3 point $x_0, x_0 + h, x_0 + 2h \in (a, b)$. We would like to appromate $f'(x_0)$. Using Taylor serries, there exist $\xi_1 \in (x_0, x_0 + h)$ and $\xi_2 \in (x_0, x_0 + 2h)$, such that

$$f(x_0+h)=f(x_0)+hf'(x_0)+\frac{h^2}{2}f''(x_0)+\frac{h^3}{6}f'''(\xi_1)$$

and

$$f(x_0+2h)=f(x_0)+2hf'(x_0)+\frac{(2h)^2}{2}f''(x_0)+\frac{(2h)^3}{6}f'''(\xi_2)$$

From two approximation, we have

$$f(x_0+2h)-4f(x_0+h) = -3f(x_0)-2hf'(x_0)+h^3(\frac{8}{6}f'''(\xi_2)-\frac{4}{6}f'''(\xi_1))$$

Three endpoint formula

Then

$$f'(x_0) = \frac{-3f(x_0) - 4f(x_0 + h) - f(x_0 + 2h)}{2h} + h^2(\frac{4}{6}f'''(\xi_2) - \frac{2}{6}f'''(\xi_1))$$

We suppose that $f \in C^3([a,b])$, there exist constant M > 0 such that

$$h^2(\frac{4}{6}f'''(\xi_2) - \frac{2}{6}f'''(\xi_1)) \le Mh^2$$

Then

$$f'(x_0) = \frac{-3f(x_0) - 4f(x_0 + h) - f(x_0 + 2h)}{2h} + 0(h^2)$$

Then, three endpoint formula is

$$f'(x_0) = \frac{-3f(x_0) - 4f(x_0 + h) - f(x_0 + 2h)}{2h}$$

Three midpoint formula

Given three 3 point $x_0 - h, x_0, x_0 + h \in (a, b)$. We would like to appromate $f'(x_0)$. Using Taylor serries, there exist $\xi_1 \in (x_0, x_0 + h)$ and $\xi_2 \in (x_0 - h, x_0)$, such that

$$f(x_0+h)=f(x_0)+hf'(x_0)+\frac{h^2}{2}f''(x_0)+\frac{h^3}{6}f'''(\xi_1)$$

and

$$f(x_0-h)=f(x_0)-hf'(x_0)+\frac{h^2}{2}f''(x_0)-\frac{h^3}{6}f'''(\xi_2)$$

From two approximation, we have

$$f(x_0 + h) - f(x_0 - h) = 2hf'(x_0) + h^3(f'''(\xi_2) + f'''(\xi_1))$$

Three midpoint formula

Then

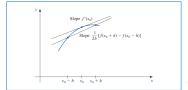
$$f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h} - h^2(f'''(\xi_2) + f'''(\xi_1))$$

We suppose that $f \in C^3([a,b])$, there exist constant M > 0 such that

$$h^2(f'''(\xi_2) + f'''(\xi_1)) \le Mh^2$$

Then three midpoint formula

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h} + O(h^2)$$



Example:

Values for $f(x) = xe^x$ are given in Table (2). Use all the applicable forward difference, backward difference, three-point formulas to approximate f'(2.0) and determine bounds for the approximation errors

Bảng: Value of the function $f(x) = xe^x$

X	f(x)
1.8	10.889365
1.9	12.703199
2.0	14.778112
2.1	17.148957
2.2	19.855030

Second derivative midpoint formula

To appromate $f''(x_0)$, we suppose first that $x_0 - h, x_0, x_0 + h \in (a, b)$, where $f \in C^4([a, b])$. Using Taylor serries, there exists $\xi_1 \in (x_0, x_0 + h)$, $\xi_2 \in (x_0 - h, x_0)$ such that

$$f(x_0+h)=f(x_0)+f'(x_0)h+\frac{h^2}{2}f''(x_0)+\frac{h^3}{6}f'''(x_0)+\frac{h^4}{24}f^{(4)}(\xi_1)$$

and

$$f(x_0 - h) = f(x_0) - f'(x_0)h + \frac{h^2}{2}f''(x_0) - \frac{h^3}{6}f'''(x_0) + \frac{h^4}{24}f^{(4)}(\xi_2)$$

Thus

$$f(x_0 + h) - f(x_0 - h) = h^2 f''(x_0) + \frac{h^4}{24} (f^{(4)}(\xi_1) + f^{(4)}(\xi_2))$$

Second derivative midpoint formula

We can rewrite that

$$f''(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{h^2} - \frac{h^2}{24} (f^{(4)}(\xi_1) + f^{(4)}(\xi_2))$$

Since $f \in C^4([a,b])$ there exist constant M > 0 such that

$$|-\frac{h^4}{24}(f^{(4)}(\xi_1)+f^{(4)}(\xi_2))|\leq Mh^2$$

Then second derivative midpoint formula is

$$f''(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{h^2} + 0(h^2)$$

Example:

Use the second derivative formula to approximate f (2.0) with value of f at following table

Bảng: Value of the function $f(x) = xe^x$

X	f(x)
1.8	10.889365
1.9	12.703199
2.0	14.778112
2.1	17.148957
2.2	19.855030

Exercises

1. Use the forward-difference formulas and backward-difference formulas to determine each missing entry in the following tables

2. The data in Exercise 1 were taken from the function $f(x) = \sin x$. Compute the actual errors in Exercise 1, and find error bounds using the error formulas.

Exercises

3. Use the most accurate three-point formula to determine each missing entry in the following tables.

X	f(x)	f'(x)
1.1	9.025013	
1.2	11.02318	
1.3	13.46374	
1.4	16.44465	

4. The data in Exercise 3 were taken from the function $f(x) = e^{2x}$. Compute the actual errors in Exercise 3, and find error bounds using the error formulas.

Exercises

5. Let $f(x) = 3xe^x - \cos x$. Use the following data and second derivative midpoint formula to approximate f''(1.3) with h = 0.1 and with h = 0.01.

X	1.2	1.29	1.30	1.31	1.40
f(x)	11.59006	13.78176	14.04276	14.30741	16.86187

Compare your results with f''(1.30).

- 6. Derive an $0(h^4)$ five-point formula to approximate $f'(x_0)$ that uses $f(x_0 2h)$, $f(x_0 h)$, $f(x_0)$, $f(x_0 + h)$, and $f(x_0 + 2h)$.
- 7. Derive an $0(h^4)$ five-point formula to approximate $f''(x_0)$ that uses $f(x_0 2h)$, $f(x_0 h)$, $f(x_0)$, $f(x_0 + h)$, and $f(x_0 + 2h)$

Introduction

Goal: Determine $\int_a^b f(x)dx$ for f at least continuous on [a,b] with a,b real.

Solution: Approximate f by a Lagrange polynomial

$$f \sim P$$
$$\int_{a}^{b} f(x)dx \sim \int_{a}^{b} P(x)dx$$

Quadrature formula

Definition

We call quadrature formula $I_n = \sum_{k=0}^{n} a_k f(x_k)$ that approximate

$$I = \int_a^b f(x) dx$$
 for a, b in \mathbb{R} and f is continuous on $[a, b]$.

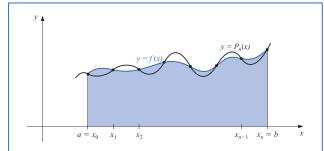
The $(x_k)_{k=0,\dots,n}$ are called the integration nodes.

The $(a_k)_{k=0,\dots,n}$ are called the weights

A closed Newton-Cotes Formula

We define the $(x_k)_{k=0,\dots,n}$ as follows

$$x_k = a + \frac{k}{n}(b - a)$$
 $\forall k = 0, \dots, n$
 $x_0 = a,$ $x_n = b$
 $\frac{b - a}{n}$ often is denoted by h



A closed Newton-Cotes Formula

Definition

A closed Newton-Cotes approximation of degree n (NC_n) consists of approximation of $I = \int_a^b f(x) dx$ by

$$I_n = \int_a^b P(x) dx = \sum_{k=0}^n a_k f(x_k)$$

where P is Lagrange polynomial of f at x_0, \dots, x_n .

A closed Newton-Cotes Formula

Proposition

In the closed Newton-Cotes formula, we have

$$a_k = \int_a^b L_k(x) dx$$

where
$$L_k(x) = \prod_{i=1}^n \frac{x - x_i}{x_k - x_i}$$

Proof: From definition of Lagrange polynomial P of f, we have

$$P(x) = \sum_{k=1}^{n} f(x_k) L_k(x)$$
, where $L_k(x) = \prod_{i=1}^{n} \frac{x - x_i}{x_k - x_i}$

Then

$$\int_{a_k}^{b} P(x)dx = \sum_{k=0}^{n} f(x_k) \int_{a_k}^{b} L_k(x)dx = \sum_{k=0}^{n} a_k f(x_k)$$

A closed Newton-Cotes Formula

Theorem

On the interval [a,b], we assume that $f \in C^{n+1}([a,b])$, then

$$R(f) = \left| \int_{a}^{b} f(x) dx - \int_{a}^{b} P(x) dx \right| \le (b - a)^{n+2} \frac{\|f^{(n+1)}\|_{\infty}}{(n+1)!}$$

where
$$||f^{(n+1)}||_{\infty} = \sup_{x \in [a,b]} |f^{(n+1)}(x)|$$

Proof: From definition of Lagrange polynomial P of f, there exist $\xi_x \in [a,b]$ such that

$$f(x) = P(x) + \prod_{k=0}^{n} \frac{(x - x_k)}{k+1} f^{(n+1)}(\xi)$$

A closed Newton-Cotes Formula

$$R(f) = \left| \int_a^b f(x) dx - \int_a^b P(x) dx \right| \le \int_a^b |f(x) dx - P(x)| dx$$
$$= \int_a^b \left| \prod_{k=0}^n \frac{(x - x_k)}{k+1} f^{(n+1)}(\xi_x) \right| dx$$

Because $x \in [a, b]$ and $x_k \in [a, b]$ for all $k = 0, \dots, n$, we have

$$|x-x_k| \leq (b-a) \quad \forall k=0,\cdots,n$$

Since $\xi_x \in [a, b]$ then

$$|f^{(n+1)}(\xi_x)| \le \sup_{x \in [a,b]} |f^{(n+1)}(x)| = ||f^{(n+1)}||_{\infty}$$

$$R(f) \leq (b-a)^{n+1} \frac{\|f^{(n+1)}\|_{\infty}}{(n+1)!} \int_{a}^{b} dx = (b-a)^{n+2} \frac{(\|f^{(n+1)}\|_{\infty})}{(n+1)!}$$

Trapezoidal Rule (NC₁)

 \bigstar n=1 (2 nodes integration), $x_0 = a$, $x_1 = b$. First, we build Lagrange polynomial at $(x_0, f(x_0))$ and $(x_1, f(x_1))$ i.e (a, f(a)) and (b, f(b)).

$$P_1(x) = f(x_0)L_0(x) + f(x_1)L_1(x)$$

where

$$L_0(x) = \frac{x - x_1}{x_0 - x_1} = \frac{x - b}{a - b}, \quad L_1(x) = \frac{x - x_0}{x_1 - x_0} = \frac{x - a}{b - a}$$

This implies

$$I_1(f) = \int_a^b P_1(t)dt = f(a) \int_a^b \frac{t-b}{a-b} dt + f(b) \int_a^b \frac{t-a}{b-a} dt$$

Trapezoidal Rule (NC_1)

It is easy to have

$$\int_{a}^{b} \frac{t-b}{a-b} dt = \frac{b-a}{2}, \qquad \int_{a}^{b} \frac{t-a}{b-a} dt = \frac{b-a}{2}$$

Then

$$I_1(f) = \frac{b-a}{2}f(a) + \frac{b-a}{2}f(b)$$

Proposition

$$R(f) = \left| \int_{a}^{b} f(x) dx - \frac{b-a}{2} (f(a) + f(b)) \right| \le \frac{(b-a)^{2}}{2} ||f^{(2)}||_{\infty}$$

Remark: we can prove that $R(f) \le \frac{(b-a)^2}{12} \|f^{(2)}\|_{\infty}$

Simpson's rule (NC_2)

 \bigstar n=2 (3 nodes integration), $x_0=a, x_1=\frac{a+b}{2}, x_2=b$.

$$P_2(x) = f(x_0)L_0(x) + f(x_1)L_1(x) + f(x_2)L_2(x)$$

= $f(a)L_0(x) + f(\frac{a+b}{2})L_1(x) + f(b)L_2(x)$

where

$$L_0(x) = \frac{(x - \frac{a+b}{2})(x - b)}{(a - \frac{a+b}{2})(a - b)},$$

$$L_1(x) = \frac{(x - a)(x - b)}{(\frac{a+b}{2} - a)(\frac{a+b}{2} - b)},$$

$$L_2(x) = \frac{(x - a)(x - \frac{a+b}{2})}{(b - a)(b - \frac{a+b}{2})},$$

Simpson's rule (NC₂)

$$\int_{a}^{b} P(x)dx = f(a) \int_{a}^{b} L_{0}(t)dt + f(\frac{a+b}{2}) \int_{a}^{b} L_{1}(t)dt + f(b) \int_{a}^{b} L_{2}(t)dt$$

$$\int_{a}^{b} L_{0}(t)dt = \frac{b-a}{6}$$

$$\int_{a}^{b} L_{1}(t)dt = \frac{4(b-a)}{6}$$

$$\int_{a}^{b} L_{2}(t)dt = \frac{b-a}{6}$$

Then Simpson's rule is

$$I_2(f) = \frac{b-a}{6} \left(f(a) + 4f(\frac{a+b}{2}) + f(b) \right)$$

Simpson's rule (NC₂)

Proposition

If
$$f \in C^3([a,b])$$
 then

$$\left| \int_{a}^{b} f(x) dx - I_{2}(f) \right| \leq \frac{(b-a)^{4}}{6} \|f^{(3)}\|_{\infty}$$

Example

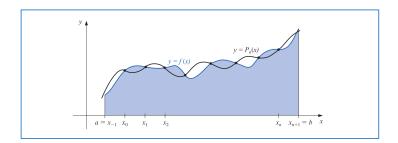
Compare the Trapezoidal rule and Simpson's rule approximations to $\int_0^2 f(x)dx$ when f(x) is

►
$$f(x) = x^2$$

$$f(x) = \sin(x)$$

$$f(x) = \frac{1}{1+x}$$

We use the nodes: $x_k = x_0 + kh$ for all $k = 0, \dots, n$, where $h = \frac{b-a}{n+2}$, and $x_0 = a+h$, $x_n = b-h$



Definition

A open Newton-Cotes approximation of degree n (NC_n) consists of approximation of $I = \int_a^b f(x) dx$ by

$$I_n = \int_a^b P(x)dx = \sum_{k=0}^n a_k f(x_k)$$

where P is Lagrange polynomial of f at x_0, \dots, x_n .

Proposition

In the open Newton-Cotes formula, we have

$$a_k = \int_a^b L_k(x) dx$$
, where $L_k(x) = \prod_{j=1, j \neq k}^n \frac{x - x_j}{x_k - x_j}$

Theorem

On the interval [a,b], we assume that $f \in C^{n+1}([a,b])$, then

$$R(f) = \left| \int_{a}^{b} f(x) dx - \int_{a}^{b} P(x) dx \right| \le (b - a)^{n+2} \frac{\|f^{(n+1)}\|_{\infty}}{(n+1)!}$$

where
$$||f^{(n+1)}||_{\infty} = \sup_{x \in [a,b]} |f^{(n+1)}(x)|$$

Midpoint rule

★ n=0 (Midpoint rule). We take 1 node $x_0 = \frac{a+b}{2}$.

$$P_0(x) = f(\frac{a+b}{2})L_0(x) \quad \forall x \in [a,b]$$

This implies

$$\int_{a}^{b} P_{0}(x)dx = \int_{a}^{b} f(\frac{a+b}{2})dx = (b-a)f(\frac{a+b}{2})$$

Proposition

If $f \in C^2([a,b])$, then

$$R_0(f) = \left| \int_a^b f(x) dx - (b-a)f(\frac{a+b}{2}) \right| \le (b-a)^2 \|f^{(2)}\|_{\infty}$$

Midpoint rule

Theorem (Error estimate for the midpoint rule)

If
$$f \in C^2([a,b])$$
 then

$$\left| \int_{a}^{b} f(x) dx - (b-a) f(\frac{a+b}{2}) \right| \leq \frac{\|f^{(2)}\|}{24} (b-a)^{3}$$

Proof: When $f \in C^2([a,b])$, then, for all $t \in (a,b)$, there exist $\xi \in (t, \frac{a+b}{2})$ such that

$$\xi \in (t, rac{a+b}{2})$$
 such that

 $f(t) = f(\frac{a+b}{2}) + (t - \frac{a+b}{2})f'(\frac{a+b}{2}) + \frac{1}{2}(t - \frac{a+b}{2})^2f''(\xi)$

Integrating over
$$[a, b]$$
, we have
$$\int_a^b f(t)dt = \int_a^b f(\frac{a+b}{2})dt + \int_a^b (t-\frac{a+b}{2})f'(\frac{a+b}{2})dt + \int_a^b \frac{1}{2}(t-\frac{a+b}{2})dt$$

Midpoint rule

Integrating over [a, b], we have

$$\int_{a}^{b} f(t)dt = \int_{a}^{b} f(\frac{a+b}{2})dt + \int_{a}^{b} (t - \frac{a+b}{2})f'(\frac{a+b}{2})dt + \int_{a}^{b} \frac{1}{2}(t - \frac{a+b}{2})^{2}f''(\xi)dt$$
$$= (b-a)f(\frac{a+b}{2}) + 0 + \frac{1}{2}\int_{a}^{b} (t - \frac{a+b}{2})^{2}f''(\xi)dt$$

Then

$$\int_{a}^{b} f(t)dt - (b-a)f(\frac{a+b}{2}) = \frac{1}{2} \int_{a}^{b} (t - \frac{a+b}{2})^{2} f''(\xi)dt$$

Midpoint rule

We have

$$\left| \int_{a}^{b} f(t)dt - (b-a)f(\frac{a+b}{2}) \right| \leq \frac{1}{2} \int_{a}^{b} (t - \frac{a+b}{2})^{2} |f^{(2)}(\xi)| dt$$

$$\leq \frac{1}{2} \int_{a}^{b} (t - \frac{a+b}{2})^{2} ||f^{(2)}||_{\infty} dt$$

$$\leq \frac{||f^{(2)}||_{\infty}}{2} \int_{a}^{b} (t - \frac{a+b}{2})^{2} dt$$

$$\leq \frac{||f^{(2)}||_{\infty}}{2} \frac{(b-a)^{3}}{12}$$

Then

$$\left| \int_{a}^{b} f(t)dt - (b-a)f(\frac{a+b}{2}) \right| \leq \frac{\|f^{(2)}\|_{\infty}}{24} (b-a)^{3}$$

Rectangle rule (left)

★ n=0 (Left rule). We take 1 node $x_0 = a$.

$$P_0(x) = f(a)L_0(x) \quad \forall x \in [a, b]$$

This implies

$$\int_{a}^{b} P_{0}(x)dx = \int_{a}^{b} f(a)dx = (b - a)f(a)$$

Proposition

If $f \in C^2([a, b])$, then

$$R_0(f) = \left| \int_a^b f(x) dx - (b-a)f(a) \right| \le (b-a)^2 \|f^{(2)}\|_{\infty}$$

Rectangle rule (right)

★ n=0 (Right rule). We take 1 node $x_0 = b$.

$$P_0(x) = f(b)L_0(x) \quad \forall x \in [a, b]$$

This implies

$$\int_{a}^{b} P_{0}(x) dx = \int_{a}^{b} f(b) dx = (b - a) f(b)$$

Proposition

If $f \in C^2([a, b])$, then

$$R_0(f) = \left| \int_a^b f(x) dx - (b-a)f(b) \right| \le (b-a)^2 \|f^{(2)}\|_{\infty}$$

Exercises

1. Approximate the following integrals using the Trapezoidal rule

a.
$$\int_0^{0.5} x^4 dx$$
 b. $\int_1^{1.5} x^2 \ln x dx$ c. $\int_0^{0.35} \frac{1}{x^2 - 4} dx$ d. $\int_{0.75}^{1.3} \left(\sin^2(x) - 2x \sin(x) + 1 \right)$

- 2. Find a bound for the error in Exercise 1 using the error formula, and compare this to the actual error.
- 3. Repeat Exercise 1 using Simpson's rule.
- 4. Repeat Exercise 2 using Simpson's rule and the results of Exercise 3.
- 5. Repeat Exercise 1 using the Midpoint rule.

Exercises

- 6. Repeat Exercise 2 using the Midpoint rule and the results of Exercise 5.
- 7. The Trapezoidal rule applied to $\int_0^2 f(x)dx$ gives the value 4, and Simpson's rule gives the value 2. What is f(1)?
- 8. The Trapezoidal rule applied to $\int_0^2 f(x)dx$ gives the value 5, and the Midpoint rule gives the value 4. What value does Simpson's rule give?
- 9. Find the degree of precision of the quadrature formula

$$\int_{-1}^{1} f(x)dx = f(\frac{-\sqrt{3}}{3} + f(\frac{\sqrt{3}}{3}))$$