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Modeling and Simulation of Physical Processes

v

Describe the physical phenomenon

v

Model the physical phenomenon to become mathematical
equations (PDE)

Simulate the mathematical equations (discrete solution)

v

v

Compare the discrete solution and experiment result
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Example

Equations for conservation law of mass and momentum

{@p + Ox(pu)

Oe(pu) + Ox(pu?) =0 (x,t) € R x (0, +00)

with the initial condition
p(x,0) = p"(x)
) =u"(x)
where p(x, t) is density field and u(x, t) velocity field. The first

equation is for the conservation of mass and the second one for the
conservation of momentum.
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:

Limits and Continuity
Definition

A function f defined on a set X of real number has the limit L at
Xg, written
lim f(x)=1L
5 )
if, given any real number € > 0, there exists a real number § > 0
such that
|f(x)—L| <e,

whenever

xeX and 0<|x—xp| <0

y=/

0t
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L Mathematical Preliminaries

Limits and Continuity (Cont.)

Definition
Let f be a function defined on a set X of real numbers and
xg € X. Then f is continuous at xg if

X|L)n3(0 f(x) = f(x0)

The function f is continuous on the set X if it is continuous at
each number in X.

Definition
Let {x,}°°, be a infinity of real number. This sequence has the
limit x (converges to x) if, for any € > 0, there exists a positive
integer N(g) such that |x, — x| < &, whenever n > N(e). The
notation

IMpsooXn =X O Xp—X as n— oo
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LMa':hematical Preliminaries

Differentiability

Definition
Let f be a function defined on a open interval containing xy. The
function f is differentiable at xg if

Fx0) = lim 1) =Fl0)

X—>X0 X — X0

exists. The number f'(xg) is called the derivative of f at x.

‘The tangent line has slope /" (x;)

(xo, fxq)) » =1
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Differentiability (Cont.)

Theorem (Rolle’s Theorem)

Suppose f € C([a, b]) and f is differentiable on (a, b). If
f(a) = f(b), then a number c in (a, b) exists with f'(c) =0

S
fia) = fiby I Xﬂﬂ/
‘ ¢

=0

b
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Differentiability (Cont.)

Theorem (Mean Value Theorem)

If f € C([a, b]) and f is differentiable on (a, b), then a number c in
(a, b) exists with

f'(c) = M

b—a

Parallel lines
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Differentiability (Cont.)

Theorem (Intermediate Value Theorem)

If f € C([a, b]) and K is any number between f(a) and f(b). then
there exists a number c in (a, b) such that f(c) = K

¥y
) (a. f(a))
fl@
K
I
/ | ®. /)
1
a ¢ b X

u}

o)
I
i
it
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Exercise:

1.1/ Show that the following equations have at least one solution
in the given intervals

a. xcosx —2x?> +3x —1 =0, [0.2,0.3] and [1.2,1.3]

b. (x —2)? — Inx =0, [1,2] and [e, 4]

c. 2xcos(2x) — (x —2)2 =0, [2,3] and [3,4]

d. x — (Inx)* =0, [4,5]

1.2/ Show that f’(x) = 0 at least once in the given intervals a.
f(x) =1— e+ (e —1)sin(5x), [0,1]

b. f(x) = (x — 1)tanx + xsin7x, [0, 1]
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Integration

Definition (Riemann Integral)

The Riemann integral of the function f on the interval [a, b] is
the following limit, provided it exists:

fab f(x)dx = limmax Ax—0 Y1y f(zi))Ax;
where the numbers xg, x1, -+ , Xp Satisfy
a=x0<x3 <---<x,=>b, where x; = x; — x;_1, for each
i=1,2,...,n, and z; is arbitrarily chosen in the interval [x;_1, X;|.

y=f
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Taylor Polynomials

Theorem (Taylor's Theorem)

Suppose f € C"([a, b]), that f("*1) exists on [a, b], and xo € [a, b].
For every x € |a, b], there exists a number {(x) between xy and x

with
f(x) = Pn(x) + Rn(x)
where
a (n) (x
Pr = Flx0) £ (0)(x—x0)+ 5 (x4 0 ey

and

(n+1) (¢(x
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Taylor Polynomials

Example

Let f(x) = cosx and xo = 0. Determine

(a) the second Taylor polynomial for f about xy ; and
(b) the third Taylor polynomial for f about xp .
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Exercise:

1.3/ Let f(x) = x3

a. Find the second Taylor polynomial Py(x) about xp =0

b. Find R2(0.5). Estimate error when using P»(0.5) to approximate
(0.5)

1.4/ Find the third Taylor polynomial P3(x) for the function

f(x) = v/x + 1 about xg = 0. Approximate 1/0.5,v/1.5 using
P3(X).

1.5/ Let f(x) = 2xcos(2x) — (x — 2)? and xp = 0

a. Find the third Taylor polynomial P3(x) and use it to
approximate f(0.4).

b. Use the error formula in Taylor's Theorem to find an upper
bound for the error |f(0.4) — P3(0.4)].

1.6/ Using a Taylor polynomial about 7/4 to approximate cos 42°
to an accuracy of 107°.
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Absolute Error and Relative Error

Definition
Suppose that p* is an approximation to p.
B . . _lp—p
absolute error = |p — p*|, relative error = —————
p

] |current approximation — previous approximation|
relative error =

current approximation

Definition (Truncation Error)

Difference between true result and result produced by given
algorithm
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Exercise:

1.7/Compute the absolute error and relative error in
approximations of p and p*.

a.p=m, p*=22/7

b.p=¢, p*=2718

c. p=e'0, p* = 22000

d. p =38!, p* =39900

u}
o)
I
i
it
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Exercise:
1.8/ Suppose p* must approximate p with relative error at most
1073. Find the largest interval in which p* must lie for each value

of p

a. p=150
b. p =900
c. p = 1500
d. p=90

1.9/ Suppose p* must approximate p with relative error at most
10~*. Find the largest interval in which p* must lie for each value
of p

a.p=

o 0 T
T T T
I

SECE
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Exercise (at home):

1.10/ Use the Intermediate Value Theorem and Roll's Theorem to
show that the graph of f(x) = x3 4 2x + k crosses the x-axis
exactly once, regardless of the value of the constant k.
1.11/Prove

Theorem (the Generalized Roll's Theorem)

Suppose f € C([a, b]) is n times differentiable on (a, b). If f(x) =0
at n+ 1 distinct numbers a < xg < x1 < ... < x, < b, then a
number c in (xo, x,) and hence in (a, b) exists with f(")(c) = 0.
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We consider the model of the growth of a population. The
population N(t) at time t satisfies

dN(t)
dt

where X is constant birth rate and v is constant immigration rate.
The solution is

= AN(t) +v

N(t) = Noet + %(e’\t ~1)
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Suppose initial population N(0) = 1,000,000, immigration rate
435,000, population after one year N(1) = 1,564, 000. Let
determine the birth rate of this population A.

We have

435,000
1,564,000 = 1,000,000e* + ———

(e* 1)

N
3000 +

ey W) = 10006 + 2522 — 1)

1564
1435 4+

Population (thousands)

1000 +

Birth rate
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Definition

Suppose f is a continuous function on [a, b] and f(a).f(b) <O,
then it exists p € (a, b) that f(p) = 0 (by Intermediate Value
Theorem). Bisection is the method calling for a repeated halving of
subintervals [a, b].
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LBisection method

Description

Set ay —aand by = b and let p; = a; + 252
» If f(p1) =0, then p=p;

» If f(p1) # O, then
-If f(pl).f(al) >0,set ap =p1, bp = b
-If f(p1).f(a1) <0, set ap = a1, bh = p1

Repeat this process to the interval [az, bo].
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Algorithm of Bisection

INPUT: function f, endpoints a, b, tolerance TOL, maximum
number of iterations Ny
OUTPUT: approximation solution p or message of failure.
Step 1: Set i =1, FA = f(a).
Step 2: While i < Ny
-Step 2.1: Set p=a+ b;a, FP = f(p)
-Step2.2: If FP=0or (b—a)/2 < TOL

then OUTPUT(p) and STOP
-Step 2.3: Set i =i+ 1.
-Step 2.4: If FA.FP > 0 then set a = p, FA= FP, else b = p.
Step 3: OUTPUT (Method fail after Ny iterations), STOP.
NOTE: We should use sign(FA).sign(FP) > 0 instead of
FA.FP > 0 to avoid overflow.
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L Bisection method

Stopping criteria

lpv — py_1| < &

N~ PN-
’ |p’\ll)| 1|<€, pn 70
[f(pn)| < e
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Example

Find root of f(x) = x3 +4x? —10=0in [L,2].

F(1) = -5, £(2) = 14.

n a, b, Pu Fpe)
1 1.0 2.0 15 2375
2 1.0 1.5 125 —1.79687
3 1.25 1.5 1375 0.16211
4 1.25 1.375 13125 —0.84839
5 13125 1.375 1.34375 —0.35098
6 1.34375 1.375 1.359375 —0.09641
7 1359375 1.375 13671875 0.03236
8 1359375 13671875 1.36328125 —0.03215
9 136328125 13671875 1.365234375 0.000072
10 136328125 1365234375 1.364257813 —0.01605
11 1364257813 1365234375 1.364746094 —0.00799
12 1.364746094 1365234375 1.364990235 —0.00396
13 1.364990235 1365234375 1.365112305 —0.00194

N
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Theorem (2.1)

Suppose f € Cla, b] and f(a).f(b) < 0. The Bisection method
generates a sequence {p,}7°; approximating a zero p of f with

b_
lpn — p| <

o when n>1.
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Exercise

2.1/ Use Bisection method to find approximation solutions with
TOL = 1075 for the following problems

a.x—27%=0, xe[0,1]

b. e —x>+3x—2=0, x € [0,1]

c. 2xcos(2x) — (x + 1) =0 x € [-3,-2] and x € [-1,0]

d. xcos(x) —2x?> +3x —1 =0 x € [0.2,0.3] and x € [1.2,1.3]
2.2/ a. Plot the graphs of y = e — 2 and y = cos(e* — 2).

b. Use Bisection method to find approximation solutions of

eX — 2 = cos(e* — 2) with relative error less than 107° in [0.5, 1.5].
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Definition
The number p is a fixed point for a given function g if g(p) = p.
Note: Root-finding problem and fixed-point problem are equivalent.

g(x) =x—f(x)

Example: Determine fixed points of the function g(x) = x> — 2
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Example
Determine fixed points of the function g(x) = x2 — 2.
Solution:
glp)=p*—2=p <= p*—-p-2=(p+1)(p—2)=0
=p=—lorp=2
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Theorem (2.2)

(i) Existence If g € Cla, b] and g(x) € [a, b],Vx € [a, b], then
g has at least one fixed point in [a, b].
(ii) Uniqueness [f, in addition, g'(x) exists on (a, b) and

lg'(x)] < k<1, Vxe(ab)

then there is exactly one fixed point p € |a, b]
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Fixed-point iteration

Let g be continuous, pg be an initial approximation. Put
pn = &(Pn-1),¥n > 1. If p, — p, then p= g(p)

Pi=glp)

y=x
(p2. 23)
P=gp)

y=3gl)

(P2 p2)
Sty (b 1)

(pr.)
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Algorithm of Fixed-point iteration

INPUT: function g, initial approximation pg, tolerance TOL,
maximum number of iterations N
OUTPUT: approximation solution p or message of failure.
Step 1: Set i = 1.
Step 2: While i < Ny
-Step 2.1: Set p = g(po)
-Step 2.2: If |p— po| < TOL
then OUTPUT(p) and STOP
-Step 2.3: Set i =i + 1.
-Step 2.4: Set py = p.
Step 3: OUTPUT (Method fail after Ny iterations), STOP.
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Theorem (2.3)
Let g € Cla, b] and g(x) € [a, b],Vx € [a, b]. Suppose g'(x) exists
on (a, b) and

lg'(x)]| < k<1, VxE€/(a,b)

then Vpy € [a, b, the sequence defined by p, = g(pn—1), n>1
converges to the unique fixed point p € [a, b].

Corllory (2.3)
Let g satisfies the hypotheses of Theorem 2.3, then
|pn — p| < k" max{po — a,b — po}

and
n

1—k

lpn — p| < lp1— pol, Vn>1.
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Example
Find the solution of the equation x3 + 4x? — 10 = 0 in [1,2].

a/ x = gi(x) =x—x3—-4x24+10 b/ x = ga(x) = (% _4X)1/2

/ x=alx) = 10— )" o x - aa) = (22)"”

3 2
ef x = g5(x) = x — <10

n (a) (b) (c) () (e)
0 1.5 1.5 15 1.5 1.5
1 —0.875 0.8165 1.286953768 1.348399725 1.373333333
2 6.732 2.9969 1.402540804 1.367376372 1.365262015
3 —469.7 (—8.65)'7 1.345458374 1.364957015 1.365230014
4 1.03 x 10° 1.375170253 1.365264748 1.365230013
5 1.360094193 1.365225594
6 1.367846968 1.365230576
7 1.363887004 1.365229942
8 1.365916734 1.365230022
9 1.364878217 1.365230012

10 1.365410062 1.365230014

15 1.365223680 1.365230013

20 1.365230236

25 1.365230006

30 1.365230013

u}

o)
I
i

it
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Exercise

2.3/ The following four methods are proposed to compute 715,
Rank them in order, based on their apparent speed of convergence,

po = 1.
pn 1 3
a. Pn = Pn-1 <1+ )

pn 1

5

Py_1—7
b. pn=pp-1— =7 —

Pr—1

5

Pn,1_7
C. Pn = Pn-1 —

Ul

Py _1—7

d. pp=pn-1— -

2
2.4/ f(x) =x*—3x2-3 =0, x € [1,2], use a fixed point iteration
method to determine a solution accurate to with thin 1072, pp = 1.
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Exercise (Home)

2.5/ Let f(x) = (x — 1)1 p=1and p, =1+ 1/n. Show that
|f(pn)| <1073, n> 1 but |p— pn| < 1073 requires that

n > 1000.

2.6/ The function defined by f(x) = sin(7x) has solutions at every
integer. Show that when a € (—1,0), b € (2,3), the Bisection
method converges to

a.0,ifa+b<2 b.2/ifa+b>2 c lifat+b=2

2.7/ a. Show that for A > 0, then the sequence

1 n A
Xpn = =Xp—
n 2 n—1 2Xn71’

Vn > 1,

converges to /A whenever xq > 0.
b. What happens if xg < 0.
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:

Let consider the population of Vietnam:

Year

1980 | 1985 | 1990 | 1995 | 2000 | 2005
Population (10%) | 53722 | 59872 | 66016 | 71995 | 77635 | 83106
What is population of Vietnam in 19977 20157
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Theorem (3.1 (Weierstrass Approximation))
that

Let f € Cla, b]. For each € > 0, there exist a polynomial P(x) such

If(x) — P(x)| < e

Vx € [a, b]
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Example

Recall Taylor polynomial for f(x) = e* about xg = 0
PO(X) = 1, Pl(X) = 1—|—X, P2(X) = 1—}—X—{—X72, P3(X) = 1+X+X72_|_%3
Pa) =14 x+ 5 + 2 4 5 Po(x) =14 x+ 5 + 2 + 5 + 2

¥ ="Ps()

—
Py =P

7 y=Py)
¥ =P

eV =P

e — Y =Rx)

u}
o)
I
i
it
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Example

Taylor polynomial for f(x) = 1 about xg = 1

u}
o)
I
i
i
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Lagrange interpolating polynomials

Give two points (xo, ¥0), (X1, y1). We define the functions:

X — X1 X — X0

Lo(x) = and Li(x) =

X0 — X1 X1 — Xo
The linear Lagrange interpolating polynomial through (xo, yo)
and (xi,y1) is

X — X1 X — X0

P(x) =1L L =
(x) = Lo(x)yo + L1(x)y1 e R ae
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Example

Find the linear Lagrange interpolating polynomial that passes
through the points (2,4) and (5, 1).
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Lagrange interpolating polynomials

For each k =0,1, ..., n, we define a function

Ln’k(X) =

that

(x = x0)---(x = xk—1) (X — Xk+1)---(X — Xn)

(Xk — XQ)...(Xk — Xk—l)(Xk — Xk+1)...(Xk — Xn)

Ln,k(xi):{ (1) ik

=k
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Theorem (3.2)

If xo,x1, ..., Xn are n+ 1 distinct numbers and a function f that
f(xk), k=0,...,n are given.
Then there exists a unique polynomial P(x) of degree at most n
such that P(xx) = f(xx) and

P(x) = f(x0)Lno(x) + ... + f(xn)Lnn(x Zf X)L 1 (¥)

where

K(x) = (X = x0)---(x = Xk—1) (X = Xkg1)---(x — xn)
n (Xk — Xo)...(Xk — Xk_]_)(Xk — Xk+1)...(Xk — Xn)
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Example
- Give xp = 2, x1 = 2.75, x = 4. Find the second Lagrange
interpolating polynomial for f(x) = 1/x.
- Use this polynomial to approximate f(x) = 1/3.

1 35 49
P =5 5 T
2
P(3) 29+ 0.32055

~ 88
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Theorem (3.3)

If xo, X1, ..., xn are n+ 1 distinct numbers in the interval [a, b] and
f e C'a, b

Then for x € [a, b, there exists a number {(x) € (a, b) that

_ F(E(x))
f(x) = Pa(x) + W(x —x0)(x — x1)...(x — xn)

Pa(x) =D F(xi)Lnk(x)
k=0

Lo(x) = H (x=xi)

ok 0% = i)
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if x = xk, for any k =0,1,...,n then f(xx) = P(xk).
If x # xg, for all k =0,1,...,n, we define the function g for t in
[a, b] by

(t —x0)(t — x1)...(t — xn)
(x = x0)(x — x1)...(x — xn)

oot —x

=76~ P() - 100~ PN T (=)
i=0 '

g(t) = f(t) — P(t) — [f(x) = P(x)]

t =X, Xp,...,Xn then g(x) =0, g(xk) =0 k=0, ..., n.

Thus g € C"1[a, b], and g is zero at the n + 2 distinct numbers
X, X0, X1, ---, Xn. By Generalized Rolle’s Theorem 1.10, there exists a
number & € (a, b) for which g("*1(£) =0
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0= g™ (&) = F"(g) - P(e)

n

dn+1 — X
- reng ]
0

nil [0 (t—x,)] (n+1)!
with =
dntl [1}) (x —xj) lﬂ[ (x — )
i=0
then |
0 = FP(€) — 0 — [(x) — P(x)] )
1;[0 (x — x;)
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Exercise

3.1/ Let xo = 0,x; = 0.6, x, = 0.9. Find L]_,(), L1,1 and

Ly, Lo 1, Ly to approximate £(0.45) and find absolute error
following function:

a/ cos(x)

b/ /(14 x)

c/ In(x +1)

d/ tan(x) 32/ Let xo =1,x; = 1.25,x, = 1.6. Find L170, L171 and
L0, Lo 1, Lo to approximate f(1.4) and find absolute error
following function:

a/ sin(mx)

b/ 3/(x ~ 1)

c/ logio(3x — 1)

d/ e — x.
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:

We would like to determine the length of the curve given by
f(x) = sin(x) from 0 to 10. From the caculus, this length is

L= /010 \/ 1+ (f'(x))%dx = /010 /1 + cos?(x)dx

How to compute the integration??77




Giai Tich Sb
L Numerical Differention
L First derivative

The derivative of the function f at xg is

F(x0) = ,Lmo f(xo+ h,)1 — f(x0)

When h is small, we can write

f(xo + h) — f(x0)

/ ~
f'(x0) =~ b

In this approximation, we can not dertimine the the error between
the approximated value and exact value.
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L First derivative

To appromate f’(xp), we suppose first that xo € (a, b), where

f € C?([a, b]), and that x; = xo + h for some h # 0 that is
sufficiently small to ensure that x; € [a, b]. Using Taylor serries,
there exists £ € (xp, x1) such that

Floo + B) = Flx0) + /(co)h + o £7(6)

Thus . B f A
f-/(XO) _ (XO + 27_ (XO) _ 5f_—/l(é—)

Since f € C?([a, b]), there exists positive constant M such that
|£"(x)| < M, thus |2f"(£)| < Mh/2. We can rewrite

f(xo + h) — f(x0)

f'(x0) = N

+0(h)
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For h is small,

f(Xo—I—hf),—f(Xo)
with an errror 0(h).

For h > 0, we can write

f'(x0)

is used to appromate the value f/(xo)

_ flxo+h) —f(x)
o h

forward-difference formula

f/(XO) ~ f(XO) — f(XO — h)

h

backward-difference formula



Giai Tich Sb

L Numerical Differention
L First derivative

Example:

Use the forward-difference formula to approximate the derivative of

f(x) =Inx at xp = 1.8 using h =0.1, h = 0.05, and h = 0.01, and
determine bounds for the approximation errors.

Slope /" (xo)

Slope S + 1) = fxp)

h

.
t t
Xo Xo+th

Hinh:

Forward difference
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Three endpoint formula

Given three 3 point xg, x0 + h, xo + 2h € (a, b). We would like to
appromate f’(xg). Using Taylor serries, there exist &1 € (xo, x0 + h)
and & € (xp, X0 + 2h), such that

h? h3
f(xo + h) = f(x0) + hf'(x0) + Ef”(xo) + = (&)
and

f(Xo + 2h) = f(Xo) + 2hf/(X0) + (2;)2fﬂ(Xg) + (26I_:)3f”/(€2)

From two approximation, we have

F(xo+2h)—4F (xo-h) = —3f(xO)—2hf’(Xo)+h3(§f”’(ﬁz)-%f"’(&))
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Three endpoint formula

Then

—3f(x0) — 4f h)y—f 2h 4 2
f/(X()) _ 3 (XO) (XO + ) (XO + )+h2(_f///(§2)__f//l(§1))

2h 6 6
We supposr that f € C3([a, b]), there exist constant M > 0 such
that 4 )
h2(6f/”(§2) o gf”/(fl)) < Mh2

Then

F(x0) = —3f(x0) — 4f(X02-; h) — f(xo + 2h) +o(h?)

Then, three endpoint formula is

_ —3f(X0) — 4f(X0 + h) — f(Xo + 2h)

!
Fl(xo) 2h
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Three midpoint formula

Given three 3 point xo — h, xp, Xo + h € (a, b). We would like to
appromate f'(xp). Using Taylor serries, there exist & € (xo, xo + h)
and & € (xp — h, xp), such that

h? h3
f(X() + h) = f(Xo) + hf’(Xo) =+ ?f//(XO) + ff”/(fl)

6
and
h? K3
f(xo — h) = f(x0) — hf'(x0) + Ef”(xo) B Efm(&)

From two approximation, we have

f(xo + h) — f(x0 — h) = 2hf'(x0) + K*(f"(&2) + " (&1))
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Three midpoint formula
Then

f'(x0) =

f(xo+h)—Ff(xo—h

( 0 )2h ( 0 ) _ h2(f///(£2)+ fm(fl))
We supposr that f € C3([a, b]), there exist constant M > 0 such
that

h2(f”,(§2) + f//l(é-l)) < Mh2
Then three midpoint formula
f'(x0) = f(

xo+ h) — f(xo — h)
2h

+ 0(h?)

Slope f'(x))

Slope 53 ftxo + ) = ftxy = ]
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Example:

Values for f(x) = xe* are given in Table (2). Use all the applicable
forward difference, backward difference, three-point formulas to
approximate f/(2.0) and determine bounds for the approximation
errors

Bang: Value of the function f(x) = xe*

X f(x)

1.8 10.889365
1.9 12.703199
2.0 14.778112
2.1 17.148957
2.2 19.855030




Giai Tich Sb
L Numerical Differention

LSex:t:md derivative

Second derivative midpoint formula

To appromate f”(xp), we suppose first that
xo — h, x0,x0 + h € (a, b), where f € C*(]a, b]). Using Taylor
serries, there exists £1 € (xo, X0 + h), &2 € (x0 — h, x0) such that
h? h3 h*
f(xo + h) = f(x0) + '(x0)h + = F"(x0) + =" (x0) + ﬂf(4)(€1)
and
h? h3 h*
f(xo — h) = f(x0) — f'(x0)h + Ef”(xo) - gf'"(xo) + gf(4)(€2)

Thus

fxo+h) = fxo = h) = F*f"(x0) + o, s (f(4)(€1) + (&)
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Second derivative midpoint formula

We can rewrite that

() = [0+ 1) — £

o—h) h
h2 B

(FO (&) + F9(&))
Since f € C*([a, b]) there exist constant M > 0 such that

| — = (FD(&) + FD(&)) < MK

Then second derivative midpoint formula is

f//(Xo) _ (XO + h) h_2 f(XO — h)

+0(h?)
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Example:

Use the second derivative formula to approximate f (2.0) with
value of f at following table

Bang: Value of the function f(x) = xe*

X f(x)
1.8 10.889365
1.9 12.703199
2.0 14.778112
2.1 17.148957
2.2 19.855030
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Exercises

1. Use the forward-difference formulas and backward-difference
formulas to determine each missing entry in the following tables

x | f(x) | f(x)

0.5 | 0.4794
0.6 | 0.5646
0.7 | 0.6442

2. The data in Exercise 1 were taken from the function
f(x) = sin x. Compute the actual errors in Exercise 1, and find
error bounds using the error formulas.
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Exercises

3. Use the most accurate three-point formula to determine each
missing entry in the following tables.

x | f(x) | f(x)

1.1 | 9.025013
1.2 | 11.02318
1.3 | 13.46374
1.4 | 16.44465

4. The data in Exercise 3 were taken from the function f(x) = ¥,
Compute the actual errors in Exercise 3, and find error bounds
using the error formulas.
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Exercises

5. Let f(x) = 3xe* — cos x. Use the following data and second
derivative midpoint formula to approximate ”(1.3) with h = 0.1
and with h = 0.01.

x | 12 | 120 | 130 | 131 | 140

f(x) | 11.59006 | 13.78176 | 14.04276 | 14.30741 | 16.86187

Compare your results with f”(1.30).

6. Derive an 0(h*) five-point formula to approximate f’(xp) that
uses f(xo — 2h), f(xo — h), f(x0), f(xo + h), and f(xo + 2h).

7. Derive an 0(h*) five-point formula to approximate f”(xp) that
uses f(xop — 2h), f(xo — h), f(x0), f(x0 + h), and f(xo + 2h)
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b
Goal: Determine / f(x)dx for f at least continuous on [a, b] with
a, b real. :

Solution: Approximate f by a Lagrange polynomial

f~P

/;, ’ F(x)dx ~ / ’ P(x)dx
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Quadrature formula

Definition

n
We call quadrature formula 1, = Z aif(xx) that approximate
k=0

b
| = / f(x)dx for a,b in R and f is continuous on [a, b]
a

The (xk)k:o,,.,,, are called the integration nodes.
The (ak)k=o,... ,n are called the weights
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A closed Newton-Cotes Formula

We define the (xx)k=o,... ,n as follows

k
xk=a+;(b—a) Vk=0,---,n

Xo = 4,

Xn = b
—a

often is denoted by h

a=x, x

X2

DA
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A closed Newton-Cotes Formula

Definition
A closed Newton-Cotes approximation of degree n (NC,) consists

b
of approximation of | = / f(x)dx by
a

b n
Iy = / P(x)dx = ;)akf(xk)

where P is Lagrange polynomial of f at xp,- -+ , Xp.
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A closed Newton-Cotes Formula

Proposition
In the closed Newton-Cotes formula, we have

b
ak:/ Lk(X)dX
a

where Li(x) = H XN
J=1i#k
Proof: From definition of Lagrange polynomial P of f, we have

Xk — Xj

n

P(x) = Z f(xk)Lk(x), where L(x) = H « — Xi
k=1 !

1, X
J=1j#k

X =X

Then

b n b n
[ Padx =S~ Fx) | L0 dx =S an fxe)
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A closed Newton-Cotes Formula

Theorem
On the interval [a, b], we assume that f € C"*1([a, b]), then

/a ’ f(x)dx — / bP(x)dx

where || o = sup,ef, ) [FTH (%)

Proof: From definition of Lagrange polynomial P of f, there exist
€ [a, b] such that

| f(n—i-l) ||oo

_ n+2]
R(F) = <(b-a)" )

) = P(X)+H G20 o)
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A closed Newton-Cotes Formula

/ab f(x)dx — /ab P(x)dx
= /ab ﬁ Mf(”+1)(§x)

o kTl
Because x € [a, b] and xi € [a, b] for all k =0,---, n, we have
x —xk| <(b—a) Vk=0,---,n
Since &, € [a, b] then
FTEN < sup [FTD)] = [[F7)o

x€Ja,b]

b
R(f) = S/ |f(x)dx — P(x)|dx

dx

ol /b (IR
RUF) = (b=a)™ Ty [, &= (=" "r—,
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Trapezoidal Rule (NG)

% n=1 (2 nodes integration), xo = a, x1 = b.
First, we build Lagrange polynomial at (xp, f(x0)) and (xi1, f(x1))
i.e (a,f(a) and (b, f(b)).

P1(x) = f(x0)Lo(x) + f(xa)La(x)

where

X — X1 X—b X — Xo X—a
L = = L = =
o(x) Xo—x3 a—»b’ 1(x) x1—Xg b—a

This implies

t—a

Il(f):/bPl(t)dt:f(a)/b:_jljdtnL f(b)/bb dt

— a
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Trapezoidal Rule (NG)

It is easy to have

bt_p b—a bt _a b—a
/a a—bdt_ 2 /a b—adt_ 2
Then b b
h(f)="-2f(a)+ ">
Proposition
b b— b—a
R = | [ rax— 2520t + rop)| < 2 e

Remark: we can prove that R(f) < (b Hf oo
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Simpson'’s rule (NG,)
atb

% n =2 (3 nodes integration), xo = a, x1 = 52, xo = b.

Pa(x) = f(x0)Lo(x) + f(x1)L1(x) + f(x2) L2(x)
= Fla)Lolx) + F(CEIA() + F(B)La(x)

where
(x - 252)(x )
(= *)a—b)
B (x —a)(x— b)
SR CE e Ty
(x - a)(x - 242)
Lr(x) =
0 e o)

Lo(X) =
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Simpson'’s rule (NG,)

a+b

/b P(x)dx = f(a)/b Lo(t)dt+ (7 )/b Ly(t)de+F(b) /b Lo(t)dt

b —
/ Lo(t)dt = b 5 2
a

/b Ly(6)dt — 4(b6— a)

b
b —
/ Ly(t)dt = 2
a 6

Then Simpson's rule is

b(f) = 2 g 2 (f(a) +4f(a;b

)+ 1(6))
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Simpson'’s rule (NG,)

Proposition

If f € C3([a, b]) then

Lﬂww—uﬂs

(b—a)*

6

1o
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Example

to f02 f(x)dx when f(x) is
> f(x) =x2

» f(x) =sin(x)
> f(x) =

1
1+x

Compare the Trapezoidal rule and Simpson's rule approximations
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A open Newton-Cotes formula

We use the nodes: x, = xg + kh for all k =0,
h— b=2
n+2’

andxp=a+h, x,=b—h

, n, where

a=x_,

Xo

* X2

X, X =b X

DA
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A open Newton-Cotes formula

Definition
A open Newton-Cotes approximation of degree n (NC,) consists of
approximation of | = | ab f(x)dx by

b n
Iy = / P(x)dx = kz_%akf(xk)

where P is Lagrange polynomial of f at xg,- - , Xp.

Proposition
In the open Newton-Cotes formula, we have

X=X

b n
ak:/ Le(x)dx, where Li(x) = H

X — Xj
j=Ljtk KT
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A open Newton-Cotes formula

Theorem

On the interval [a, b], we assume that f € C"*1([a, b]), then
R(f)

- / bf(x)dx— / bP(x)dx

f(n+1)||
= (b=a)"" )
where ||| = supepap |FTD (%)
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Midpoint rule
* n=0 (Midpoint rule). We take 1 node xo = 5.

Po(x) = f(‘” Py1o(x) ¥ € [, b]
This implies
b
/a Po(x)dx :/a (e Byax = (b — (s by
Proposition

If f € C?([a, b]), then

b a
/af(x)dx—(b—a)( ;b) (b— a)2]| @]

Ro(f) =
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Midpoint rule
Theorem (Error estimate for the midpoint rule)
If f € C?([a, b]) then

b 3 (2)
[ oo ar | < 6 oy

Proof: When f € C?([a, b]), then, for all t € (a, b), there exist
¢ € (t, 252) such that

(e = FCE2) 4 (- 220Dy 4 S - 22 Pprge)

Integrating over [a, b], we have

/abf(t)dt=/abf(%b)dt+/ab( a+b)f,(a+b)d+/ L _a+t
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Midpoint rule

Integrating over [a, b], we have

/bf(t)dtz/ f(Lb)dH/b( a+b)f’(a+b)dt

b
+/ Lo a+b)2f”(§)dt

2
a+b

b
== +o s | (t - 232rrc)an

Then

b
a+b 1/(t—a+b)2f”(§)dt

b
/f(t)dt—(b—a)f( 0= :

a
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Midpoint rule
We have

b
/ F(£)dt — (b— a)f(

b
I AR IOT

_ 2t by
5 | (=25 e

o0
1?0 /b atb,
< I "l _2r=
=7/ (t———)d
1P

- 2
Then

(b—a)’
12

a ()

< g (-3

m]
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Rectangle rule (left)

% n=0 (Left rule). We take 1 node xg = a.

Po(x) = f(a)Lo(x)
This implies

b
/ Po(x)dx
a
Proposition

If f € C?([a, b]), then

Vx € [a, b]

b
/a F(a)dx = (b — a)(a)

Ro(f)

b
/a F(x)dx — (b — 2)f(a)

< (b—2)?f?)s
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Rectangle rule (right)
% n=0 (Right rule). We take 1 node xo = b.

Po(x) = f(b)Lo(x) Vx € [a,b]

This implies

b b
/ ,Do(x)dx:/ F(b)dx = (b — a)f(b)

a a
Proposition
If f € C?([a, b]), then

b
Ro(r) = | [ f(x)a— (b - a)f(b)\ < (b 2P

a
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Exercises
1. Approximate the following integrals using the Trapezoidal rule

0.5 1.5
a. / x4 dx b. / x2 In xdx
0 1

0.35 1 1.3 )
C. ——dx d./ sin“(x) — 2xsin(x) + 1
/0 x? —4 0.75( % (9 )

2. Find a bound for the error in Exercise 1 using the error formula,
and compare this to the actual error.

3. Repeat Exercise 1 using Simpson's rule.

4. Repeat Exercise 2 using Simpson's rule and the results of
Exercise 3.

5. Repeat Exercise 1 using the Midpoint rule.
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Exercises
6. Repeat Exercise 2 using the Midpoint rule and the results of
Exercise 5.

2
7. The Trapezoidal rule applied to / f(x)dx gives the value 4,

0
and Simpson’s rule gives the value 2. What is £(1)?

2
8. The Trapezoidal rule applied to / f(x)dx gives the value 5,

0
and the Midpoint rule gives the value 4. What value does
Simpson's rule give?

9. Find the degree of precision of the quadrature formula

[ rm= =2 i)

-1
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