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Chemical bonding

� What are the principle geometrical conse-
quences of ionic, covalent and metallic bond-
ing?

� What orbitals are involved in multiple bond
formation between atoms?

� What are allowed energy bands?

Theories of chemical bonds have three important

roles. First, they must explain the cohesion between

atoms. In addition, they must account for the con-

cept of chemical valence. Valence is the notion of

the ‘combining power’ of atoms. Chemists have

long known that atoms show a characteristic

valence, depicted as little hooks in textbooks of

100 years ago. Hydrogen and chlorine had a valence

of one (i.e. one hook each); oxygen had a valence of

two, nitrogen three and carbon four. Although this

concept gives correct chemical formulae – water

(H2O), ammonia (NH3), methane (CH4), and so

on – the fundamental understanding of valence

had to wait for the advent of quantum theory. In

addition to explaining cohesion and valence, one of

the important aspects of any theory of bonding is to

explain the geometry of molecules and solids. For

example, why is a water molecule angular, and why

does salt (NaCl) exist as crystals and not as small

molecules?

It is important to remember that chemical bonds

describe the electron density between the atomic

nuclei. They are not best considered as rigid sticks

or hooks. It is not surprising, therefore, that the most

rigorous way to obtain information about the che-

mical bonds in a solid is to calculate the interaction

energies of the electrons on the atoms that make up

the material. Fortunately, for many purposes, trends

in the chemical and physical properties of solids can

usually be understood with the aid of simple mod-

els. Three ideas normally suffice to describe strong

chemical bonds, called ionic, covalent and metallic

bonding.1 In this chapter, the origins of cohesion,

valence and geometry are discussed for each of

these three bonding models.

2.1 Ionic bonding

2.1.1 Ions

Ions are charged species that form when the number

of electrons surrounding a nucleus varies slightly

Understanding solids: the science of materials. Richard J. D. Tilley
# 2004 John Wiley & Sons, Ltd ISBNs: 0 470 85275 5 (Hbk) 0 470 85276 3 (Pbk)

1Remember that chemical bonds are never pure expressions

of any one of these concepts, and the chemical and physical

properties of solids can be explained only by applying selec-

ted aspects of all of these models to the material in question.

The fact that a solid might be discussed in terms of ionic

bonding sometimes and in terms of metallic bonding at other

times simply underlines the inadequate nature of the models.
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from that required for an electrically neutral atom.

The result can be a positively charged particle, a

cation, if there are too few electrons, or a negatively

charged particle, an anion, if there are too many.

Metals tend to lose electrons and form cations – for

example, Naþ, Mg2þ and Al3þ. The charge on the

ions, written as a superscript, is equal to the number

of electrons lost. Nonmetals tend to form anions –

for example, F�, O2�, N3�. The charge on the ions,

written as a superscript, is equal to the number of

electrons gained. Groups of atoms can also form

ions. These are normally found as anions – for

example, carbonate (CO2�
3 ) and nitrate (NO�3 )

ions. Ions are called monovalent if they carry a

charge of �1, divalent if they carry a charge of �2,

trivalent if they carry a charge of �3 and so on. This

does not depend upon the number of atoms in an

ion. Thus, both Zn2þ and CO2�
3 are regarded as

divalent ions. The size and shapes of ions is deferred

until later in this chapter.

2.1.2 Ionic bonding

Central to the idea of ionic bonding is that positive

and negative ions attract each other. The resulting

ion pair will be held together by electrostatic

attraction. Such a bond is called an ionic bond.

Key features of ionic bonding are that electrostatic

interactions are long-range and nondirectional. The

electrostatic attraction will tend to decrease the

distance between oppositely charged ions continu-

ously. At some interionic distance, the electron

clouds of the ions begin to interact and lead to

repulsion between the ions. Ultimately, the two

opposing energies will balance and the ions will

adopt an equilibrium separation. At this point, the

overall bonding energy is the difference between the

attractive and repulsive terms:

ionic bonding energy ¼ electrostatic attraction

� repulsive energy;

that is,

Ebond ¼ Eelectro � Erep

An advantage of the ionic bonding model is that

these energies can be calculated. This, in turn,

allows one to estimate other properties of ionic

solids, including mechanical properties.

2.1.3 Madelung energy

The electrostatic potential energy between a pair of

ions can be calculated if the ions are replaced by

appropriate point charges. Thus the electrostatic

energy of a pair of monovalent ions such as Naþ

and Cl�, which we can define as Ee, is given by:

Ee ¼
ðþeÞð�eÞ

4� "0 r
¼ �e2

4� "0 r
ð2:1Þ

where the point charges on the interacting species

are �e, the distance separating the charges is r, and

"0 is the vacuum permittivity. The value of "0 is

8:854� 10�12 F m�1, e is measured coulombs and r

is in metres. The negative charge arises because one

ion has a positive charge and one a negative charge.

The energy is zero when the ions are infinitely far

from each other, and a negative overall energy

means a stable pairing (Figure 2.1).

Although it is obvious that a pair of oppositely

charged ions will be attracted, it is by no means

clear that a collection of ions will hold together,

because ions with the same charge repel each other

Figure 2.1 The attractive potential energy between a

pair of monovalent ions, Ee, as a function of interionic

separation, r. The energy is set at zero for ions that are at

infinite separation
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just as those with opposite charges attract each

other. The resultant overall attraction or repulsion

will depend on the number of ions and their location

relative to one another. The computation of the

energy of a cluster of point charges replacing real

ions requires several steps.

� Step 1: calculate the total interaction energy, with

use of an equation similar to Equation (2.1),

between ‘ion 1’ and all the other ions in the

cluster; the interaction is given a plus or minus

sign depending on whether the ions have the

same or opposite charges.

� Step 2: repeat this summation for all the other

ions in the cluster.

� Step 3: divide the total energy calculated by two,

as each ion will be counted twice.

The energy so derived is called the Madelung

energy of the cluster.

It is found that the electrostatic energy of an ionic

crystal has a form identical to that of Equation (2.1)

multiplied by a constant that arises from the geo-

metry of the crystal, the arrangement of the ions in

space, and a term representing the charges on the

ions:

Ee ¼
�e2

4�"0 r

� �
� ðgeometryÞ � ðionic chargesÞ

ð2:2Þ

The term reflecting the geometry of the structure is

called the Madelung constant. Equation (2.2) is the

electrostatic energy per pair of ions. The energy is

most conveniently expressed per mole of com-

pound. Thus, the electrostatic energy per mole of

a crystal of the halite (NaCl) structure, containing

equal numbers of ions of charge þZe and �Ze, is:

Ee ¼ NA

�e2

4� "0 r

� �
� Z2 ð2:3Þ

where NA is Avogadro’s constant, � is the Madelung

constant of the halite structure (equal to 1.748), and

r is the nearest equilibrium distance between neigh-

bouring ions in the crystal. As in Equation (2.1), the

negative sign arises because the charge on the

cations is þZe and the charge on the anions is

�Ze. An overall negative value of the electrostatic

energy means that ionic halite structure crystals are

stable. This equation is applicable to all crystals

with the halite structure, irrespective of the ions that

make up the crystal, and can be used with solids as

diverse as NaCl itself (Z1 ¼ Z2 ¼ 1), magnesium

oxide (MgO; Z1 ¼ Z2 ¼ 2) or lanthanum phosphide

(LaP; Z1 ¼ Z2 ¼ 3).

In a structure in which the ions have different

charges, such as the fluorite structure of CaF2, the

charge contribution is more complicated. In the case

of a compound Mm Xn the electrostatic energy is

given by:

Ee ¼ �NA

e2

4� "0 r
�ðZMZXÞ

mþ n

2
ð2:4Þ

where, to maintain charge neutrality, m ZM ¼ n ZX.

The Madelung constant defined by this equation is

called the reduced Madelung constant. Alternative

definitions are used in some sources. The differ-

ences are explained in Section S1.4. Madelung

constants for all the common crystal structures

have been calculated. Some are listed in Table 2.1.

Surprisingly, the reduced Madelung constant is very

similar for a wide range of structures, and is equal to

1:68� 0:08, or about 5 %, as is apparent from Table

2.1. This means that the approximate electrostatic

energy of any crystal structure can be estimated as

long as the chemical formula is available, by using

Equation [2.4] and a value of 1.68 for �.

Table 2.1 Reduced Madelung constants, �

Structure Formula Example �

Halite MþX� NaCl 1.748

Caesium chloride MþX� CsCl 1.763

Sphalerite M2þX2� ZnS 1.638

Wurtzite M2þX2� ZnO 1.641

Fluorite M2þX�2 CaF2 1.68

Rutile M4þX2�
2 TiO2 1.60
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2.1.4 Repulsive energy

Ions are not simply point charges and as they are

brought together their closed electron shells begin to

overlap and, for quantum mechanical reasons,

repulsion sets in. This increases sharply as the

interionic distance, r, decreases until, neglecting

other forces, a balance is obtained with the electro-

static attractive forces (Figure 2.2). The repulsive

potential energy, Er, can be formulated in a number

of ways. One of the first to be used was an empirical

expression of the type

Er ¼
B

rn
ð2:5Þ

where B and n are constants. The value of n can be

derived from compressibility measurements. Larger

ions are more compressible and have larger values

of n. Some values are given in Table 2.2. An average

value is used for ionic combinations that have

different electron configurations. For example, a

value of 6 can be used for the compound LiF.

Other ways of describing the repulsive energy are

given in the Section 2.1.5.

2.1.5 Lattice energy

The total potential energy of an ionic crystal, which

is often referred to as the lattice energy, UL, per

mole, may be represented as the sum of the electro-

static and repulsive energy terms. For a halite

structure crystal, MX, by summing Equations (2.3)

and (2.5), we obtain the lattice energy, UL, per mole:

UL ¼ Ee þ Er ¼
�NA � Z2 e2

4� "0 r
þ NA B

r n
ð2:6Þ

The energy is a function of the distance between the

ions, r, and at equilibrium this energy must pass

through a minimum (Figure 2.2). Thus, we can

write:

dUL

dr
¼ NA � Z2 e2

4� "0 r2
� n NA B

rnþ1
¼ 0

This allows the constant B to be eliminated, to give:

U
ð0Þ
L ¼

NA � Z2 e2

4� "0 r2
0

� �
1� 1

n

� �
ð2:7Þ

where U
ð0Þ
L is the equilibrium value of the lattice

energy and r0 is the equilibrium value of the

interionic separation. Values of the lattice energy

can be calculated by using experimental values for

the equilibrium separation of the ions, r0. The

Figure 2.2 The total potential energy, UL, between

monovalent ions as a function of the ionic separation, r.

The total energy is the sum of the attractive and repulsive

potential energy terms. The lattice energy, U
ð0Þ
L , corre-

sponds to the minimum in the total energy curve, reached

at an interionic separation of r0

Table 2.2 Values of the constant n [Equation (2.5)]

Ion configuration Example n

He Liþ 5

Ne Naþ, F� 7

Ar Kþ, Cl� 9

Kr Rbþ, Br� 10

Xe Csþ, I� 12

26 CHEMICAL BONDING

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


results are in good agreement with experimental

determinations of lattice energy.

The advent of high-speed computers has made the

calculation of lattice energies and other aspects of

an ionic bonding model straightforward. The

approach is similar to that outlined above. The

lattice energy is derived by summing electrostatic

interactions and including a repulsive potential, just

as outlined. The advantage of computer routines is

that it is possible to include effects such as crystal

vibration and terms such as ionic polarisation as

well as more sophisticated repulsive potentials.

These repulsive potentials are called pair potentials.

Two forms are commonly employed. One is an

empirical expression of the type:

Er ¼ þNA B exp
�r

r	

� �
ð2:8Þ

where B and r	 are constants that are structure-

sensitive. Values of r	 can be derived from com-

pressibility measurements. Linking Equation (2.8)

with the electrostatic energy term, and eliminating

the constant B, as above, gives an equation for the

lattice potential energy called the Born–Mayer

equation:

U
ð0Þ
L ¼

NA � Z2 e2

4� "0 r0

� �
1� r	

r0

� �
ð2:9Þ

where the symbols have the same meaning as

before. Another equation combines aspects of Equa-

tions (2.5) and (2.8). It is a form of a more general

Buckingham potential, and is written as:

Er ¼ þB exp
�r

�

� �
� C

r6
ð2:10Þ

where B, C and � are parameters that vary from one

ion pair to another, and are determined empirically.

2.1.6 The formulae and structures of ionic
compounds

In order to understand the valence of ions it is

necessary to consider the electronic configuration

in more detail. The gain or loss of electrons is most

often such as to produce a stable closed-shell

configuration, found in the noble gas atoms of Group

18 of the periodic table. Hence, atoms to the left-hand

side of the periodic table tend to lose electrons. For

example, sodium (Na), with a configuration [Ne]

3s1, forms a sodium ion (Naþ), with configuration

[Ne]. Atoms on the right-hand side of the periodic

table tend to gain electrons to form a noble gas

configuration. For example, chlorine (Cl), with a

configuration [Ne] 3s2 3p5, readily gains an electron

to form an anion (Cl�), with a configuration [Ar].

Ions that occur in the middle of the periodic table

have configurations that are different from that of

the noble gases. Elements following the d-block

transition metals tend to have an outer electron

configuration d10. For example, the electron config-

uration of silver (Ag) is [Kr] 5s14d10. To gain a

noble gas configuration, the silver atom would have

to lose 11 electrons or gain 7 electrons. Each of

these alternatives is energetically unreasonable.

However, if the silver atom loses the single 5s

electron it will still have a closed-shell format,

with a filled d10 shell outermost. This configuration

is relatively stable, and the univalent ion Agþ, with

a configuration [Kr] 4d10, is stable. The other

elements in the group – copper (Cu) and gold

(Au) – are similar. They also have the configuration

[noble gas] d10. The elements zinc (Zn), cadmium

(Cd) and mercury (Hg), with a [noble gas]d10s2

outer electron configuration, tend to lose the s

electrons to form Zn2þ, Cd2þ and Hg2þ ions with

a configuration [noble gas] d10.

Atoms in at the lower part of Groups 13, 14 and

15 are able to take two ionic states. For example,

tin (Sn) has an outer electron configuration [Kr]

4d10 5s25p2. Loss of the two p electrons will not

leave the ion either with a noble gas configuration or

with a d10 configuration but it will still possess a

series of closed shells that is moderately stable. This

is the Sn2þ state, with a configuration of [Kr] 5s2

6d10. However, loss of the two s electrons will

produce the stable configuration [Kr] 6d10 of

Sn4þ. The atoms that behave in this way are

characterised by two valence states, separated by a

charge difference of þ2. The examples are indium

[In (1þ, 3þ)], thallium [Tl (1þ, 3þ)], tin [Sn (2þ,

4þ)], lead [Pb (2þ, 4þ)], antimony [Sb (3þ, 5þ)]
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and bismuth [Bi (3þ, 5þ)]. When present, the pair

of s electrons has important physical and chemical

effects, and ions with this configuration are called

lone-pair ions.

The transition metal ions generally have a number

of d electrons in their outer shell, and because the

energy difference between the various configura-

tions is small, the arrangement adopted will depend

upon a variety of external factors, such as the

geometry of the crystal structure (see also Chapter

12 and Section S4.5). The lanthanides have an

incomplete 4f shell of electrons, and the actinides

an incomplete 5f shell. In these elements, the f

orbitals are shielded from the effects of the sur-

rounding crystal structure. The d and f electrons

control many of the important optical and magnetic

properties of solids.

The formula of an ionic compound follows

directly from the idea that cations have integer

positive charges, anions have integer negative

charges and ionic compounds are neutral. Consider

a crystal of sodium chloride, NaCl. Each Naþ cation

has a charge of þ1e. Each Cl� anion has a charge of

�1e. As crystals of sodium chloride are neutral, the

number of Naþ ions and Cl� ions must be equal.

The chemical formula is Nan Cln, that is, NaCl.

Similarly, a magnesium Mg2þ ion united with an

oxygen O2� ion will form a compound of formula

MgO, magnesium oxide. It is necessary for two

monovalent (Mþ) cations to combine with a divalent

(X2�) anion to form a neutral unit M2 X – for

example, sodium oxide (Na2O). Similarly, a diva-

lent (M2þ) cation will need to combine with two

monovalent (X�) anions to give neutral MX2 – for

example, magnesium chloride (MgCl2). Trivalent

(M3þ) cations need three monovalent anions – for

example, aluminium chloride (AlCl3). Two trivalent

cations need to combine with three divalent anions

to give a neutral unit – for example, aluminium

oxide (Al2O3).

2.1.7 Ionic size and shape

The concept of allocating a fixed size to each ion is

an attractive one and has been extensively utilised.

Ionic radii are generally derived from X-ray crystal-

lographic structure determinations (Chapter 5). This

technique only gives a precise knowledge of the

distances between the atoms in an ionic crystal. To

derive ionic radii, it is assumed that the individual

ions are spherical and in contact. The radius of one

commonly occurring ion, such as the oxygen ion,

O2�, is taken as a standard. Other consistent radii

can then be derived by subtracting the standard

radius from measured interionic distances.

The ionic radius quoted for any species depends

upon the standard ion by which the radii were

determined. This has led to a number of different

tables of ionic radii. Although these are all intern-

ally self-consistent, they have to be used with

thought. Additionally, cation radius is found to be

sensitive to the surrounding coordination geometry.

The radius of a cation surrounded by six oxygen

ions in octahedral coordination is different from that

of the same cation surrounded by four oxygen ions

in tetrahedral coordination. Similarly, the radius of

a cation surrounded by six oxygen ions in octahe-

dral coordination is different from that of the same

cation surrounded by six sulphur ions in octahedral

coordination. Ideally, tables of cationic radii should

apply to a specific anion and coordination geometry.

Representative ionic radii are given in Figures

2.3(a) and 2.3(b).

Several trends in ionic radius are apparent:

� Cations are usually smaller than anions, the main

exceptions being the largest alkali metal and

alkaline earth metal cations, all larger than the

fluorine ion F�. The reason for this is that

removal of electrons to form cations leads to a

contraction of the electron orbital clouds as a

result of the relative increase in nuclear charge.

Similarly, addition of electrons to form anions

leads to an expansion of the charge clouds as a

result of a relative decrease in the nuclear charge.

� The radius of an ion increases with atomic

number.

� The radius decreases rapidly with increase of

positive charge for a series of isoelectronic ions

such as Naþ, Mg2þ, Al3þ, all of which have the

electronic configuration [Ne]. Note that the real
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charges on cations in solids are generally smaller

than the formal ionic charges expressed in iso-

lated ions, and the effect will be smaller in solids

than the tables of ionic radii suggest.

� Successive valence increases decrease the radius.

For example, Fe2þ is larger than Fe3þ.

� An increase in negative charge has a smaller

effect than an increase in positive charge. For

example, F� is similar in size to O2�, and Cl� is

similar in size to S2�.

Although the majority of the ions of elements can

be considered to be spherical, the lone-pair ions

are definitely not so. These ions – Inþ, Tlþ, Sn2þ,

Pb2þ, Sb3þ and Bi3þ – tend to be surrounded by an

irregular coordination polyhedron of anions. This is

often a distorted trigonal bipyramid, and it is hard to

assign a unique radius to such ions.

Complex ions, such as CO2�
3 and NO�3 , are not

spherical, although at high temperatures rotation

often makes them appear spherical.

2.1.8 Ionic structures

Ionic bonding is nondirectional. The main structural

implication of this is that ions simply pack together

to minimise the total lattice energy. There have been

many attempts to use this simple idea to predict the

structure of an ionic crystal in more detail. This

approach was of great importance in the early days

of X-ray crystallography, where the investigator had

more or less to guess at a model structure to start

with by using chemical and physical intuition, and

any help that could be obtained from the ionic

model was to be welcomed. At present, X-ray

techniques allow structures to be solved without

such input.

The early structure-building rules, based on ionic

bonding guidelines, are still of value, however, in

understanding some of the patterns underlying the

multiplicity of crystal structures that are known.

A simple assumption is that crystals are built of hard

spherical ions linked by nondirectional ionic bond-

ing. In terms of this idea, a structure is made up of

Figure 2.3 Ionic radii for ions commonly found in

solids: (a) graphical representation; (b) periodic table.

Note: a superscript *, indicates a high-spin configuration

(Section S4.5); cation radii are those for ions octahedrally

coordinated to oxygen, except where marked with a t,

which are for ions in tetrahedral coordination
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large spherical anions packed in such a way as to fill

the space available optimally. Cations fit into posi-

tions between the large anions. Large cations tend to

be surrounded by a cubic arrangement of anions,

medium-sized cations by an octahedral arrangement

of anions, and small cations by a tetrahedron of

anions. The smallest cations are surrounded by a

triangle of anions. Local charge neutrality should

occur, as far as possible. These and other ways of

looking at ionic structures are described more fully

in the sources listed in the Further Reading section

at the end of this chapter.

2.2 Covalent bonding

2.2.1 Molecular orbitals

Covalent bonds form when an unpaired electron in

an atomic orbital on one atom interacts with an

unpaired electron in an atomic orbital on another

atom. The electrons, which are initially completely

localised on the parent atoms, are now shared

between the two, in a molecular orbital. This con-

stitutes a covalent bond. The electrons have become

delocalised. As two electrons are involved, covalent

bonds are also called electron-pair bonds. Covalent

bonds are strongest when there is maximum overlap

between the contributing atomic orbitals. Covalent

bonds are, therefore, strongly directional, and cova-

lent bonding successfully explains the geometry of

molecules.

An example of the way in which electron sharing

comes about can be given by considering the

hydrogen molecule, H2. An isolated hydrogen

atom has a single electron in a spherical 1s orbital.

As distance between the atoms is reduced, two

different kinds of interaction are possible, depend-

ing on whether the spins of the electrons in the s

orbitals of the two atoms are parallel or opposed. If

the spins of the electrons on the two atoms are

opposed, as the interatomic distance is reduced both

electrons begin to experience attraction from both

nuclei. There is also electrostatic repulsion between

the two electrons, but the attraction preponderates,

bonding is said to occur and the nuclei are pulled

together. A (covalent) bond forms. It is found that

the electron density, which was originally spheri-

cally distributed around each atom (Figure 2.4a) is

now concentrated between the nuclei (Figure 2.4b). If

Figure 2.3 (Continued)
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the spins of the two electrons are parallel, the Pauli

exclusion principle stipulates that it is energetically

unfavourable for the electron clouds to overlap. The

electron density avoids the internuclear region (Fig-

ure 2.4d), and bonding does not occur. The con-

sequences of this ‘antibonding’ alternative are

considered further below.

Two p orbitals end-on to each other and each

containing a single electron can interact in very

much the same way (see Figure 2.5b). The same is

true for a combination of half-filled s and end-on p

orbitals (Figure 2.5a).

A molecular orbital formed by s orbitals, end-on

p orbitals or by s and p orbitals has rotational

symmetry about the bond axis, which is the line

joining the two nuclei contributing the electrons. As

a result, a cross-section through the orbital looks

like an s orbital and, in recognition of this symmetry

relationship, such molecular orbitals are termed �
orbitals. The bonds formed by � molecular orbitals

are often called � bonds.

A different type of molecular orbital can be

formed between two p orbitals, each with a single

electron and with opposed spins, approaching each

other sideways on (Figure 2.6). In this case, the

‘pile-up’ of the electron density occurs either side of

the nodal plane in which the two nuclei are situated.

In this configuration bonding can also occur, but the

molecular orbital looks like a p orbital in cross-

section, and such molecular orbitals are termed �
orbitals. The bonds formed by � molecular orbitals

are called � bonds.

It is important to note that the designation of a

bond as � or � does not depend on the type of

orbital forming the bond, only the geometry of

overlap of the orbitals.

2.2.2 The energies of molecular orbitals in
diatomic molecules

In order to be sure that a bond actually forms

between two atoms linked by a molecular orbital it

is necessary to calculate the energies of the mole-

cular orbitals and then allocate electrons to them.

In essence, the approximate Schrödinger equation

Figure 2.4 Isolated hydrogen atoms have spherically

symmetrical 1s orbitals, each containing one s electron,

represented as an arrow. Two atoms can have electrons in

(a) an antiparallel or (c) parallel arrangement; (b), if the

electrons have antiparallel spins the electron density

accumulates between the nuclei to form a covalent bond;

(d) if the electrons have parallel spins the electron density

is low between the nuclei and no bond forms

Figure 2.5 A covalent � bond formed by the overlap of

(a) an s orbital and an end-on p orbital when the two

electrons have antiparallel spins and (b) two end-on p

orbitals when the electrons have antiparallel spins
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for the molecule must be solved. This process is

similar to the method used for solving the electron

configuration of many-electron atoms. An approach

called molecular orbital theory is usually chosen

for this task. In this, the molecular orbital is

obtained by adding together contributions from all

of the atomic orbitals involved. This is called the

linear combination of atomic orbitals, or LCAO,

method. Thus for two identical atoms, each con-

tributing one orbital – say two hydrogen atoms each

contributing an s orbital – the molecular orbitals are

given by:

 ðmoleculeÞ ¼ c1 �1 þ c2 �2

where c1 and c2 are parameters that have to be

determined, and �1 and �2 are the wavefunctions on

atom 1 and atom 2. The values of the parameters

and the energy of the molecular orbitals are calcu-

lated by using standard methods (see the further

reading section).

The calculations show that when two atomic

orbitals interact, two molecular orbitals form, one

with a higher energy than the original pair and one

with a lower energy than the original pair. The

molecular orbital of lower energy than the parent

atomic orbitals is the one with the greatest concen-

tration of electron density between the nuclei

(Figure 2.4b). These orbitals are called bonding

orbitals. The molecular orbital of higher energy

than the parent atomic orbitals is the one in which

the electron density is concentrated in the region

outside of the line joining the nuclei (Figure 2.4d).

Such orbitals are antibonding orbitals.

The energies of the two molecular orbitals are

given as follows:

Ebond ¼ �þ 	
Eabond ¼ �� 	

The term �, called the Coulomb integral, is related

to the Coulomb energy of the electrons in the field

of the atoms and in general is a function of the

nuclear charge and the type of orbitals involved in

the bond. By definition, the Coulomb energy is

regarded as negative. [Note that the Coulomb inte-

gral and the Madelung constant, confusingly, both

use the same symbol, �; take care not to equate the

two terms.] The term 	 is called the resonance

integral, or interaction integral, and in general is a

function of the atomic number of the atoms, the

orbital types and the degree of overlap of the

orbitals. In the case where electron density ‘piles

up’ between the nuclei, 	 is negative. Thus, the

lower energy bonding orbital corresponds to Ebond

and the higher energy antibonding orbital corre-

sponds to Eabond.

Consider again the situation when two hydrogen

atoms interact. The two 1s orbitals give two mole-

cular orbitals, one bonding and one antibonding

(Figure 2.7). To stress the links with the atomic

orbitals, these are called �1s, which is the bonding

orbital, and �	1s, which is the antibonding orbital.

When two hydrogen atoms meet, both electrons will

occupy the bonding, �1s, orbital provided that they

have opposed spins. This will be the lowest-energy

configuration, or ground state, of the pair, and a

Figure 2.6 (a) Two sideways-on p orbitals containing

electrons with antiparallel spins; (b) a � bond formed by

the sideways-on overlap of p orbitals. The electron

density is concentrated above and below the plane con-

taining the nuclei, and is zero in this plane, called a nodal

plane
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covalently bonded hydrogen molecule, H2, will

form. The bond energy will be 2 Ebond.

To explain the electron configuration and bonding

in other diatomic molecules, the method used to

obtain the electron configuration of atoms is copied.

Electrons are fed into the available molecular orbi-

tals by using the Aufbau (building-up) principle to

obtain the lowest-energy ground state. As before,

start at the orbital of lowest energy and work up,

feeding two electrons with opposing spin into each

orbital and following the Pauli principle and Hund’s

rules (see Sections 1.3.2 and S1.3.2). This can be

illustrated by considering the series of diatomic

molecules made up from identical atoms, called

homonuclear molecules.

Following hydrogen, the next molecule of this

type to consider – singly ionised di-helium, Heþ2 –

contains three electrons. The bonding �1s orbital is

full, as a molecular orbital can only contain two

electrons of opposed spins, and so the third electron

will go into the antibonding orbital �	1s. Because

the energy of this orbital is higher than that of the

two isolated atoms, the extra electron will have the

effect of partly cancelling the bonding induced by

the filled �1s bonding orbital. We thus expect a

weaker and longer bond compared with that of H2,

but the molecule can be expected to form.

When two helium atoms interact there are

four electrons to place in the orbitals and so both

the �1s and the �	1s orbitals will be filled. The

effect of the filled antibonding orbital completely

negates the effect of the filled bonding orbital. No

energy is gained by the system and so He2 does not

form.

To derive the electron configurations of the other

homonuclear X2 molecules, formed from the ele-

ments of the second period of the periodic table, Li2
to Ne2, exactly the same procedure is followed. That

is, electrons from the separate atomic orbitals are

allocated to the molecular orbitals from the lowest

energy upwards, remembering that the �1s and �	1s

orbitals are filled and constitute an unreactive core.

The interaction of the 2s outer orbitals will form �2s

and �	2s orbitals. In addition, the 2p orbitals can

overlap to form molecular orbitals. End-on overlap,

as drawn in Figure 2.5(b), produces �2 px and �	2 px

molecular orbitals. The sideways on overlap of a

pair of p orbitals, as in Figure 2.6, forms one � 2 py

bonding orbital, one � 2 pz bonding orbital, one

�	 2 py antibonding orbital and one �	 2 pz anti-

bonding orbital. The energy of the orbitals is

sketched in Figure 2.8(a) for molecules as far as

dinitrogen, N2. The difference in energy between

the �2 px and �2p orbitals is small and gradually

changes along the series, so that the �2 px orbital

drops below the �2p orbitals for the last three

molecules – O2, F2 and the hypothetical Ne2 –

drawn in Figure 2.8(b).

The molecular configurations of the homonuclear

diatomic molecules can now be obtained by using

the Aufbau principle. The first to consider is di-

lithium Li2. The electron configuration of lithium,

(Li), is [He]2s1. Both 2s electrons will occupy the

lowest available bonding orbital, and a stable mole-

cule will form. The next element, beryllium, (Be),

has an electron configuration [He] 2s2. An attempt

to form the molecule Be2 will necessitate placing

two electrons in the bonding orbital and two in the

lowest available antibonding orbital. No stable

molecule will form. The next atom, boron, (B),

has an electron configuration [He] 2s2 2p1, and

electrons now enter the bonding �2p orbitals. The

repetitive filling continues with the other elements,

with the result given in Table 2.3.

Figure 2.7 The close approach of two hydrogen atoms,

each with an electron in a 1s orbital, leads to the forma-

tion of two molecular orbitals, a bonding �1s molecular

orbital and an antibonding �	1s orbital. In the H2 mole-

cule, both electrons occupy the bonding orbital, and a

strong bond with energy 2 Ebond results
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An important verification of the molecular orbital

theory was provided by the oxygen molecule, O2.

This molecule had long been known to be para-

magnetic; a puzzling property. However, the elec-

tron configuration given in Table 2.3 shows that the

two electrons with highest energy have to be placed

in separate orbitals (Figure 2.9). These unpaired

electrons make the molecule paramagnetic (see

Chapter 12).

2.2.3 Bonding between unlike atoms

When a molecular orbital, whether of � or � type, is

formed between atoms of two different elements, A

and X, then the energy levels of the initial atomic

orbitals will differ, as will their extensions in space.

One can construct an appropriate molecular orbital

energy diagram for this situation, as in Figure 2.10.

This corresponds to the case where element A is

more metallic (or less electronegative, see p. 35) in

character than element X. The bonding energy Eb is

now with respect to the average energy of the

uninteracting A and X atoms: 1
2
ðEA þ EXÞ. It is

found that the X atom contributes most to the

bonding molecular orbital, and the atom A more

to the antibonding molecular orbital. The bonding

Table 2.3 The electron configurations of some

homonuclear diatomic molecules

Bond

Bond energy/

Ground-state length/ kJ

Molecule configuration nm mol�1

Li2 [He2] (�2s)2 0.267 101

Be2 [He2](�2s)2(�*2s)2 – –

B2 [Be2](�2p)2 0.159 289

C2 [Be2](�2p)4 0.124 599

N2 [Be2](�2p)4(�2px)2 0.110 941

O2 [Be2](�2p)4(�2px)2 (�*2p)2 0.121 494

F2 [Be2](�2p)4(�2px)2 (�*2p)4 0.142 154

Ne2 [Be2](�2p)4(�2px)2(�*2p)4(�*2px)2 – –

– Molecule is not formed.
Note: [He2]¼ (�1s)2(�*1s)2; [Be2]¼ (1�)2(1�*)2(2�)2(2�*)2.

Figure 2.9 The ground-state electron configuration of

O2. Each oxygen atom contributes eight electrons, and

each orbital up to the �2p set contains paired electrons.

The last two electrons occupy separate �*2p orbitals, with

parallel spins

Figure 2.8 (a) Schematic molecular

orbital energy level diagram for homo-

nuclear diatomic molecules H2 to N2;

(b) schematic energy level diagram for

the homonuclear diatomic molecules O2

to Ne2
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molecular orbitals are often said to be ‘X-like’ in

character, and the antibonding orbitals ‘A-like’ in

character.

A bonding molecular orbital concentrates electro-

nic charge density in the region between the bonded

nuclei (subject, in the case of � bonding, to the

limitation set by the nodal plane). If the two nuclei

are different, they will have different effective

nuclear charges. This will cause the concentration

of charge to shift to increase the screening of the

higher effective charge and decrease that of lower

effective charge, until both have become equalised.

Therefore, the symmetrical build up of electron

density shown in Figures 2.4 and 2.6 will become

modified to that in Figure 2.11.

Obviously with a very large difference in effec-

tive nuclear charge, one would have something

approaching ions being formed, both electrons of

the molecular orbital becoming almost completely

associated with the X atom, giving it nearly unit

negative charge, whereas the A atom would have

almost unit positive charge.

A covalent bond in which the electron pair is

distributed unevenly is sometimes called a polar

covalent bond. The bond will have one end that

carries a small positive charge, written 
þ, and the

other end a small negative charge, 
�. The charge

separation gives rise to an internal electric dipole

(Figure 2.11) and such molecules are called polar

molecules. An electric dipole is a vector quantity

and is drawn as an arrow pointing from the negative

charge to the positive.

A polyatomic molecule may contain a number of

polar covalent bonds. For example, water (H2O) is a

polar molecule as the two O��H bonds form dipoles

pointing towards the hydrogen atoms. However, not

all molecules containing several dipoles are polar,

as the dipoles within the molecule, the internal

dipoles, may sum to zero.

2.2.4 Electronegativity

The idea of atoms possessing a tendency to attract

electrons is rather useful, and the electronegativity,

�, of an element represents a measure of its power

to attract electrons during chemical bonding. Atoms

with a low electronegativity are called electroposi-

tive elements. These are the metals, and when

bonded they do not have a strong tendency to attract

electrons and so tend to form cations. Atoms with a

high electronegativity, called electronegative ele-

ments, tend to attract electrons in a chemical bond

and tend to form anions. The magnitude of the

partial charges, 
þ, 
�, in a polar molecule is

dependent on the electronegativity difference

between the two atoms involved.

Figure 2.10 Molecular orbitals formed by a more

metallic atom A and a less metallic atom X. The non-

metallic element contributes more to the bonding orbital,

which is said to be X-like. The more metallic atom

contributes more to the antibonding orbital, which is said

to be A-like

Figure 2.11 The electron density in a bonding mole-

cular orbital between two dissimilar atoms is distorted so

that the end nearer to the nonmetallic atom attracts more

of the charge cloud. The bond is then an electric dipole,

with charges 
þ and 
�, represented by an arrow pointing

from the negative to the positive charge
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Electronegativity values have been derived in a

number of ways. The first of these was by Pauling

and made use of thermochemical data to obtain a

scale of relative values for elements. Most electro-

negativity tables since then have also contained

relative values, which do not have units.

In general, the most electronegative atoms are

those on the right-hand side of the periodic table,

typified by the halogens fluorine and chlorine (Table

2.4). The least electronegative atoms, which are the

most electropositive, are those on the lower left-

hand side of the periodic table, such as rubidium,

Rb, and caesium, Cs (Table 2.4). Covalent bonds

between strongly electronegative and strongly elec-

tropositive atoms would be expected to be polar.

2.2.5 Bond strength and direction

So far, the energetic aspects of covalent bonds have

been considered by using molecular orbital theory.

Molecular orbital theory is equally well able to give

exact information about the geometry of molecules.

However, a more intuitive understanding of the geo-

metry of covalent bonds can be obtained via an

approach called valence bond theory. (Note that both

molecular orbital theory and valence bond theory

are formally similar from a quantum mechanical

point of view, and either leads to the same result.)

Valence bond theory starts with the idea that a

covalent bond consists of a pair of electrons shared

between the bound atoms. Two resulting ideas make

it easy to picture covalent bonds. The first of these is

the concept that that the direction of a bond will be

such as to make the orbitals of the bonding electrons

overlap as much as possible. The second is that the

strongest bonds are formed when the overlapping of

the orbitals is at a maximum. On this basis, we

expect differences in bond-forming power for s, p, d

and f orbitals since these orbitals have different

radial distributions. The relative scales of extension

for 2s and 2p orbitals are 1 and
ffiffiffi
3
p

respectively

(Figure 2.12). The shapes of the p orbitals leads to

the expectation that p orbitals should be able to

overlap other orbitals better than s orbitals and hence

that bonds involving p orbitals should generally be

stronger than bonds involving s orbitals. If there is a

choice between s or p orbitals, use of p orbitals

should lead to more stable compounds.

The geometry of many molecules can be qualita-

tively explained by these simple ideas. Consider the

bonding in a molecule such as hydrogen chloride,

HCl. The hydrogen atom will bond via its s orbital

end on to the one half-filled p orbital on the chlorine

atom. The hydrogen nucleus will lie along the axis

of the 2p orbital since this gives the maximum

overlap for a given internuclear spacing (Figure

2.13). Consider the situation in a water molecule,

Table 2.4 Electronegativity values

H 2.2

Li 1.0 Be 1.5 B 2.0 C 2.5 N 3.0 O 3.5 F 4.0

Na 1.0 Mg 1.2 Al 1.5 Si 1.8 P 2.1 S 2.5 Cl 3.0

K 0.8 Ca 1.0 Ga 1.5 Ge 1.8 As 2.0 Se 2.4 Br 2.8

Rb 0.8 Sr 1.0 In 1.5 Sn 1.8 Sb 1.8 Te 2.1 I 2.5

Cs 0.8 Ba 0.9 Tl 1.5 Pb 1.7 Bi 1.8

Source: adapted from selected values of Gordy and Thomas, taken from W. B. Pearson, 1972, The Crystal
Chemistry and Physics of Metals and Alloys, Wiley-Interscience.

Figure 2.12 The relative extension of (a) a 2s orbital

(1.0) and (b) a 2p orbital (
ffiffiffi
3
p

, 1.73)

36 CHEMICAL BONDING

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


H2O. The two hydrogen atoms form bonds with two

different half-filled p orbitals on the oxygen atom.

As these lie at 90� to each other, the molecule

should be angular, with an H��O��H angle of 90�.
Similarly, the molecule of ammonia, NH3, involves

bonding of the hydrogen 1s orbitals to the three 2p

orbitals that lie along the three Cartesian axes. The

shape of the molecule should mimic this, with the

three hydrogen atoms arranged along the three

Cartesian axes, to form a molecule that resembles

a flattened tetrahedron. To a rough approximation,

these molecular shapes are correct, but they are not

precise enough. For example, the actual H��O��H

angle is 104.5�, considerably larger than 90�. To

explain the discrepancy it is necessary to turn to a

more sophisticated concept.

2.2.6 Orbital hybridisation

Although water and ammonia provide examples of

the disagreement between the simple ideas of orbi-

tal overlap and molecular geometry, the most glar-

ing example is provided by carbon. From what has

been said so far, one would expect carbon, with

an electron configuration of 1s22s22p2, to form

compounds with two p bonds at 90� to one another.

That is to say, in reaction with hydrogen, following

the same procedure as above, a molecule of formula

CH2 should form and have the same 90� geometry

as water. Now the common valence of carbon is four

and, as early as the latter half of the 19th century,

organic chemists established beyond doubt that in

the small molecules formed by carbon the four

bonds are directed away from the carbon atom

towards the corners of a tetrahedron. The orbital

picture so-far presented clearly breaks down when

applied to carbon. This discrepancy between theory

and experiment has been resolved by introducing

the concept of orbital hybridisation.

Hybridisation involves combining orbitals in such

a way that they can make stronger bonds (with

greater overlap) than the atomic orbitals depicted

earlier. To illustrate this, suppose that we have one s

and one p orbital available on an atom (Figure

2.14a). These could form two bonds, but neither

orbital can utilise all of its overlapping ability when

another atom approaches. However, an s and a p

orbital can combine, or hybridise, to produce two

new orbitals pointing in opposite directions, (Figure

2.14b). Each resulting hybrid orbital is composed of

one large lobe and one very small lobe, which can

be thought of as the positive s orbital adding to the

positive lobe of the p orbital to produce a large lobe,

and the positive s orbital adding to the negative lobe

Figure 2.13 The covalent bond in a linear molecule

such as hydrogen chloride (HCl) is formed by the overlap

of a 1s orbital on the hydrogen atom with the 2 px orbital

on the chlorine atom. The electron spins in each orbital

must be antiparallel for a bond to form

Figure 2.14 (a) The 2s and 2 px orbitals on an atom

and (b) the two sp hybrid orbitals formed by combining

the 2s and 2 px orbitals. Each hybrid orbital has a large

lobe and a small lobe. The extension of the large lobe is

1.93, compared with 1.0 for a 2s orbital and 1.73 for a 2 px

orbital. The orbitals point directly away from each other
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of the p orbital to give a small lobe. The overlapping

power of the new combination is found to be

significantly larger than that of s or p orbitals,

because the extension of the hybrid orbitals is

1.93, compared with 1.0 for an s orbital and 1.73

for a p orbital. Although it requires energy to form

the hybrid configuration, this is more than recouped

by the stronger bonding that results, as discussed in

more detail below with respect to the tetrahedral

bonding of carbon. Since the hybrid orbitals are a

combination of one s and one p orbital, they are

called sp hybrid orbitals. The large lobe on each of

the hybrid orbitals can be used for bond formation,

and bond angles of 180� are expected.

The idea can be illustrated with the atom mercury,

Hg. The outer electron configuration of mercury is

6s2. The filled electron shell would not be able to

form a bond at all. However, the outer orbital

energies are very close in these heavy atoms, and

little energy is required to promote an electron from

the 6s orbital to one of the 6p orbitals. In this

configuration, the orbitals can combine to form

two sp hybrid orbitals. Mercury makes use of sp

hybrid bonds in the molecule (CH3)2Hg. In this

molecule, the Hg forms two covalent bonds with

carbon atoms. The C–Hg–C angle is 180�. The

strong bonds that can then form more than repay

the energy expenditure involved in hybridisation.

The linear geometry of sp hybrid bonds is further

illustrated with respect to bonding in a molecule of

ethyne (acetylene, C2H2), described below.

It is a general rule of hybrid bond formation that

the same number of hybrid orbitals form and can be

used for bonding as the number of atomic orbitals

used in the initial combination. Thus, one s and one

p orbital yield two sp hybrid orbitals. One s orbital

and two p orbitals yield three new sp2 hybrid

orbitals for bond formation. For maximum overlap

we expect these orbitals to point as far away from

each other as possible, so forming bonds at angles

of 120� (Figure 2.15). The sp2 hybrid orbitals have

an overlapping power of about twice that of s

orbitals. This type of bonding is found in a number

of trivalent compounds of boron, for example BCl3,

which has bond angles of 120�. It is also commonly

encountered in borosilicate glasses, in which the

boron atoms are linked to three oxygen atoms at the

corners of an equilateral triangle by sp2 hybrid

bonding orbitals.

It is now possible to return to the case of carbon.

As mentioned above, it is certain that carbon forms

four bonds in many of its compounds. The outer

electron configuration of carbon is 2s2 2p2. If one

electron is promoted from the filled 2s2 orbital into

the empty p orbital, sp3 hybrid orbitals are possible.

Calculation shows that the resulting four bonds will

point towards the corners of a tetrahedron, at angles

of 109� to each other (Figure 2.16). These angles

are the tetrahedral angles found for methane, CH4,

carbon tetrachloride, CCl4 and many other carbon

compounds.

The hybrid orbitals have an overlapping power of

twice the overlapping power of s orbitals. Therefore,

Figure 2.15 (a) The 2s, 2 px and 2py orbitals on an

atom and (b) the three sp2 hybrid orbitals formed by

combining the three original orbitals. Each hybrid orbital

has a large lobe and a small lobe. The extension of the

large lobe is 1.99, compared with 1.0 for a 2s orbital and

1.73 for a 2 px orbital. The orbitals are arranged at an

angle of 120� to each other and point towards the vertices

of an equilateral triangle
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the bonds formed by sp3 hybrid orbitals are extre-

mely strong. The C–C bond energy in diamond, the

hardest of all solids, is 245 kJ mol�1. For these

orbitals to form, one electron must be promoted

from the filled 2s orbital to the empty 2p orbital.

The energy of the latter process is approximately

400 kJ for the change 1s2 2s2 2p2 to 1s2 2s 2p3. This

is an energetic process, but the energy loss is more

than made up by the greater overlap achieved, the

stronger bonds that result and, importantly, the

number of bonds that form with the rearranged

orbitals. For example, carbon, with an electron

configuration 2s22 px 2 py, might form two p bonds

of perhaps 335 kJ each to hydrogen atoms, which

would liberate perhaps 670 kJ, whereas four sp3

bonds of 430 kJ each would liberate 1725 kJ. The

energy of the latter process is clearly sufficient to

accommodate the electron promotion energy.

Hybridization explains the geometry of ammonia

(NH3) and water (H2O) and similar compounds.

Nitrogen has an outer electron configuration of 2s2

2p3, and oxygen has an outer electron configuration

of 2s2 2p4. Although bonding to three or two atoms,

respectively, is possible, using the available p orbi-

tals, as described above, stronger bonds result if

hybridisation occurs. In both atoms, the s and p

orbitals form sp3 hybrids. In the case of nitrogen

(Figure 2.17a) there are five electrons to be allo-

cated. Three of these go into separate sp3 hybrid

orbitals and form three partly filled orbitals. These

can be used for bonding, as in NH3. The other two

electrons fill the remaining orbital. This cannot be

used for bonding as it is filled and is said to contain

a lone pair of electrons. These lone-pair electrons

add significant physical and chemical properties to

the ammonia molecule.

A similar situation holds for water. There are now

six electrons on the oxygen atom to allocate to the

four sp3 orbitals. In this case, two orbitals are filled,

and accommodate lone pairs of electrons, and two

remain available for bonding (Figure 2.17b). The

two lone pairs occupy two corners of the tetrahe-

dron, and the two bonding orbitals point to the other

corners of the tetrahedron. The H–O–H bonding

angle should now be the tetrahedral angle, 109�. As

in the case of ammonia, the lone pairs contribute

significant physical and chemical properties to the

molecules. The geometry of the molecules is not

quite tetrahedral. The H–O–H angle is 104.5� and

Figure 2.16 (a) The 2s, 2 px, 2 py and 2 pz orbitals on

an atom; (b) the four sp3 hybrid orbitals formed by

combining the four original orbitals. Each hybrid orbital

has a large lobe and a small lobe. The extension of the

large lobe is 2.0, compared with 1.0 for a 2s orbital and

1.73 for a 2 px orbital. (c) The orbitals are at an angle of

109.5� to each other and point towards the vertices of a

tetrahedron

Figure 2.17 The sp3 hybrid bonds in (a) nitrogen and

(b) oxygen. In part (a), three bonds form (full lines), as in

NH3, and in part (b), two bonds, form (full lines), as in

H2O. The remaining orbitals are filled with electron pairs,

called lone pairs
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not 109�. Qualitatively, it is possible to say that the

presence of the lone pairs distorts the perfect tetra-

hedral geometry of the hybrid orbitals. Quantita-

tively, it indicates that the hybridisation model

needs further modification.

Hybridisation is not a special effect in which

precise participation by, for example, one s and

three p orbitals produces four sp3 hybrid orbitals.

Continuous variability is possible. The extent to

which hybridisation occurs depends on the energy

separation of the initial s and p orbitals. The closer

they are energetically, the more complete will be the

hybridisation. Hybridisation can also occur with d

and f orbitals. Hybridisation is no more than a

convenient way of viewing the manner in which

the electron orbitals interact during chemical bond-

ing. The shape of various hybrid orbitals is given in

Table 2.5.

2.2.7 Multiple bonds

In the previous discussion, it was taken for granted

that only one bond forms between the two atoms

involved. However, one of the most characteristic

features of covalent compounds is the presence of

multiple bonds between atoms. Multiple bonds

result when atoms link via � and � bonds at the

same time.

Multiple bonding occurs in the nitrogen molecule,

N2. Traditionally, nitrogen is described as trivalent,

and the molecule is depicted as N������N, with three

bonds linking the two atoms to each other. This is

explained in the following way. The outer electron

configuration of nitrogen is 2s22p3. Instead of

forming hybrid orbitals, the three p orbitals on

each nitrogen atom can interact to create three

bonds. As two nitrogen atoms approach each

other, one pair of these p orbitals, say the px orbitals,

combine in an end-on fashion, to form a � bond.

The other two p orbitals, py and pz, can overlap in a

sideways manner to form two � bonds. Each indi-

vidual � bond has two lobes, one lobe to one side of

the internuclear axis and one lobe to the other. The

two � bonds comprise four lobes altogether, sur-

rounding the internuclear axis (Figure 2.18). Note

that the traditional representation of three bonds

drawn as lines N������N, does not make it clear that two

different bond types exist in N2.

In the case of the oxygen molecule, O2, conven-

tionally written O����O, a similar state of affairs is

found. Oxygen atoms are regarded as divalent, and

the molecule consists of two oxygen atoms linked

by a double bond. The outer electron configuration

of oxygen is 2s2 2p4. One p orbital will be filled

with an electron pair and takes no part in bonding.

Only the two p orbitals, px and py, are available for

bonding. Close approach of two oxygen atoms will

allow the px orbitals to overlap end on to form a �
bond and the py orbitals to overlap in a sideways

fashion to form a � bond (Figure 2.19). As with

nitrogen, the conventional representation of the

double bond, O����O, does not reveal that two differ-

ent bond types are present.

Multiple bonding is of considerable importance in

carbon compounds and figure prominently in the

chemical and physical properties of polymers. Two

compounds need to be examined, ethyne (acetylene,

C2H2) and ethene (ethylene, C2H4).

The organic compound ethyne, C2H2, combines

hybridisation with multiple bond formation. The

formula is conventionally drawn as HC������CH, in

which three bonds from each quadrivalent carbon

atom link to another carbon atom and the other bond

links to hydrogen. Because there are two p electrons

available on carbon it would be possible to write

down a bonding scheme involving only � bonds,

one between the two carbons and one between a

carbon and a hydrogen atom. However, this is not in

accord with the properties of the molecule. First, the

carbon atom so described would be divalent not

quadrivalent. Second, experiments show that the

Table 2.5 The geometry of some hybrid orbitals

Coordination Orbital

number configuration Geometry Example

2 sp Linear HgCl2
3 sp2 Trigonal BCl3
4 sp3 Tetrahedral CH4

dsp2 Square PdCl2
planar

6 d2sp3 Octahedral SF6
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Figure 2.18 Bonding in N2; each nitrogen atom has an unpaired electron in each of the three 2p orbitals. Overlap of

the 2 px orbitals, (part a) results in a � bond (part b). Overlap of the 2 py and 2 pz orbitals (part c) results in the formation

of two � bonds (part d). The conventional representation of a triple bond, N������N, does not convey the information that

there are two different bond types

Figure 2.19 Bonding in O2; each oxygen atom has an unpaired electron in two of the three 2p orbitals. Overlap of the

2 px orbitals (part a) results in a � bond (part b). Overlap of the 2 py orbitals (part c) results in the formation of a � bonds

(part d). The conventional representation of a double bond, O����O, does not convey the information that there are two

different bond types
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carbon – carbon bond in ethyne is much stronger

than a normal single carbon – carbon � bond. Third,

the H – C – C – H angles are not 90�, as they would

be in the simple picture, but are 180�, and the

molecule is linear (Figure 2.20a). The bonding in

this molecule is best treated in terms of hybridisa-

tion. As described above, the 2s22p2 configuration

of carbon is changed to 2s2p3 by promotion of one

of the s electrons to a p orbital. The next stage is the

formation of a pair of sp hybrid orbitals, using up

the s orbital and the px orbital. These form the linear

molecular skeleton, joined by � bonds (Figure 2.20b).

The py and pz orbitals on the carbon atoms each

hold one electron. These can overlap sideways on,

exactly as in the N2 molecule, to form two � bonds,

and complete the triple bond (Figure 2.20c,d).

The physical and chemical properties of ethene,

C2H4, drawn in a conventional fashion in Fig-

ure 2.21, are not well explained by models invol-

ving only � bonds. Instead, the 2s22p2 configuration

of carbon is changed to 2s2p3 by promotion of one

of the s electrons to a p orbital. In the next step, sp2

hybrid orbitals form on each carbon atom, leaving

one unpaired electron in the unaltered pz orbital.

The three sp2 hybrid orbitals on each carbon atom

lie at angles of 120� to each other. These are used to

Figure 2.20 Bonding in ethyne (acetylene), C2H2. Overlap of the 1s orbitals of H with the sp hybrid orbitals on C (part

a) results in a � bonded molecule (part b). Overlap of the 2 py and 2 pz orbitals on C (part c) results in the formation of two

� bonds (part d). The conventional representation of the triple bond as C������C, does not convey the information that there

are two different bond types

Figure 2.21 Bonding in ethene (ethylene), C2H4.

Overlap of the 1s orbitals of H with the sp2 hybrid orbitals

on C (part a) results in a � bonded molecule (part b).

Overlap of the 2 py orbitals on C (part c), results in the

formation of a � bonds (part d). The conventional re-

presentation of the double bond as C����C, does not convey

the information that there are two different bond types
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bond to two hydrogen atoms and one carbon atom in

a triangular arrangement, to form the � bonded

skeleton of the molecule (Figure 2.21a,b). The

observed value for the H–C–H angles of ethylene

is 117�, which is close to the 120� value for sp2

bonds. The remaining pz orbital on the two carbon

atoms overlaps sideways on to form a � bond

(Figure 2.21c,d).

The exposed electrons in the � bonds contribute

significantly to the properties of the molecules. In

particular, they endow them with a high refractive

index and high chemical reactivity.

2.2.8 Resonance

The bonding in molecules containing multiple

bonds can often be drawn in a number of alternative

ways. The classical example of this is the molecule

benzene, C6H6. The two conventional ways of

representing the scheme of bonding in this molecule

are drawn in Figure 2.22(a). The molecule is planar,

the carbon atoms are arranged in a perfect hexagon

and the hydrogen atoms, one attached to each

carbon, are omitted. The properties of benzene are

best explained if the bonding is considered to be a

blend of the two schemes (as well as of other more

energetic structures not shown). The resultant is

called a resonance hybrid, often drawn as in Figure

2.22(b), for the reason given below.

The bonding that can give rise to this is closely

related to that in ethene. Each carbon atom forms

sp2 hybrids, and six carbon atoms link together and

to six hydrogen atoms to produce the � bond

skeleton of the hexagonal molecule (Figure 2.22c).

The remaining pz orbitals, one on each carbon atom,

overlap sideways on to form � bonds with lobes that

extend above and below each of the carbon atoms in

the plane of the hexagon (Figures 2.22d and 2.22e).

In this concept, the skeleton of � bonds is invar-

iant. These bonds, (like each of the others that have

been discussed above) are said to be localised,

which means that they are limited to the region

between two atoms. Unlike the � bonds, the � bonds

spread out between all of the contributing atoms, to

give delocalised orbitals, and are not restricted to lie

between pairs of atoms. To indicate that the bonding

Figure 2.22 Bonding in benzene, C6H6. (a) Conven-

tional bonding diagrams for the two main alternative

resonance hybrid structures of the benzene molecule.

The lines indicate bonds between carbon atoms,

which lie at the vertices of a hexagon. Each carbon is

linked to one hydrogen atom (omitted) and two

carbon atoms. (b) The benzene molecule is often drawn

as a hexagon enclosing a circle, to indicate the

resonance nature of the bonding. The bonding is more

complicated than the conventional diagrams indicate.

Overlap of the 1s orbitals of H with the sp2 hybrid orbitals

on C (part c) results in a � bonded hexagonal molecule.

Overlap of the 2 py orbitals on C (part d), results in the

formation of � bonds (part e). The lobes of the � bonds lie

above and below the plane of the C��H planar structure,

and delocalisation means that the orbitals are spread

equally over the ring. The representation of the molecule

in part (b) attempts to convey some of this information
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in a molecule such as benzene is a superposition of

localised and delocalised bonding schemes, it is

often represented as in Figure 2.22(b), where the

hexagon represents the � bond skeleton of the

molecule and the circle drawn within the hexagon

represents the delocalised � bonds. Often it is

convenient to use localised bond representations of

the structures contributing to resonance hybrids.

The fact that the real situation is one of resonance

is indicated by the use of double-headed arrows,

$ , between the resonance hybrid structures (Fig-

ure 2.22a). (Note that these are not the only reso-

nance hybrid structures that can be drawn for

benzene, only the two that contribute most to the

stability of the molecule.)

There is a distinction between resonance hybrids

and hybrid orbitals. Resonance hybrids are the

result of blending the bonding in molecules (or

fragments of molecules) to give a bonding picture

that better mirrors the chemical and physical prop-

erties of the molecules. Hybrid orbitals are a blend

of orbitals on a single atom. Resonance is found in

inorganic and organic molecules and is often

revealed by intense colour or unusual electronic

properties.

2.3 Metallic bonding

2.3.1 Bonding in metals

Ionic and covalent bonds are theories of chemical

valence. A theory of metallic bonding has not only

to explain this aspect of the linking of atoms but

also typically ‘metallic’ properties. Metallic bonds

must possess the following characteristics. The

bonds act between identical and different metallic

atoms, as is revealed by the formation of numerous

alloy structures as well as the structures of the

elements. The bonds act between many atoms, as

metal atoms in crystals often have either 8 or 12

neighbours. The bonds are maintained in the liquid

state, as liquid metals retain the distinguishing

properties of crystalline metals. The bonds must

permit easy electron transfer throughout the struc-

ture. In addition, the theory should account for the

fact that the majority of the elements in the periodic

table are metals.

The present-day understanding of metals and

metallic bonding has arisen from a combination of

two different approaches. In the first of these,

electrons travel more or less freely through the

structure. Formally, this is called free-electron the-

ory. A second approach, more chemical in nature,

considers metallic bonds as a spreading out or

delocalisation of covalent bonds. This delocalisation

was mentioned in Section 2.2.8 with respect to the �
orbitals of benzene, which extend over the whole

molecule. In metals, the delocalisation is thought to

extend throughout the solid. Formally, this is called

the tight-binding theory. To understand metallic

materials in the broadest sense, a combination of

both approaches must be used. Moreover, accurate

calculations use more sophisticated models than

either the free-electron or the tight-binding

approach. The application of these ideas, called

band theory, successfully explains the detailed phy-

sical properties of metals.

The chemical approach is considered initially.

Free-electron theory is discussed in Sections 2.3.5

and 2.3.6, and an account of the important

electronic properties of solids is postponed to

Chapter 13.

2.3.2 Chemical bonding

From the point of view of the molecular orbital

model of chemical bonding, when two atoms

approach each other the outer electrons interact

and atomic orbitals become extended over both

nuclei to form molecular orbitals. When two similar

atomic orbitals interact, one on each atom, two

molecular orbitals form, one of lower energy than

either of the atomic orbitals, the bonding orbital,

and one of higher energy, the antibonding orbital

(Figure 2.23). The same principle has been found to

apply no matter how many atoms are involved. If,

instead of two atoms, there are three, three orbitals

form. One will be a lower-energy bonding orbital,

one a higher-energy antibonding orbital and one

will have the same energy as the original atomic

orbitals and is called a nonbonding orbital. With
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four atoms, each contributing one atomic orbital,

four molecular orbitals, two of higher-energy anti-

bonding orbitals and two of lower-energy bonding

orbitals, are produced. If there are N atoms in the

solid, each contributing one atomic orbital, N

molecular orbitals will form, half at lower energies

and half at higher energies.

There is an important point that emerges from

energy calculations. The separation between the

highest-energy and the lowest-energy rapidly

becomes constant as the number of atoms in the

solid increases. However, as the number of energy

levels that have to fit into this energy space is equal

to the number of atoms in the solid, the energy

levels get closer together. When a large number of

atoms are included, it is simpler to say that an

energy band has been created, as illustrated on the

far right-hand side of Figure 2.23. Within the energy

band, the energy levels are so closely spaced that it

is not too bad an approximation to think that a

continuum of energies is found. The upper part of

the band will correspond to antibonding orbitals and

is said to have an antibonding character. The lower

part of the band will correspond to bonding orbitals

and have a bonding character.

The origin of the cohesive energy of a metal can

now be obtained. Suppose that the energy band

spreads out symmetrically from the original atomic

orbital energy and that the energy levels in the band

are all equally spaced. (This is not true, but it is a

good starting point.) The electrons will feed into the

energy levels in a band, following the Aufbau

principle, with two electrons of opposing spins in

each level. For bonding to occur, an atomic orbital

must contain a single unpaired electron. Therefore,

each atom in the progression illustrated in Figure

2.23 will contribute one electron to the energy band.

When all atoms have contributed an electron the

energy band will be half filled. The cohesive energy

for a metal is due to this part filling of the energy

band, because the electrons preferentially occupy

the energy levels with a bonding character.

The bonding energy of a diatomic molecule is

obtained by feeding two electrons into the bonding

molecular orbital (Figures 2.7 and 2.24), to give a

bonding energy of 2 Ebond(mol). The average energy

of an electron in a half-filled energy band, Eav, can

be equated (very roughly) to Ebond(mol). The bond-

ing energy of a metal will be obtained by feeding

two electrons into the average energy level in the

band, to give a value for the bond energy in a metal,

2 Ebond(metal), approximately equal to 2 Ebond(mol)

(Figure 2.24). The bond energy of a metal then

should be of the same order of magnitude as the

bond energy of a diatomic molecule of the metal.

For example, the bond energy of the molecule Li2 is

calculated to be about 140 kJ mol�1, and the energy

Figure 2.23 The development of an energy band from

delocalised molecular orbitals. Each atom in the molecule

contributes one molecular orbital. An isolated atom has

sharp energy levels (left-hand side). As the number of

atoms increases, the number of discrete orbitals merges

into a band of closely spaced energy levels (right-hand

side)

Figure 2.24 The bonding energy in a molecule, M2,

compared with an isolated M atom, is due to filling the

bonding molecular orbital while the antibonding orbital

remains empty. In a solid metal, the bonding energy is due

to filling the lower bonding character energy levels while

leaving the upper antibonding character energy levels

empty
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of evaporation of Li metal, which should be similar

to the cohesive energy, is about 100 kJ mol�1.

An accurate value for the cohesive energy of a

metal will require knowledge of the number and

distribution of the energy levels in the band as well

as of other factors that have not been described, and

will vary from metal to metal. Band theory,

described in Section 2.3.8, is needed to take this

further and to account for the differences between

one metal and another.

2.3.3 Atomic orbitals and energy bands

The gradual broadening of atomic orbitals into

energy bands will happen to each of the atomic

orbitals on each of the atoms in the crystal. The

sharp energy levels applicable to an atom thus

become translated into a set of bands. The separa-

tion of the bonding and antibonding molecular

orbitals, and thus the strength of a covalent bond,

is related to the degree to which the atomic orbitals

are able to overlap. Similarly, the energy spread in

an energy band is related to the possibility of orbital

overlap and so to the extension of each orbital. The

filled core electron orbitals are compact and are

shielded from any interactions with orbitals on other

atoms by the valence electron orbitals. No signifi-

cant overlap of these orbitals with orbitals on other

atoms is possible. Thus, core electron orbitals

hardly broaden at all and form very narrow energy

bands little different from those in a free atom. In

contrast, the outer orbitals of adjacent atoms will

interact strongly and the energy bands will be broad.

In this respect, outer p orbitals are more condensed

than are outer s orbitals and produce narrower

bands. As an example, Figure 2.25 shows the sche-

matic development of energy bands for a typical

alkali metal such as sodium (Na, 3s1). Energy bands

that can be related directly to atomic orbitals are

often given a similar terminology. Thus, the upper-

most band in Figure 2.25 is called an s band or the

3s band.

Any d and f orbitals present are always shielded

beneath outer s and p orbitals. They interact only

weakly with orbitals on other atoms and form

narrow d or f bands. The d and f electrons are

sometimes best described as existing in narrow

bands delocalised over the solid and sometimes as

being localised in sharp atomic orbitals on indivi-

dual atoms. Changes in temperature or pressure can

make the behaviour of the electrons switch from one

state to another. The d and f orbitals and bands do

not play an important part in bonding but dominate

the magnetic and optical properties of many solids.

2.3.4 Divalent and other metals

The cohesive energy in a metal such as sodium

arises from the half-filled 3s band (Figure 2.25). An

immediate difficulty arises when the neighbouring

element to sodium, magnesium (Mg), with an elec-

tron configuration [Ne] 3s2, is considered. If each

magnesium atom contributes both s electrons to the

s band then the band will be filled. The bonding and

antibonding contributions will be equal, and no

Figure 2.25 The development of energy bands from

atomic orbitals for sodium metal. Isolated atoms (left-

hand side) have sharp energy levels. In a solid, these are

broadened into energy bands. Outermost orbitals broaden

more than inner orbitals

46 CHEMICAL BONDING

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


cohesion will result. A solid will not condense from

the gas. This does not agree with commonplace

observations; magnesium is clearly a metallic solid

under normal temperatures and pressures. The

answer to the puzzle is that the 3p orbitals, although

empty on an isolated atom, broaden into a band that

overlaps the 3s band (Figure 2.26). As magnesium

atoms coalesce, electrons may initially enter the 3s

band, but ultimately the highest-energy electrons in

the 3s band spill over into lower-energy levels in the

3p band. The combined s and p band can hold eight

electrons per atom. As each magnesium atom con-

tributes two, these will mainly occupy bonding

levels in partially filled bands. A solid metal will

result.

The spreading of the energy bands associated

with the outer orbitals increases for the heavier

elements, simply because of their larger size and

consequently greater interaction. Because of this,

the outer orbitals on most of the heavier elements in

the periodic table are transformed into rather wide,

overlapping, bands in the solid state. In addition, a

glance at the electronic configurations of these

heavier atoms reveals that, for most, the bands

will be partly filled. Thus, the molecular orbital

model explains why so many of the elements can

condense together to form metallic solids.

Because the energy bands are derived from delo-

calised molecular orbitals the electrons in the

energy band are delocalised over all of the atoms

in the solid. The strong bonding direction imparted

by the overlap of atomic orbitals to form covalent

bonds is now lost. Metallic bonds are therefore

expected to be nondirectional. Moreover, as the

outer electron orbitals are now transformed into

bands, the remaining core electron orbitals, whether

broadened or not, are of a spherical shape. Thus,

metals are characterised by the packing of spherical

atoms. Spheres can pack most efficiently when each

is surrounded by a large number (8 to 12) nearest

neighbours (see Chapter 5). Thus, the model

explains the high apparent valence of metals in

crystals. Moreover, as the outer electrons are lost

to individual atoms, one metallic element is much

like another, so that alloys will be expected to form

readily. Similarly, the development of energy bands

is dependent upon the close approach of the atoms

and not on the relative configuration of the atoms.

This means that a liquid metal should have similar

properties to a solid metal.

The most important characteristic of a metal is its

ability to conduct electricity. The molecular orbital

theory contains the idea that the electrons are

delocalised throughout the crystal, which suggests

that delocalised electrons are responsible for elec-

trical conductivity. To develop this idea quantita-

tively it is necessary to use band theory.

2.3.5 The classical free-electron gas

Band theory started with a gross approximation: the

idea that a metal contained a ‘gas’ of completely

free electrons, uninfluenced by the other electrons

or anything else. The model, an adaptation of the

kinetic theory of gases, was very successful. The

electrons were supposed to be ‘flying about’ in the

Figure 2.26 The development of energy bands from

atomic orbitals for magnesium metal; the outermost 3s

and 3p bands overlap in the metal

METALLIC BONDING 47

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


metal, in every direction, at random. The imposition

of a voltage caused the random motion to be

replaced by a drift in average motion that was

equated to the electric current that flowed. This

simple model predicted that a metal should obey

Ohm’s law and that the resistivity of the metal

should increase slightly with temperature, as it

does (see also Chapter 13).

However, it could not explain some important

properties. In particular, the theory was unable to

account for the fact that metals had a similar

specific heat to insulators. If an electron gas

occurs in metals, but not in insulators, it could be

proved that metals should have a molar specific heat

of about 4.5R whereas insulators would have a

molar specific heat of only 3R, where R is the gas

constant.

2.3.6 The quantum free-electron gas

The advent of quantum theory suggested that the

electrons in the metal, although still free, should be

treated like waves. If this was so, the Schrödinger

equation could be used to determine the energy of

an electron in a metal. The only variables to be

specified were the dimensions of the solid metal

containing the electron and the potential energy of

the electron in the metal. Mathematically, this is

much simpler than the corresponding equations for

molecular orbitals and is analogous to the hydrogen

atom as described in Chapter 1.

As a first step, suppose that the potential energy is

constant throughout the metal. To illustrate the

results, take a one-dimensional case in which a

single electron is confined to a line of length a.

(This is often referred to as a ‘particle in a box’.)

The potential energy of the electron is set at zero on

the line (or in the box) and at infinity at the

extremities, so that the electron wave is completely

trapped. The solutions in such a case show that the

only allowed electron waves are standing waves,

with nodes at the fixed ends of the line (Figure

2.27). The allowed wavelengths, l, are given by:

l ¼ 2 a

n
ð2:11Þ

where n is a quantum number that can take integer

values 1; 2; 3; . . . and so on. The wave equation

describing this situation is:

 ¼ A sin
n� x

a

� �
¼ A sin

2� x

l

� �
¼ A sin k x

ð2:12Þ

where A is a constant,
ffiffiffiffiffiffiffiffiffiffiffi
(2=a)

p
, and k is called the

wavenumber. It has quantised values given by:

k ¼ 2�

l
¼ n �

a
ð2:13Þ

(In three dimensions k is a vector quantity, and is

called the wave vector.)

The electron is confined not only to certain

wavelengths but also to quantised energies, En:

En ¼
k2 h2

8�2 m
¼ n2 h2

8 m a2
ð2:14Þ

where En is the energy of the wave associated with

quantum number n, and m is the mass of the

electron. The form of the energy versus k graph is

parabolic, as:

E ¼ B k2

where B is a constant, h2/8 �2 m (Figure 2.28).

Figure 2.27 The energy levels of an electron confined

to a line of length a. Quantum mechanics restricts the

electron wave to fit into the length of the line, thus

limiting the energy of the electron to discrete values

corresponding to n ¼ 1, 2, 3 and so on
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The energy of a single electron in a rectangular

block of metal with sides of length a, b and c, lying

along the three axes x, y and z, is:

Eðnx; ny; nzÞ ¼
h2

8 m

n2
x

a2
þ

n2
y

b2
þ

n2
z

c2

 !
ð2:15Þ

where nx, ny and nz are the quantum numbers along

the x, y, and z axes, equivalent to n in the one-

dimensional case. For a cubic block of sides length

a, this reduces to:

Eðnx; ny; nzÞ ¼
h2

8 m a2
n2

x þ n2
y þ n2

z

� �
ð2:16Þ

As described in Chapter 1, wavefunctions with the

same energy are said to be degenerate. Thus, for a

cubic container the solutions (nx ¼ 1, ny ¼ 1,

nz ¼ 2), (nx ¼ 1, ny ¼ 2, nz ¼ 1) and (nx ¼ 2,

ny ¼ 1, nz ¼ 1) are all of the same energy and so

are degenerate. (This is analogous to the situation

between the s, p and d orbital energies for a

hydrogen atom.)

The degeneracy means that the number of energy

levels within a particular energy range is not a

constant but increases with increasing values of k.

In order to solve the problem of the electron con-

tribution to the specific heat of a metal it is neces-

sary to discover how many energy levels (i.e.

wavefunctions, or orbitals) occur in any particular

range of energy d E between the energies E and

E þ 
 E. The result for a cube of volume V is:

NðEÞ ¼ 2 �V
8 m

h2

� �3=2

E1=2: ð2:17Þ

This is called the density of states function, NðEÞ.
This curve, like the curve of E against k, is also

parabolic in form (Figure 2.29). The number of

energy levels in a small range of energy increases

sharply as the energy increases. As each energy

level can accommodate two electrons, the number

of electrons in an energy interval between E and

E þ 
 E is double that in Equation (2.17).

2.3.7 The Fermi energy and Fermi surface

The discussion in the previous section considered

the energy of a single electron in the metal. Exten-

sion to many electrons employs a similar strategy to

the orbital approximation in Chapter 1. The ‘one-

electron’ energy levels calculated above are popu-

lated with the additional electrons, following the

Pauli exclusion principle and the Aufbau principle.

Thus, each level can hold just two electrons, with

differing spins. To determine the overall distribu-

tion, electrons are allocated two at a time to the

Figure 2.28 The relationship between the energy of an

electron, E, confined to a line, and the wavenumber, k.

The curve is a parabola as E is proportional to k2

Figure 2.29 The form of the density of states, N(E),

for a free electron in a metal
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energy levels, starting with the lowest energy up to a

maximum energy governed by the number of elec-

trons available. At absolute zero, the uppermost

occupied level, labelled EF in Figure 2.30, is at

the Fermi energy. In three dimensions this highest

filled energy level takes the form of a surface, the

Fermi surface. The value of the Fermi energy can be

found by integrating Equation (2.17) between the

limits of E ¼ 0 and E ¼ EF. This leads to the result:

EF ¼
h2

8 m

� �
3 N

�V

� �2=3

where h is the Planck constant, m represents the

electron mass and N is the number of free electrons

in a volume V of metal.

At temperatures above absolute zero, the elec-

trons are liable to gain energy. However, it is not

possible for electrons in lower levels to move into

adjacent levels, as these are already filled. Only

those electrons with the highest energies, near to the

Fermi surface, can move to higher energy levels.

The vast body of electrons remains untouched by

the rise of temperature because no empty energy

levels are available to them. The statistics that

govern the distribution of electrons between the

energy levels are called Fermi – Dirac statistics.

Particles obeying these statistics, such as electrons,

are called fermions. The distribution of electrons at

temperatures other than 0 K is given by the Fermi

function:

PðEÞ ¼ exp
E � EF

k T

� �
þ 1

	 
�1

ð2:18Þ

where P(E) is the probability that an energy level E

is occupied by an electron at temperature T (Figure

2.31; see also Chapter 15 and Section S4.12). At

T ¼ 0 K, P(E) ¼ 1 for E < EF, and P(E) ¼ 0 for

E > EF. We also note from Equation (2.18) that at

E ¼ EF, P(E) ¼ 1
2
. Thus the Fermi level in metals

above 0 K can be defined as the energy for which

P(E) ¼ 1
2
.

The variation of the population of electrons in the

metal with energy E, Ne(E), is simply given by the

density of states function, N(E), multiplied by 2 (as

each energy level can hold two electrons) multiplied

by the probability that the energy level will be

occupied (the Fermi function), P(E). That is:

NeðEÞ ¼ 4�V
8 m

h2

� �3=2

E1=2 exp
E � EF

k T

� �
þ 1

	 
�1

This curve, which is a superposition of the density

of states curve (Figure 2.29) and the Fermi function

(Figure 2.31) is drawn in Figure 2.32.

Figure 2.30 The Fermi energy, EF, is the uppermost

energy level filled at 0 K. At higher temperatures, the

electrons are distributed over nearby energy levels and the

boundary becomes less sharp

Figure 2.31 The Fermi function, P(E), giving the prob-

ability of the occupation of an energy level as a function

of the energy, E. At 0 K, the probability is 1.0 up to the

Fermi energy, EF, and thereafter is 0. At higher tempera-

tures, the curve changes smoothly from 1.0 to 0.
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Because only a few higher energy levels will be

populated by electrons as the temperature rises, the

electrons do not contribute appreciably to the spe-

cific heat. Thus, the electronic heat capacity is

almost negligible, and a major drawback of the

classical theory has been corrected.

2.3.8 Energy bands

In the free-electron approach, the electrons were not

supposed to interact with one another or the atomic

nuclei present. (In fact, the calculations are made

for a single electron, as in the hydrogen atom.) This

is obviously a gross approximation. Later theories

suppose that the electrons move in a potential that is

more representative of the crystal structure. The

potential is described as a periodic potential. This

means that it mirrors the positions of the atoms in

the solid. It is designed so that the probability of

encountering the electron is low at atomic nuclei

and high between atoms.

The first solution to the way in which a periodic

potential modifies the free electron model was given

by Bloch in 1928. The solution of the Schrödinger

equation was found to consist of the free-electron

wavefunctions multiplied by a function with the

same periodicity as the crystal structure. These

wave equations are called Bloch functions. A num-

ber of sophisticated potential models are now used

routinely to calculate the properties of metals (see

the Further Reading section).

Regardless of the exact potential used, certain

generalisations are found always to hold. First, if the

potential is weak, the wavefunctions must be similar

to the free-electron wavefunctions. Second, regard-

less of the potential, at small values of the wave

vector, k, wavefunctions are almost the same as the

free-electron wavefunctions. Small values of k cor-

respond to electron waves with a long wavelength

and low energy. At this extreme, the energy levels

are closely spaced and vary with k in a parabolic

fashion. The electron is ‘not aware’ of the atoms in

the solid.

As the wavenumber gets larger, the energy versus

k curve is distorted away from a parabolic shape.

Ultimately, no solutions to the wave equation are

found to describe the situation, and the energy

versus k curve is broken (Figure 2.33).

The origin of this break is well understood.

Electron waves in a solid behave in a similar way

to X-rays and other waves in any medium. When a

wave encounters an object much smaller than its

wavelength, it barely changes the wave propagation.

However, when a wave encounters an object of the

Figure 2.32 The population density, Ne(E), for free

electrons in an energy band at 0 K and a higher tempera-

ture, T K

Figure 2.33 The one-dimensional free-electron curve

of energy, E, versus wavenumber k; it is ‘broken up’ into

energy bands separated by energy gaps because of the

periodic potential of atomic nuclei of separation a
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same dimensions as the wavelength, considerable

interaction occurs. The wave is diffracted (covered

in more detail in Chapter 14). In the case of electron

waves in a solid, most waves will pass straight

through the solid. However, waves with a wave-

length similar to the repeat distance between the

atoms in the solid will be diffracted by the

structure.

Although diffraction is a complicated process, in

the present situation the effects of diffraction can be

equated to reflection. The circumstances for diffrac-

tion to occur are given by Bragg’s law:

n l ¼ 2 d sin � ð2:19Þ

where n is an integer taking values 1, 2, 3, and so

on; l is the wavelength of the wave; d is the spacing

of the planes of atoms; and � is the diffraction angle

(Figure 2.34; see also Chapter 5).

In terms of the wave vector, k, the Bragg equation

can be written as:

� n

k
¼ d sin � ð2:20Þ

An electron wave normally incident upon planes of

atoms of spacing a has a diffraction angle of 90�

(Figure 2.35). From Equation (2.20), with n taking

integer values, we find that diffraction of the wave

occurs at values of the wave vector given by:

k ¼ � �
a
; � 2�

a
; � 3 �

a
; . . . : ð2:21Þ

Waves with these wave vectors will not be able to

pass through the crystal.

The more accurate one-dimensional E versus k

curve for this situation is drawn in Figure 2.36.

When the wavelength of the electron wave corre-

sponds to those given by Equation (2.21) the wave

Figure 2.34 Electron waves are diffracted by planes of

atoms separated by the interplanar spacing d when the

Bragg equation ðn l ¼ 2 d sin �Þ is obeyed

Figure 2.35 An electron wave normal to planes of

atoms of interplanar spacing a will be diffracted back

on itself when the wavelength l is equal to 2 n a and the

wave vector k is equal to 2 n�/a

Figure 2.36 Energy bands for electrons in a one-

dimensional crystal with atom spacing a. Energy gaps

occur when the electron wave is diffracted and cannot

pass through the crystal
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cannot propagate through the crystal. Propagation

will occur again when the wave vector increases

slightly. Substitution of these values into the Schrö-

dinger equation reveals that the change in wave

vector is accompanied by an energy jump from a

lower value to a higher value. It is not possible for

an electron to have an energy value lying between

the two extremes. This is described by saying that

an electron can exist within a band of allowed

energies. These bands are separated from each

other by bands of forbidden energies.

2.3.9 Brillouin zones

The discontinuities in the energy versus k curve

resulting from electron diffraction mark the bound-

aries of Brillouin zones. The first Brillouin zone in

the one-dimensional case (Figure 2.36) extends

from k ¼ �/a to k ¼ ��/a. The second Brillouin

zone extends from k ¼ �/a to k ¼ 2�/a on the

positive side of the graph and from k ¼ ��/a to

k ¼ �2�/a on the negative side (Figure 2.37). The

third, fourth and subsequent Brillouin zones can be

similarly located. The concept of a Brillouin zone is

an abstract concept, as the zones exist in a space

defined by the wave vector and the energy of the

electron. The wave vector is proportional to the

velocity and the momentum of the electron, and

these zones are sometimes described as existing in

velocity or momentum space.

In three dimensions the geometry becomes more

complicated. Planes of atoms, with spacing b, at an

angle to the planes in Figure 2.35, will generate a

set of Brillouin zones that extend from k ¼ �/b to

k ¼ ��/b, and so on. The positions of the Brillouin

zone boundaries thus mirror the structure of the

solid. A real crystal will therefore have a set of

nested Brillouin zones that have polyhedral shapes.

These shapes are closely related to the symmetry of

the crystal structure. The Fermi energy will now be

represented by a surface in energy versus k space.

Far from the Brillouin zone boundaries, this surface

is spherical. However, the shape is distorted near to

the Brillouin zone boundaries. The Fermi surface

can exist in more than one Brillouin zone if it lies

below the energy gap in one direction and above the

energy gap in another. Brillouin zone theory is

central to the explanation of the dynamics of elec-

trons in metals.

2.3.10 Alloys and noncrystalline metals

Alloys resemble pure metallic elements. In a solid

in which metallic bonding is of importance the outer

electrons on the atoms held together are shared

communally. Provided all of the atoms present in

the alloy can lose outer electrons in this way, the

material will resemble a metal. Moreover, the loss

of the outer electrons removes the main chemical

distinguishing feature of an element. Thus, in alloys

the individual chemical variations between the

components will be suppressed. A significant dif-

ference between elemental metals and alloys, how-

ever, will be the band structure and the extent to

which the bands are filled with electrons. For

example, sodium has a half-filled 3s band whereas

magnesium has partly filled overlapping 3s and 3p

bands. The band structure of sodium – magnesium

alloys is therefore expected to depend on alloy

composition. In general, this is true for all alloys,

and the chemical and physical properties of alloys
Figure 2.37 The first three Brillouin zones for a one-

dimensional crystal with atom spacing a
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are closely related to the composition of the alloy

and to how the electrons donated by the metal atoms

interact with the Brillouin zone boundaries.

An important aspect of metallic bonding is that it

operates in the liquid state. Mercury is no less a

metal when liquid than when it is solid. In this

context, the properties of a liquid metal that are

characteristically metallic are due to the partly filled

upper band of energy levels.

The molecular orbital approach to metallic bonds

explains this. The spreading of atomic orbitals into

energy bands is not limited to an ordered crystalline

array of atoms but hinges on close approach of

atoms. The main features of the energy bands in a

material are derived from the geometry of the

nearest-neighbour atoms only. For many metals

this geometry does not change greatly in a non-

crystalline material compared with that of a crystal.

For example, silicon atoms bond to four neighbours

arranged tetrahedrally in crystals and in noncrystal-

line silicon. In the crystalline state the tetrahedra are

linked together in a completely ordered way

throughout the solid, whereas in the noncrystalline

state the tetrahedra do not show this long-range

order. Similarly, the number of nearest neighbours

to any sodium atom in a crystal of sodium metal

(six) is similar to the number in the liquid state.

Mercury, although having a more complex crystal

structure, has six near neighbours in the solid and

the liquid. Thus, the energy band arrangement in a

crystal or a liquid will be similar.

The filling of the uppermost energy band is

dependent on the atoms involved. Again, this will

not depend on the order of the atoms, only on the

overlap of the orbitals to allow collective pooling of

electrons.

Thus, the simple models presented above still

apply to liquid metals as well as to metallic glasses

and other noncrystalline materials. However, Bril-

louin zones will not occur in liquids or glasses, as

they are features of crystalline arrays.

2.3.11 Bands in ionic and covalent solids

In the discussion of ionic and covalent bonding, the

spreading of atomic orbitals into bands has been

ignored. It is reasonable to question this and re-

examine ionic and covalent solids.

Consider the archetypal ionic compound, sodium

chloride (NaCl). A sketch of the development of

bonding in this compound is shown in Figure 2.38.

To the left, the constituents are isolated from each

other. The lowest energy corresponds to Na and Cl

atoms in their respective ground states. (For clarity,

the core energy levels of both atoms have been

ignored and only relative changes in energy are

included in Figure 2.38.) As the interatomic separa-

tion decreases, a critical separation is reached at

which energy is gained by the transfer of an electron

from sodium to chlorine to form Naþ and Cl� ions.

As the ions condense into a crystal the energy of the

Cl� ions falls below that of the Naþ ions. This

occurs at an interatomic separation of approxi-

mately 1.0 nm. However, calculations show that

even at this close spacing the energy levels are

still similar to those on isolated ions. As the intera-

tomic spacing decreases further, the electron orbi-

tals overlap. The electrons with opposed spins will

Figure 2.38 Energy bands of isolated atoms in sodium

chloride (NaCl). As the spacing between the atoms, r,

decreases, first ionisation occurs and then energy bands

develop. These are narrow and widely separated, as

expected from the ionic model of bonding
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tend to lose energy whereas those with parallel spins

will tend to gain energy. These are the familiar

bonding and antibonding interactions and cause the

narrow energy levels to broaden into bands. How-

ever, the ionic electron distribution is unchanged.

Thus the band that develops on the Cl� ions, the 3p

band, is full, and the band that develops on the Naþ

ions, the 3s band, remains empty. Thus the ionic

model is still a good model for the bonding in NaCl.

In the case of a covalently bonded crystal such as

germanium (Ge), with an outer electron configura-

tion of [Ar] 4s2 4p2, a modification to the molecular

orbital model is again needed. As an example,

consider germanium crystals, which are composed

of a tetrahedral array of germanium atoms linked by

sp3 hybrid bonding. In the case of isolated atoms,

use of atomic orbitals and energy levels is appro-

priate (Figure 2.39). As the atoms are brought

together, these orbitals interact to form four degen-

erate sp3 hybrid orbitals. Each sp3 orbital on an

atom contains one electron, and overlap with adja-

cent orbitals causes strong bonds with a tetrahedral

geometry to form. As the atoms approach further,

each single sp3 energy level widens into a narrow

band, the lower half of which is bonding and the

upper part of which is antibonding. The band

derives from the overlap of four sp3 energy levels

and is able to contain a maximum of eight electrons.

As each atom donates one electron per sp3 energy

level, the band is half full. Continued approach

causes the antibonding part of the band to increase

in energy because of the repulsion between the

parallel electrons and causes the bonding part to

decrease in energy because of the favourable inter-

action between the spin-paired electrons. At a

critical separation, the single band is split into two

bands separated by an energy gap. When the chem-

istry of the material is discussed; the lower of these

bands is usually called a bonding band and the

upper an antibonding band. In semiconductor phy-

sics they are referred to as the valence band and

conduction band, respectively. The electrons, one in

each sp3 orbital, that combine in a covalent bond

end up in the lowest bonding band, which will be

completely full. The upper antibonding band will be

completely empty. The cohesive energy in these

crystals is, in fact, due to the appearance of the

energy gap between the upper (empty) and lower

(filled) bands.

The elements carbon (diamond), silicon, germa-

nium, and one form of tin, �-tin, all crystallise with

the same structure. The size variation of this series

of atoms modifies the band formation in a predict-

able way. The smallest atom, carbon, has the smal-

lest degree of orbital interaction and hence the

narrowest bands. The energy gap is therefore

large, and diamond has a very high cohesive

strength. As the atoms increase in size, the orbital

interactions increase, bands widen, the gap narrows

and the cohesive energy falls. Unlike diamond, �-

tin is a weak solid and is easily crushed.

Although this description is quite different from

that of covalent bonding, the separation of the

energy bands in the solid is similar to the separation

of the bonding and antibonding molecular orbitals

that would be found on a diatomic C2, Si2, Ge2 or

Sn2 molecule with a similar interatomic separation

to that of the atoms in the crystal. The covalent bond

picture is, therefore, quite similar to the band

picture. In the covalent model, the bond energy is

related to the separation of the molecular orbitals. In

the solid, the cohesive energy is related to the

energy of the bands that have developed from the

molecular orbitals. With this limitation in mind,

Figure 2.39 Energy bands from isolated atoms in ger-

manium (Ge). As the spacing between the atoms, r,

decreases, first orbital hybridisation occurs and then

energy bands develop. These are broad and separated by

a narrow energy gap, as expected from the covalent model

of bonding
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the covalent bonding model is adequate for many

solids.

Answers to introductory questions

What are the principle geometrical consequences
of ionic, covalent and metallic bonding?

Ionic bonding is long-range in operation, and the

electrostatic force that controls the attraction or

repulsion is the same in all directions. Thus, the

most important geometrical feature of ionic bonding

is that it is nondirectional. Atoms linked by

ionic forces pack together to minimise the various

attractive and repulsive forces so that cations

are surrounded mainly by anions, and anions by

cations.

Atoms that are linked by electron-pair bonds are

positioned so that orbital overlap is maximised. The

orbitals used are also sensitive to bond overlap and

hybridisation, so that atomic orbitals frequently mix

to give hybrid orbitals with greater overlapping

power. The shapes of atomic orbitals and hybrid

orbitals are quite definite and point in fixed direc-

tions. This leads to the fact that covalent bonding is

directional. From a geometrical point of view, the

array of covalent bonds in a solid resembles a net.

The formation of metallic bonds requires that the

atoms lose outer electrons to a common electron

band that runs throughout the solid. This means that

atoms lose a large part of their chemical identity and

resemble round spheres. The geometrical conse-

quence of this is that atoms pack together like

spheres and the bonding is nondirectional. Atoms

simply pack together to minimise the space occu-

pied.

What orbitals are involved in multiple bond
formation between atoms?

Atoms linked by � and � bonds at the same time are

linked by multiple bonds. For example, multiple

bonding in the nitrogen molecule, N2 (N������N) com-

prises the px orbitals combined in an end-on fashion

to form a � bond, and the py and pz orbitals

combined in a sideways manner to form two

� bonds. Note that the traditional representation of

three bonds drawn as three horizontal lines does not

make it clear that two different bond types exist in

N2. In the case of the oxygen molecule, O2 (O����O)

the px orbitals overlap end on to form a � bond, and

the py orbitals overlap in a sideways fashion to form

a � bond. As with nitrogen, the conventional repre-

sentation of the double bond does not reveal that

two different bond types are present.

Multiple bonding is of considerable importance in

carbon compounds and figures prominently in the

chemical and physical properties of polymers.

What are allowed energy bands?

The electron energy levels in a solid are so closely

spaced that they can be treated as a continuum. This

forms an energy band. The simple electron gas

model of a solid has only one band of energies.

When the potential due to the atomic nuclei is taken

into account the single free-electron band is broken

up into a number of ‘allowed’ energy bands sepa-

rated by regions that have no energy levels available

to the electrons. Allowed energy bands are thus

closely spaced sets of energy electron levels that can

be occupied collectively by the electrons surround-

ing the atoms in a solid.

Further reading

The following references greatly expand the mate-

rial in this chapter. The first two textbooks below

merit reading for a broad-based introduction to the

ideas contained in this chapter.

L. Pauling, 1960, The Nature of the Chemical Bond, 3rd

edn, Cornell University Press, Ithaca, NY.

W.B. Pearson, 1972, The Crystal Chemistry and Physics of

Metals and Alloys, Wiley-Interscience, New York.

P.W. Atkins, 1981, Quanta, 2nd edn, Oxford University

Press, Oxford.

W.A. Harrison, 1980, Electronic Structure and the Proper-

ties of Solids, W.H. Freeman, New York.
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A. Cottrell, 1988, Introduction to the Modern Theory of

Metals, The Institute of Metals, London.

A critical account of the ionic model, particularly

with respect to calculations and structures, is given by:

M. O’Keeffe, 1981, ‘Some Aspects of the Ionic Model of

Crystals’, in Structure and Bonding in Crystals, Volume

1, eds M.O’Keeffe and A. Navrotsky, Academic Press,

London, pp. 299 – 322.

M. O’Keeffe, B.G. Hyde, 1985, ‘An Alternative Approach

to Non-molecular Crystal Structures’, Structure and

Bonding 61, 77.

Textbook errors in the discussion of lattice ener-

gies are discussed in:

D. Quane, 1970, ‘Textbook Errors, 98: Crystal Lattice

Energy and the Madelung Constant’, Journal of

Chemical Education 47, 396.

Ionic radii are discussed and tabulated in:

R.D. Shannon, C.T. Prewitt, 1969, ‘Effective Ionic Radii in

Oxides and Fluorides’, Acta Crystallogr., B25 925,

1969; 1970, ‘Revised Values of Effective Ionic Radii’,

Acta Crystallogr., B26 1046.

R.D. Shannon, 1976, ‘Revised Effective Ionic Radii and

Systematic Studies of Interatomic Distances in Halides

and Chalcogenides’, Acta Crystallogr. A32 751.

The calculation of crystal energetics is described

in:

C.R.A. Catlow, 1987, ‘Computational Techniques and the

Simulation of Crystal Structures’, in Solid State Chem-

istry Techniques, eds A.K. Cheetham and P. Day,

Oxford University Press, Oxford, Ch. 7.

Problems and exercises

Quick quiz

1 The concept of the ‘valence’ of an atom refers

to:

(a) The charge on an ion

(b) The strength of the chemical bonds formed

(c) The combining ability of an atom

2 A cation is:

(a) An atom that has gained a small number of

electrons

(b) An atom that has lost a small number of

electrons

(c) A charged atom stable in solutions

3 An anion is:

(a) An atom that has lost a small number of

electrons

(b) An atom that has gained a small number of

electrons

(c) A charged atom stable in solutions

4 Which of the following is a trivalent cation?

(a) V3þ

(b) V4þ

(c) V5þ

5 Ionic bonds are formed by which of the pro-

cesses?

(a) Electron sharing

(b) Electron transfer

(c) Electron delocalisation

6 A key feature of an ionic bond is that it is:

(a) Strongly directional

(b) Completely nondirectional

(c) Acts between identical atoms

7 The Madelung energy is:

(a) The bond energy of the crystal

(b) The lattice energy of an ionic crystal

(c) The electrostatic energy of an ionic crystal

8 The reduced Madelung constant of crystals:

(a) Varies widely from one structure to another

(b) Is similar for all structures

(c) Depends on the charges on the ions in the

structure

9 The lattice energy of an ionic solid is:

(a) The sum of electrostatic and repulsive

energies

(b) The minimum of the electrostatic and

repulsive energies

(c) The difference between the electrostatic

and repulsive energies
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10 Lone pair ions have:

(a) A pair of electrons in outer orbitals

(b) A pair of s electrons outside a closed shell

(c) A pair of p electrons outside of a closed

shell

11 Cations are generally:

(a) Smaller than anions

(b) Bigger than anions

(c) The same size as anions

12 A cation gets:

(a) Larger as the charge on it increases

(b) Smaller as the charge on it increases

(c) Remains the same whatever the charge

13 Covalent bonds are formed by which of the

processes?

(a) Electron sharing

(b) Electron transfer

(c) Electron delocalisation

14 Covalent bonds are:

(a) Strongly directional

(b) Completely nondirectional

(c) Variable in direction

15 Covalent bonds are also called:

(a) Molecular orbitals

(b) Hybrid orbitals

(c) Electron-pair bonds

16 A � bond is characterised by:

(a) Being formed between identical atoms

(b) Being formed by two s orbitals

(c) Radial symmetry about the bond axis

17 A � bond is characterised by:

(a) Being formed by two p orbitals

(b) Reflection symmetry about the bond axis

(c) Being formed between different atoms

18 Bonding molecular orbitals have:

(a) The same energy as antibonding orbitals

(b) A lower energy than antibonding orbitals

(c) A higher energy than antibonding orbitals

19 An asterisk marks:

(a) Antibonding orbitals

(b) Bonding orbitals

(c) Nonbonding orbitals

20 A polar covalent bond:

(a) Forms between different sized atoms

(b) Involves ions linked with molecular orbitals

(c) Has the electron pair unevenly distributed

in the molecular orbital

21 The electronegativity of an atom is a measure

of its tendency to:

(a) Attract electrons

(b) Repel electrons

(c) Form a covalent bond

22 Strongest covalent bonds form:

(a) When the orbitals are of the same type

(b) When the orbitals overlap maximally

(c) When the orbitals are symmetrically

arranged

23 A hybrid orbital is:

(a) An overlapping pair of orbitals

(b) A combination of orbitals on adjacent atoms

(c) A combination of orbitals on a single atom

24 sp2 hybrid orbitals:

(a) Point towards the vertices of a tetrahedron

(b) Point towards the vertices of a triangle

(c) Point towards the vertices of a cube

25 Multiple bonds between two similar atoms:

(a) Always consist of the same types of mole-

cular orbital

(b) Always consist of the same types of hybrid

orbital

(c) Always consist of different types of mole-

cular orbital

26 Metallic bonds are formed by which of the

following processes?

(a) Electron sharing

(b) Electron transfer

(c) Electron delocalisation
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27 Metallic bonds:

(a) Only act between the same metallic ele-

ments

(b) Only act between different metallic ele-

ments

(c) Act between any metal atoms

28 An energy band is due to the spreading out of

energy levels as a result of:

(a) The close approach of atoms

(b) Chemical bonding

(c) Molecular orbitals

29 The cohesive energy of a metal is due to:

(a) A partly filled energy band

(b) An empty energy band

(c) An overlap of energy bands

30 A metallic bond is predominantly:

(a) Strongly directional

(b) Completely nondirectional

(c) Partly directional

31 Wavefunctions are said to be degenerate if:

(a) They have different energies

(b) They overlap

(c) They have the same energy

32 The Fermi energy is:

(a) The uppermost energy level filled

(b) The highest energy in a band

(c) The energy of an electron in a band

33 Energy gaps in crystals can be thought of being

as being a result of:

(a) The diffraction of electron waves

(b) The bonding of electrons

(c) The localisation of electron waves

34 Energy bands can form:

(a) Only in crystals

(b) Only in solids

(c) In solids and liquids

35 Energy bands form:

(a) Only in metals

(b) In all solids

(c) Only in electrical conductors

Calculations and questions

2.1 Write out the electron configuration of the

ions Cl�, Naþ, Mg2þ, S2�, N3�, Fe3þ.

2.2 Write out the electron configuration of the

ions F�, Liþ, O2�, P3�, Co2þ.

2.3 Write the symbols of the ions formed by

oxygen, hydrogen, sodium, calcium, zirco-

nium and tungsten.

2.4 Write the symbols of the ions formed by iron,

chlorine, aluminium, sulphur, lanthanum, and

tantalum.

2.5 Use Equation (2.7) to calculate the lattice

energy of the ionic oxide CaO, which has

the halite (NaCl) structure; � ¼ 1:75, n ¼ 9,

r0 ¼ 0:240 nm.

2.6 Use Equation (2.7) to calculate the lattice

energy of the ionic halides NaCl and KCl,

which have the halite (NaCl) structure;

� ¼ 1:75, n ¼ 9, r0(NaCl) ¼ 0:281 nm,

r0(KCl) ¼ 0:314 nm.

2.7 Use Equation (2.7) to calculate the lattice

energy of the ionic halides NaBr and KBr,

which have the halite (NaCl) structure;

� ¼ 1:75, n ¼ 9, r0(NaBr) ¼ 0:298 nm,

r0(KBr) ¼ 0:329 nm.

2.8 Determine the number of free electrons in

gold, assuming that each atom contributes

one electron to the ‘electron gas’. The

molar mass of gold is 0.19697 kg mol�1,

and the density is 19281 kg m�3.

2.9 Determine the number of free electrons in

nickel, assuming that each atom contributes

two electrons to the ‘electron gas’. The molar

mass of nickel is 0.05869 kg mol�1, and the

density is 8907 kg m�3.

2.10 Determine the number of free electrons in

copper, assuming that each atom contributes
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one electron to the ‘electron gas’. The molar

mass of copper is 0.06355 kg mol�1, and the

density is 8933 kg m�3.

2.11 Determine the number of free electrons in

magnesium, assuming that each atom

contributes two electrons to the ‘electron

gas’. The molar mass of magnesium is

0.02431 kg mol�1, and the density is

1738 kg m�3.

2.12 Determine the number of free electrons in

iron, assuming that each atom contributes two

electrons to the ‘electron gas’. The molar

mass of iron is 0.05585 kg mol�1, and the

density is 7873 kg m�3.

2.13 Using Equation (2.16) calculate the lowest

energy level of a free electron in a cube of

metal with edge length 1 cm and compare this

with the thermal energy at room temperature,

given by k T, where k is the Boltzmann

constant and T is the absolute temperature.

2.14 Estimate the Fermi energy of silver; the

molar mass of silver is 0.1079 kg mol�1, the

density is 10500 kg m�3 and each silver atom

contributes one electron to the ‘electron gas’.

2.15 Estimate the Fermi energy of sodium; the

molar mass of sodium is 0.02299 kg mol�1,

the density is 966 kg m�3 and each sodium atom

contributes one electron to the ‘electron gas’.

2.16 Estimate the Fermi energy of calcium; the

molar mass of calcium is 0.04408 kg mol�1,

the density is 1530 kg m�3 and each calcium

atom contributes two electrons to the ‘elec-

tron gas’.

2.17 Estimate the Fermi energy of aluminium; the

molar mass of aluminium is 0.02698 kg

mol�1, the density is 2698 kg m�3, and each

aluminium atom contributes three electrons

to the ‘electron gas’.

2.18 Covalent bonding describes well the bonding

in small molecules. Explain how covalent

bonding leads naturally to the concept of

definite molecular geometry. [Note: answer

is not provided at the end of this book.]

2.19 The electronic configuration of atomic

sodium is 1s2 2s2 2p6 3s1, and that of magne-

sium is 1s2 2s2 2p6 3s2. Explain why crystals

of both of these elements behave as metals.

[Note: answer is not provided at the end of

this book.]

2.20 Both the covalent theory and the ionic bond

theory can be used to guess the likely struc-

ture of a crystal. What coordination would be

expected for the metal atoms or ions in the

compounds ZnO and ZnS if they were cova-

lent or ionic? In fact, the coordination poly-

hedra in both crystals are tetrahedral. What

conclusions can you draw about the bonding

in these solids? Regardless of coordination

number, the ionic radii can be taken as: Zn2þ,

0.089 nm, O2�, 0.124 nm, S�2, 0.170 nm.

[Note: answer is not provided at the end of

this book.]

2.21 Draw the wavefunctions and the probability

of locating an electron at a position x for

an electron trapped in a one-dimensional

potential well with zero internal potential

and infinite external potential. [Note: answer

is not provided at the end of this book.]

2.22 Make accurate plots of the Fermi function

that expresses the probability of finding an

electron at an energy E for temperatures of

0 K, 300 K, 100 K and 5000 K. [Note: answer

is not provided at the end of this book.]
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