
5

Crystallography and crystal structures

� How does a lattice differ from a structure?

� What is a unit cell?

� What is meant by a (1 0 0) plane?

Crystallography describes the ways in which atoms

and molecules are arranged in crystals. Many che-

mical and physical properties depend on crystal

structure, and an understanding of crystallography

is essential if the properties of materials are to be

understood.

In earlier centuries, crystallography developed via

two independent routes. The first of these was

observational. It was long supposed that the regular

and beautiful shapes of mineral crystals were an

expression of internal order, and this order was

described by the classification of external shapes,

the habit of crystals. All crystals could be classified

into one of 32 crystal classes, belonging to one of

seven crystal systems. The regularity of crystals,

together with the observation that many crystals

could be cleaved into smaller and smaller units,

gave rise to the idea that all crystals were built up

from elementary volumes, that came to be called

unit cells, with a shape defined by the crystal

system. A second route, the mathematical descrip-

tion of the arrangement of arbitrary objects in space,

was developed in the latter years of the 19th

century. Both of these play a part in helping us to

understand crystals and their properties. The two

approaches were unified with the exploitation of

X-ray and other diffraction methods, which are now

used to determine crystal structures on a routine basis.

5.1 Crystallography

5.1.1 Crystal lattices

Crystal structures and crystal lattices are different,

although these terms are frequently (and incor-

rectly) used as synonyms. A crystal structure is

built of atoms. A crystal lattice is an infinite pattern

of points, each of which must have the same

surroundings in the same orientation. A lattice is a

mathematical concept. If any lattice point is chosen

as the origin, the position of any other lattice point

is defined by

Pðu v wÞ ¼ uaþ v bþ wc

where a, b and c are vectors, called basis vectors,

and u, v and w are positive or negative integers.

Clearly, there are any number of ways of choosing

a, b and c, and crystallographic convention is to

choose vectors that are small and reveal the under-

lying symmetry of the lattice. The parallelepiped
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Figure 5.1 The 14 Bravais lattices. Note that the lattice

points are not atoms. The axes associated with the lattices are

shown, and are described in Table 5.1. The monoclinic

lattices have been drawn with the b axis vertical, to empha-

sise that it is normal to the plane containing the a and c axes
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formed by the three basis vectors a, b and c defines

the unit cell of the lattice, with edges of length a0,

b0, and c0. The numerical values of the unit cell

edges and the angles between them are collectively

called the lattice parameters or unit cell parameters.

The unit cell is not unique and is chosen for

convenience and to reveal the underlying symmetry

of the crystal.

There are only 14 possible three-dimensional

lattices, called Bravais lattices (Figure 5.1). Bravais

lattices are sometimes called direct lattices. The

smallest unit cell possible for any of the lattices,

the one that contains just one lattice point, is called

the primitive unit cell. A primitive unit cell, usually

drawn with a lattice point at each corner, is labelled

P. All other lattice unit cells contain more than one

lattice point. A unit cell with a lattice point at each

corner and one at the centre of the unit cell (thus

containing two lattice points in total) is called a

body-centred unit cell, and labelled I. A unit cell

with a lattice point in the middle of each face, thus

containing four lattice points, is called a face-

centred unit cell, and labelled F. A unit cell that

has just one of the faces of the unit cell centred, thus

containing two lattice points, is labelled A-face-

centred if the faces cut the a axis, B-face-centred if

the faces cut the b axis and C-face-centred if the

faces cut the c axis.

The external form of crystals, the internal crystal

structures and the three-dimensional Bravais lattices

need to be defined unambiguously. For this purpose,

a set of axes is used, defined by the vectors a, b and

c, with lengths a0, b0, and c0. These axes are chosen

to form a right-handed set and, conventionally, the

axes are drawn so that the a axis points out from the

page, the b axis points to the right and the c axis is

vertical (Figure 5.1). The angles between the axes

are chosen to be equal to or greater than 90�

whenever possible. These are labelled �, � and �,

where � lies between b and c, � lies between a and

c, and � lies between a and b. Just seven different

arrangements of axes are needed in order to specify

all three-dimensional structures and lattices (Table

5.1), these being identical to the crystal systems

derived by studies of the morphology of crystals.

The unique axis in the monoclinic unit cell is the

b axis. It would be better to choose the c axis, as

then the unique axis in tetragonal, hexagonal and

orthorhombic crystals with a polar axis (see below)

would all have the same designation. However,

convention is now fixed and monoclinic unit cells

are usually described with the b axis as unique.

Rhombohedral unit cells are often specified in terms

of a different (bigger) hexagonal unit cell.

5.1.2 Crystal structures and crystal systems

All crystal structures can be built up from the

Bravais lattices by placing an atom or a group of

atoms at each lattice point. The crystal structure of a

simple metal and that of a complex protein may

both be described in terms of the same lattice, but

whereas the number of atoms allocated to each

lattice point is often just one for a simple metallic

crystal it may easily be thousands for a protein

crystal. The number of atoms associated with each

lattice point is called the motif, the lattice complex

or the basis. The motif is a fragment of structure

that is just sufficient, when repeated at each of the

lattice points, to construct the whole of the crystal.

A crystal structure is built up from a lattice plus a

motif.

The axes used to describe the structure are the

same as those used for the direct lattices, corre-

sponding to the basis vectors lying along the unit

cell edges. The position of an atom within the unit

cell is given as x, y, z, where the units are a0 in a

direction along the a axis, b0 along the b axis, and

c0 along the c axis. An atom with the coordinates

Table 5.1 The crystal systems

System Unit cell parameters

Cubic a ¼ b ¼ c; � ¼ 90�, � ¼ 90�, � ¼ 90�

(isometric)

Tetragonal a ¼ b 6¼ c; � ¼ 90�, � ¼ 90�, � ¼ 90�

Orthorhombic a 6¼ b 6¼ c; � ¼ 90�, � ¼ 90�, � ¼ 90�

Monoclinic a 6¼ b 6¼ c; � ¼ 90�, � 6¼ 90�, � ¼ 90�

Triclinic a 6¼ b 6¼ c; � 6¼ 90�, � 6¼ 90�, � 6¼ 90�

Hexagonal a ¼ b 6¼ c; � ¼ 90�, � ¼ 90�, � ¼ 120�

Rhombohedral a ¼ b ¼ c; � ¼ � ¼ � 6¼ 90�

a0 ¼ b0 6¼ c0; �0 ¼ 90�, �0 ¼ 90�,
�0 ¼ 120�
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(1
2
, 1

2
, 1

2
) is at the body centre of the unit cell, that is

1
2

a0 along the a axis, 1
2

b0 along the b axis and 1
2

c0

along the c axis.

Different compounds which crystallise with the

same crystal structure, for example the two alums,

NaAl(SO4)2.12H2O and NaFe(SO4)2.12H2O, are

said to be isomorphous(1) or isostructural. As

noted in Section 3.1.3, sometimes the crystal struc-

ture of a compound will change with temperature and

with applied pressure. This is called polymorphism.

Polymorphs of elements are known as allotropes.

Graphite and diamond are two allotropes of carbon,

formed at different temperatures and pressures.

Because repetition of the unit cell must reproduce

the crystal, the atomic contents of the unit cell must

also be representative of the overall composition of

the material. It is possible to determine the density

of a compound by dividing the total mass of the

atoms in the unit cell by the unit cell volume,

described in more in Section 5.3.2.

5.1.3 Symmetry and crystal classes

The shape and symmetry of crystals attracted the

attention of early crystallographers and, until the

internal structure of crystals could be determined,

was an important method of classification of miner-

als. The external shape, or habit, of a crystal is

described as isometric (like a cube), prismatic (like

a prism, often with six sides), tabular (like a

rectangular tablet or thick plate), lathy (lath-like)

or acicular (needle-like). An examination of the

disposition of crystal faces, which reflected the

symmetry of the crystal, led to an appreciation

that all crystals could not only be allocated to one

of the seven crystal systems but also to one of 32

crystal classes.

The crystal class mirrors the internal symmetry of

the crystal. The internal symmetry of any isolated

object, including a crystal, can be described by a

combination of axes of rotation and mirror planes,

all of which will be found to intersect in a point

within the object. There are just 32 combinations of

these symmetry elements, each of which is a crys-

tallographic point group. The point group is equiva-

lent to the crystal class of a crystal, and the terms

are often used interchangeably.

Point groups are used extensively in crystal phy-

sics to relate external and internal symmetry to the

physical properties that can be observed. For exam-

ple, the piezoelectric effect (see Section 11.2.2) is

found only in crystals that lack a centre of symme-

try. A unit cell with a centre of symmetry at a

position ð0; 0; 0Þ is such that any atom at a position

ðx; y; zÞ is accompanied by a similar atom at

ð	x;	y;	zÞ. Crystallographic notation writes

negative signs above the symbol to which they

apply, thus: ð�xx;�yy;�zzÞ. Crystals that do not possess a

centre of symmetry have one or more polar direc-

tions and polar axes. A polar axis is one that is not

related by symmetry to any other direction in the

crystal. That is, if an atom occurs at þz on a polar

c axis, there is no similar atom at 	z. This can be

illustrated with reference to an SiO4 tetrahedron, a

group that lacks a centre of symmetry (Figure 5.2).

The oxygen atom at þz on the c axis is not paired

with a similar oxygen atom at 	z.

The symmetry of the internal structure of a crystal

is obtained by combining the point group symmetry

with the symmetry of the lattice. It is found that 230

different patterns arise. These are called space

groups. Every crystal structure can be assigned to

Figure 5.2 (a) An ideal tetrahedron. All faces are

composed of equilateral triangles. (b) An ideal tetrahedral

(SiO4) unit. A silicon atom lies at the tetrahedron centre,

and four equispaced oxygen atoms are arranged at the

tetrahedral vertices. An oxygen atom at þz does not have

a counterpart at 	z, and the unit is not centrosymmetric

(1)This description originally applied to the same external

form of the crystals rather than the internal arrangement of

the atoms.

118 CRYSTALLOGRAPHY AND CRYSTAL STRUCTURES

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


a space group. The space group, because it is

concerned with the symmetry of the crystal struc-

ture, places severe restrictions on the placing of

atoms within the unit cell. The determination of a

crystal structure generally starts with the determina-

tion of the correct space group for the sample.

Further information on the importance of symmetry

in crystal structure analysis will be found in the

Further Reading section at the end of this chapter.

5.1.4 Crystal planes and Miller indices

The facets of a well-formed crystal or internal

planes through a crystal structure are specified in

terms of Miller Indices. These indices, h, k and l,

written in round brackets ðh k lÞ, represent not just

one plane but the set of all parallel planes ðh k lÞ.
The values of h, k and l are the fractions of a unit

cell edge, a0, b0 and c0, respectively, intersected by

this set of planes. A plane that lies parallel to a cell

edge, and so never cuts it, is given the index 0

(zero). Some examples of the Miller indices of

important crystallographic planes follow.

A plane that passes across the end of the unit cell

cutting the a axis and parallel to the b and c-axes of

the unit cell has Miller indices ð1 0 0Þ (Figure 5.3a).

The indices indicate that the plane cuts the cell edge

running along the a axis at a position 1 a0 and does

not cut the cell edges parallel to the b or c axes at

all. A plane parallel to this that cuts the a cell edge

in half, at a0=2, has indices ð2 0 0Þ (Figure 5.3b).

Similarly, parallel planes cutting the a cell edge at

a0=3 would have Miller indices of ð3 0 0Þ (Figure

5.3c). Remember that ð1 0 0Þ represents all of the set

of other identical planes as well. There is no need to

specify a plane ð100; 0 0Þ, it is simply ð1 0 0Þ. Any

general plane parallel to ð1 0 0Þ is written ðh 0 0Þ.
A general plane parallel to the a and c axes,

perpendicular to the b axis, and so only cutting the b

cell edge, has indices ð0 k 0Þ (Figure 5.3d), and a

general plane parallel to the a and b axes and

perpendicular to the c axis, and so cutting the c

cell edge, has indices ð0 0 lÞ (Figure 5.3e).

Planes that cut two edges and parallel to a third

are described by indices ðh k 0Þ, ð0 k lÞ or ðh 0 lÞ. Fig-

ures 5.4(a)–(c) show, respectively: (1 1 0), intersecting

Figure 5.3 Miller indices of crystal planes. (a). ð1 0 0Þ;
(b). (2 0 0); (c). (3 0 0); (d). (0 k 0); (e). (0 l 0)

Figure 5.4 Miller indices of crystal planes in cubic

crystals: (a) (1 1 0), (b) (1 0 1) and (c) (0 1 1)
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the cell edges in 1 a0 and 1 b0 and parallel to c;

(1 0 1), intersecting the cell edges in 1 a0 and 1 c0

and parallel to b; and (0 1 1), intersecting the cell

edges in 1 b0 and 1 c0 and parallel to a.

Negative intersections are written with a negative

sign over the index and are pronounced ‘bar h’, ‘bar

k’ and ‘bar l’. For example, there are four planes

related to the (1 1 0) plane. As well as the (1 1 0)

plane, a similar plane also cuts the b axis in 1 b0, but

the a axis is cut in a negative direction, at 	a0

(Figure 5.5a). Two other related planes, one of

which cuts the b axis at 	b0, and so has Miller

indices ð1 �11 0Þ, pronounced ‘(one, bar one, zero)’

and the other, with Miller indices ð�11 �11 0Þ, are drawn

in Figure 5.5(b). Because the Miller indices ðh k lÞ
refer to a set of planes, ð�11 �11 0Þ is equivalent to

(1 1 0), as the position of the axes is arbitrary.

Similarly, the plane with Miller indices ð1 �11 0Þ is

equivalent to ð�11 1 0Þ (Figure 5.5c).

This notation is readily extended to cases where a

plane cuts all three unit cell edges (Figure 5.6). An

easy way to determine Miller indices is given in

Section S1.6.

In crystals of high symmetry there are often

several sets of ðh k lÞ planes that are identical,

from the point of view of both symmetry and of

the atoms lying in the plane. For example, in a cubic

crystal, the ð1 0 0Þ, ð0 1 0Þ and ð0 0 1Þ planes are

identical in every way. Similarly, in a tetragonal

crystal, (1 1 0) and ð�11 1 0Þ planes are identical.

Curly brackets, fh k lg, designate these related

planes. Thus, in the cubic system, the symbol

f1 0 0g represents the three sets of planes ð1 0 0Þ,
ð0 1 0Þ and ð0 0 1Þ. Similarly, in the cubic system,

f1 1 0g represents the six sets of planes (1 1 0),

(1 0 1), (0 1 1), ð�11 1 0Þ, ð�11 0 1Þ, and ð0 �11 1Þ, and the

symbol f1 1 1g represents the four sets ð1 1 1Þ,
ð1 1 �11Þ, ð1 �11 1Þ and ð�11 1 1Þ.

5.1.5 Hexagonal crystals and Miller–Bravais
indices

The Miller indices of planes parallel to the c axis in

crystals with a hexagonal unit cell, such as magne-

sium, can be ambiguous (Figure 5.7). In this repre-

sentation, the c cell edge is normal to the plane of

the page. Three sets of planes, imagined to be

perpendicular to the plane of the figure, are shown.

From the procedure just outlined, the sets have the

following Miller indices: A, (1 1 0); B, ð1 �22 0Þ; and

C, ð�22 1 0Þ. Although these seem to refer to different

types of plane, clearly they are identical from the

point of view of atomic constitution. In order to

eliminate this confusion, four indices, ðh k i lÞ, are

often used to specify planes in a hexagonal crystal.

These are called Miller–Bravais indices and are

Figure 5.5 Miller indices of crystal planes in a cubic

crystal: (a) (1 1 0) and ð�11 1 0Þ; (b) ð1 �11 0Þ and ð�11 �11 0Þ and

(c) projection down the c axis, showing all four equivalent

f1 1 0g planes

Figure 5.6 Miller indices in cubic crystals: (a) ð1 1 1Þ
and (b) ð1 �11 1Þ
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used only in the hexagonal system. The index i is

given by:

hþ k þ i ¼ 0;

or

i ¼ 	ðhþ kÞ

In reality this third index is not needed. However, it

does help to bring out the relationship between the

planes. Using four indices, the planes are: A,

ð1 1 �22 0Þ; B, ð1 �22 1 0Þ; and C, ð�22 1 1 0Þ. Because it

is a redundant index, the value of i is sometimes

replaced by a dot, to give indices ðh k : lÞ. This

nomenclature emphasises that the hexagonal system

is under discussion without actually including a

value for i.

5.1.6 Directions

The response of a crystal to an external stimulus,

such as a tensile stress, electric field and so on, is

usually dependent on the direction of the applied

stimulus. It is therefore important to be able to

specify directions in crystals in an unambiguous

fashion. Directions are written generally as ½u v w
and are enclosed in square brackets. Note that the

symbol ½u v wmeans all parallel directions or vectors.

The three indices u, v and w define the coordi-

nates of a point with respect to the crystallographic

a b and c axes. The index u gives the coordinates in

terms of a0 along the a axis, the index v gives the

coordinates in terms of b0 along the b axis and the

index w gives the coordinates in terms of c0 along

the c axis. The direction ½u v w is simply the vector

pointing from the origin to the point with coordi-

nates u, v, w (Figure 5.8). For example, the direction

½1 0 0 is parallel to the a unit cell edge, the direction

½0 1 0 is parallel to the b cell edge, and ½0 0 1 is

parallel to the c cell edge. Because directions are

vectors, ½u v w is not identical to ½�uu�vv �ww, in the same

way that the direction ‘north’ is not the same as the

direction ‘south’. Remember, though, that, any

parallel direction shares the symbol ½u v w, because

the origin of the coordinate system is not fixed and

can always be moved to the starting point of the

vector (Figure 5.9). A north wind is always a north

wind, regardless of where you stand.

As with Miller indices, it is sometimes convenient

to group together all directions that are identical by

virtue of the symmetry of the structure. These are

represented by the notation hu v wi. In a cubic

crystal, h1 0 0i represents the six directions ½1 0 0,
½�11 0 0, ½0 1 0, ½0 �11 0, ½0 0 1, ½0 0 �11.

A zone is a set of planes, all of which are parallel

to a single direction, called the zone axis. The

Figure 5.7 Miller indices in hexagonal crystals.

Although the indices appear to represent different types

of plane, in fact they all are identical

Figure 5.8 Directions in a lattice. The directions do not

take into account the length of the vectors, and the indices

are given by the smallest integers that lie along the vector

direction
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zone axis ½u v w is perpendicular to the plane ðu v wÞ
in cubic crystals but not in crystals of other sym-

metry.

It is sometimes important to specify a vector with

a definite length perhaps to indicate the displace-

ment of one part of a crystal with respect to another

part, as in an antiphase boundary or crystallographic

shear plane. In such a case, the direction of the

vector is written as above, and a prefix is added to

give the length. The prefix is usually expressed in

terms of the unit cell dimensions. For example, in a

cubic crystal, a displacement of two unit cell lengths

parallel to the b axis would be written 2 a0½0 1 0.
As with Miller indices, to specify directions in

hexagonal crystals a four-index system, ½u0 v0 t w0 is

sometimes used. The conversion of a three-index

set to a four-index set is given by the following

rules:

½u v w ! ½u0 v0 t w0

u0 ¼ n

3
ð2 u	 vÞ

v0 ¼ n

3
ð2 v	 uÞ

t ¼ 	ðu0 þ v0Þ
w0 ¼ n w

In these equations, n is a factor sometimes needed to

make the new indices into smallest integers. Thus

directions ½0 0 1 always transform to ½0 0 0 1. The

three equivalent directions in the basal ð0 0 0 1Þ
plane of a hexagonal crystal structure such as

magnesium, Figure 5.10, are obtained by using the

above transformations. The correspondence is:

½1 0 0 ¼ ½2 �11 �11 0
½0 1 0 ¼ ½�11 2 �11 0
½�11 �11 0 ¼ ½�11 �11 2 0

The relationship between directions and planes

depends on the symmetry of the crystal. In cubic

crystals (and only cubic crystals) the direction ½h k l
is normal to the plane ðh k lÞ.

5.1.7 The reciprocal lattice

Many of the physical properties of crystals, as well

as the geometry of the three-dimensional patterns of

radiation diffracted by crystals, are most easily

described by using the reciprocal lattice. Each

reciprocal lattice point is associated with a set of

crystal planes with Miller indices ðh k lÞ and has

coordinates h k l. The position of the h k l spot in the

reciprocal lattice is closely related to the orientation

of the ðh k lÞ planes and to the spacing between

these planes, dh k l, called the interplanar spacing.

Crystal structures and Bravais lattices, sometimes

Figure 5.9 Parallel directions. These all have the same

indices, [110]

Figure 5.10 Directions in the basal ð0 0 1Þ plane of a

hexagonal crystal structure, given in terms of three

indices, ½u v w, and four indices, ½u0 v0 t w0
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called the direct lattice, are said to occupy real

space, and the reciprocal lattice occupies reciprocal

space. The reciprocal lattice is defined in terms of

three basis vectors labelled a�, b� and c�. The

lengths of the basis vectors of the reciprocal lattice are:

a� ¼ 1

d1 0 0

b� ¼ 1

d0 1 0

c� ¼ 1

d0 0 1

For cubic, tetragonal and orthorhombic crystals,

these are:

a� ¼ 1

a0

b� ¼ 1

b0

c� ¼ 1

c0

For crystals of other symmetries, the relationship

between the direct and reciprocal lattice distances is

more complex (see Section S1.7)

The reciprocal lattice of a crystal is easily derived

from the unit cell. For cubic cells, the reciprocal

lattice axes are parallel to the direct lattice axes,

which themselves are parallel to the unit cell edges,

and the spacing of the lattice points h k l, along the

three reciprocal axes, is equal to the reciprocal of the

unit cell dimensions, 1=a0 ¼ 1=b0 ¼ 1=c0 (Figure

5.11). For some purposes it is convenient to multi-

ply the length of the reciprocal axes by a constant.

Thus, physics texts usually multiply the axes given

in Figure 5.11 by 2�, and crystallographers by � ,

the wavelength of the radiation used to obtain a

diffraction pattern. The derivation of the reciprocal

lattice for symmetries other than cubic is given in

Section S1.8.

5.2 The determination of crystal
structures

Crystal structures are determined by using diffrac-

tion (see Section 14.7.3). The extent of diffraction is

significant only when the wavelength of the radia-

tion is very similar to the dimensions of the object

that is irradiated. In the case of crystals, radiation

with a wavelength similar to that of the spacing of

the atoms in the crystal will be diffracted. X-ray

diffraction is the most widespread technique used

for structure determination, but diffraction of elec-

trons and neutrons is also of great importance, as

these reveal features that are not readily observed

with X-rays.

The physics of diffraction by crystals has been

worked out in detail. It is found that the incident

radiation is diffracted in a characteristic way,

called a diffraction pattern. If the positions of the

Figure 5.11 The direct lattice and reciprocal lattice of a cubic crystal: (a), (c) the direct lattice, specified by vectors a,

b and c, with unit cell edges a0 ða0 ¼ b0 ¼ c0Þ; (b), (d) the reciprocal lattice, specified by vectors a*, b* and c*, with unit

cell edges 1=a0, ð1=a0 ¼ 1=b0 ¼ 1=c0Þ. The vector a* is parallel to a, b* parallel to b and c* parallel to c. The vector

from 0 0 0 to h k l in the reciprocal lattice is perpendicular to the ðh k lÞ plane in a cubic crystal
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diffracted beams are recorded, they map out the

reciprocal lattice of the crystal. The intensities of

the beams are a function of the arrangements of the

atoms in space and of some other atomic properties,

especially the atomic number of the atoms. Thus, if the

positions and the intensities of the diffracted beams are

recorded, it is possible to deduce the arrangement of

the atoms in the crystal and their chemical nature.

5.2.1 Single-crystal X-ray diffraction

In this technique, which is the most important

structure determination tool, a small single crystal

of the material, of the order of a fraction of a

millimetre in size, is mounted in a beam of X-rays.

The diffraction pattern used to be recorded photo-

graphically, but now the task is carried out electro-

nically. The technique has been used to solve

enormously complex structures, such as that of

huge proteins, or DNA.

Problems still remain, though, in this area of endea-

vour. Any destruction of the perfection in the crystal

structure degrades the sharpness of the diffracted

beams. This in itself can be used for crystallite size

determination. Poorly crystalline material gives poor

information, and truly amorphous samples give vir-

tually no crystallographic information this way.

5.2.2 Powder X-ray diffraction and crystal
identification

A common problem for many scientists is to deter-

mine which compounds are present in a polycrystal-

line sample. The diffraction pattern from a powder

placed in the path of an X-ray beam gives rise to a

series of cones rather than spots, because each plane

in the crystallite can have any orientation (Figure

5.12a). The positions and intensities of the dif-

fracted beams are recorded along a narrow strip

(Figure 5.12b), and the diffracted beams are often

Figure 5.12 Powder X-ray diffraction: (a) a beam of X-rays incident on a powder is diffracted into a series of cones;

(b) the intensities and positions of the diffracted beams are recorded along a circle, to give a diffraction pattern. (c) The

diffraction pattern from powdered potassium chloride, KCl, a cubic crystal. The numbers above the ‘lines’ are the Miller

indices of the diffracting planes
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called lines (Figure 5.12c). The position of a

difracted beam (not the intensity) is found to depend

only on the interplanar spacing, dh k l, and the

wavelength of the X-rays used. Bragg’s Law, Equa-

tion (5.1), gives the connection between these

quantities:

� ¼ 2 dh k l sin 	 ð5:1Þ

where � is the wavelength of the X-radiation, dh k l

is the interplanar spacing of the ðh k lÞ planes and

	 is the diffraction angle (Figure 5.13). (Although

the geometry of Figure 5.13 is identical to that

of reflection, the physical process occurring is

diffraction.) The relationship is simplest for cubic

crystals. In this case, the interplanar spacing is

givenby:

1

d2
h k l

¼ h2 þ k2 þ l2

a2
0

hence, dh k l ¼ a0; a0=
ffiffiffi
2
p

; a0=
ffiffiffi
3
p

; a0=
ffiffiffi
4
p

, etc., where

a0 is the cubic unit cell lattice parameter.

The positions of the lines on the diffraction

pattern of a single phase can be used to derive the

unit cell dimensions of the material. The unit cell of

a solid with a fixed composition is a constant. If the

solid has a composition range, as in a solid solution

or an alloy, the cell parameters will vary. Vegard’s

law, first propounded in 1921, states that the lattice

parameter of a solid solution of two phases with

similar structures will be a linear function of the

lattice parameters of the two end members of the

composition range (Figure 5.14a):

x ¼ ass 	 a1

a2 	 a1

where a1 and a2 are the lattice parameters of the

parent phases, ass is the lattice parameter of the solid

solution, and x is the mole fraction of the parent

phase with lattice parameter a2. This ‘law’ is simply

an expression of the idea that the cell parameters are

a direct consequence of the sizes of the component

atoms in the solid solution. Vegard’s law, in its ideal

form (Figure 5.14a), is almost never obeyed exactly.

A plot of cell parameters that lies below the ideal

line (Figure 5.14b) is said to show a negative

deviation from Vegard’s law, and a plot that lies

Figure 5.13 The geometry of Bragg reflection from a

set of crystal planes, ðh k lÞ, with interplanar spacing dh k l

Figure 5.14 Vegard’s law relating unit cell parameters to composition: (a) ideal Vegard’s law behaviour; (b) a negative

deviation from Vegard’s law; and (c) a positive deviation from Vegard’s law
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above the ideal line (Figure 5.14c) is said to show a

positive deviation form Vegard’s law. In these cases,

atomic interactions, which modify the size effects,

are responsible for the deviations. In all cases, a plot

of composition versus cell parameters can be used

to determine the composition of intermediate com-

positions in a solid solution.

When the intensity and the positions of the

diffraction pattern are taken into account, the pat-

tern is unique for a single substance. The X-ray

diffraction pattern of a substance can be likened to a

fingerprint, and mixtures of different crystals can be

analysed if a reference set of patterns is consulted.

This technique is routine in metallurgical and

mineralogical laboratories. The same technique is

widely used in the determination of phase diagrams.

The experimental procedure can be illustrated

with reference to the sodium fluoride–zinc fluoride

(NaF–ZnF2) system. Suppose that pure NaF is

mixed with it a few percent of pure ZnF2 and the

mixture heated at 600 �C until reaction is complete.

The X-ray powder diffraction pattern will show the

presence of two phases: NaF, which will be the

major component, and a small amount of a new

compound (point A, Figure 5.15). A repetition of

the experiment, with gradually increasing amounts

of ZnF2, will yield a similar result, but the amount

of the new phase will increase relative to the amount

of NaF until a mixture of 1NaF plus 1ZnF2 is

heated. At this composition, only one phase will

be indicated on the X-ray powder diagram. It has

the composition NaZnF3.

A slight increase in the amount of ZnF2 in the

reaction mixture again yields an X-ray pattern that

shows two phases to be present. Now, however, the

compounds are NaZnF3 and ZnF2 (point B, Figure

5.15). This state of affairs continues as more ZnF2 is

added to the initial mixture, with the amount of

NaZnF3 decreasing and the amount of ZnF2 increas-

ing until pure NaF2 is reached. Careful preparations

reveal the fact that NaF or ZnF2 appear alone on the

X-ray films only when they are pure, and NaZnF3

appears alone only at the exact composition of one

mole NaF plus one mole ZnF2. In addition, over all

the composition range studied, the unit cell dimen-

sions of each of these three phases will be unaltered.

An extension of the experiments to higher tem-

peratures will allow the whole of the solid part of

the phase diagram to be mapped.

5.2.3 Neutron diffraction

Neutron diffraction is very similar to X-ray diffrac-

tion in principle but is quite different in practice,

because neutrons need to be generated in a nuclear

reactor. One advantage of using neutron diffraction

is that it is often able to distinguish between atoms

that are difficult to distinguish with X-rays. This is

because the scattering of X-rays depends on the

atomic number of the elements, but this is not true

for neutrons and, in some instances, neighbouring

atoms have quite different neutron-scattering cap-

abilities, making them easily distinguished. Another

advantage is that neutrons have a spin and so

interact with unpaired electrons in the structure.

Thus neutron diffraction gives rise to information

about the magnetic properties of the material. The

antiferromagnetic arrangement of the Ni2þ ions in

nickel oxide, for example, was determined by neu-

tron diffraction (see Section 12.3.3).

5.2.4 Electron diffraction

Electrons are charged particles and interact very

strongly with matter. This has two consequences for

Figure 5.15 The determination of phase relations

using X-ray diffraction. The X-ray powder patterns will

show a single material to be present only at the exact

compositions NaF, NaZnF3 and ZnF2. At points such as

A, the solid will consist of NaF and NaZnF3. At points

such as B, the solid will consist of NaZnF3 and ZnF2. The

proportions of components in the mixtures will vary

across the composition range
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structure determination. First, electrons will pass

only through a gas or very thin solids. Second, each

electron will be diffracted many times in traversing

the sample, making the theory of electron diffrac-

tion more complex than the theory of X-ray diffrac-

tion. The relationship between the position and

intensity of a diffracted beam is not easily related

to the atomic positions in the unit cell. Moreover,

delicate molecules are easily damaged by the

intense electron beams needed for a successful

diffraction experiment. Electron diffraction, there-

fore, is not used in the same routine way as X-ray

diffraction for structure determination.

Electrons, however, do have one advantage.

Because they are charged they can be focused by

magnetic lenses to form an image. The mechanism

of diffraction as an electron beam passes through a

thin flake of solid allows defects such as disloca-

tions to be imaged with a resolution close to atomic

dimensions. Similarly, diffraction (reflection) of

electrons from surfaces of thick solids allows surface

details to be recorded, also with a resolution close to

atomic scales. Thus although electron diffraction is

not widely used in structure determination it is used

as an important tool in the exploration of the

microstructures and nanostructures of solids.

5.3 Crystal structures

5.3.1 Unit cells, atomic coordinates
and nomenclature

Irrespective of the complexity of a crystal structure,

it can be constructed by the packing together of unit

cells. This means that the positions of all of the

atoms in the crystal do not need to be given, only

those in a unit cell. The minimum amount of

information needed to specify a crystal structure is

thus the unit cell type, the cell parameters and the

positions of the atoms in the unit cell. For example,

the unit cell of the rutile form of titanium dioxide

has a tetragonal unit cell, with cell parameters,

a0 ¼ b0 ¼ 0:459 nm, c0 ¼ 0:296 nm.(2)

The ðx; y; zÞ coordinates of the atoms in each unit

cell are expressed as fractions of a0, b0 and c0, the

cell sides. Thus, an atom at the centre of a unit cell

would have a position specified as (1
2
, 1

2
, 1

2
), irrespec-

tive of the type of unit cell. Similarly, an atom at

each corner of a unit cell is specified by ð0; 0; 0Þ.
The normal procedure of stacking the unit cells

together means that this atom will be duplicated at

every other corner. For an atom to occupy the centre

of a face of the unit cell, the coordinates will be

( 1
2
; 1

2
; 0), (0; 1

2
; 1

2
) and ( 1

2
; 0; 1

2
), for C-face-centred,

A-face-centred and B-face-centred cells, respec-

tively. Atoms on cell edges are specified at positions

( 1
2
; 0; 0), (0; 1

2
; 0) or (0; 0; 1

2
), for atoms on the a b

and c axes, respectively. Stacking of the unit cells to

build a structure will ensure that atoms appear on all

of the cell edges and faces. These positions are

illustrated in Figure 5.16.

A unit cell reflects the symmetry of the crystal

structure. Thus, an atom at a position ðx; y; zÞ in a

unit cell may require the presence of atoms at other

positions in order to satisfy the symmetry of the

structure. For example, a unit cell with a centre of

symmetry will, of necessity, require that an atom at

ðx; y; zÞ be paired with an atom at ð	x;	y;	zÞ. To

avoid long repetitive lists of atom positions in

complex structures, crystallographic descriptions

usually list only the minimum number of atomic

positions which, when combined with the symmetry

of the structure, given as the space group, generate

all the atom positions in the unit cell. Additionally,

the Bravais lattice type and the motif are often

specified as well as the number of formula units in

the unit cell, written as Z. Thus, in the unit cell of

rutile, given above, Z ¼ 2. This means that there are

Figure 5.16 The positions of atoms in a unit cell.

Atom positions are specified as fractions of the cell edges,

not with respect to Cartesian axes

(2) The unit cell dimensions are often specified in terms of the

Ångström unit, Å, where 10 Å¼ 1 nm.
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two TiO2 units in the unit cell; that is, two titanium

atoms and four oxygen atoms. In the following

sections, these features of nomenclature will be

developed in the descriptions of some widely

encountered crystal structures.

A vast number of structures have been deter-

mined, and it is very convenient to group those

with topologically identical structures together. On

going from one member of the group to another the

atoms in the unit cell differ, reflecting a change in

chemical compound, and the atomic coordinates

and unit cell dimensions change slightly, reflecting

the difference in atomic size. Frequently, the group

name is taken from the name of a mineral, as

mineral crystals were the first solids used for struc-

ture determination. Thus all solids with the halite

structure have a unit cell similar to that of sodium

chloride, NaCl. This group includes the oxides NiO,

MgO and CaO (see Section 5.3.9). Metallurgical

texts often refer to the structures of metals using a

symbol for the structure. These symbols were

employed by the journal Zeitschrift für Kristallo-

graphie, in the catalogue of crystal structures Struk-

turberichte Volume 1, published in 1920, and are

called Strukturberichte symbols. For example, all

solids with the same crystal structure as copper are

grouped into the A1 structure type. These labels

remain a useful shorthand for simple structures but

become cumbersome when applied to complex

materials, when the mineral name is often more con-

venient (e.g. see the spinel structure, Section 5.3.10).

5.3.2 The density of a crystal

The atomic contents of the unit cell give the

composition of the material. The theoretical density

of a crystal can be found by calculating the mass of

all the atoms in the unit cell. (The mass of an atom

is its molar mass divided by the Avogadro constant;

see Section S1.1). The mass is divided by the unit

cell volume. To count the number of atoms in a unit

cell, we use the following information:

� an atom within the cell counts as 1;

� an atom in a face counts as 1/2;

� an atom on an edge counts as 1/4;

� an atom on a corner counts as 1/8.

A quick method to count the number of atoms in a

unit cell is to displace the unit cell outline to remove

all atoms from corners, edges and faces. The atoms

remaining, which represent the unit cell contents,

are all within the boundary of the unit cell and count

as 1.

The measured density of a material gives the

average amount of matter in a large volume. For a

solid that has a variable composition, such as an

alloy or a nonstoichiometric phase, the density will

vary across the phase range. Similarly, an X-ray

powder photograph yields a measurement of the

average unit cell dimensions of a material and, for a

solid that has a variable composition, the unit cell

dimensions are found to change in a regular way

across the phase range. These two techniques can be

used in conjunction with each other to determine the

most likely point defect model to apply to a mate-

rial. As both techniques are averaging techniques

they say nothing about the real organisation of the

defects, but they do suggest first approximations.

The general procedure is to determine the unit

cell dimensions, the crystal structure type and the

real composition of the material. The ideal compo-

sition of the unit cell will be known from the

structure type. The ideal composition is adjusted

by the addition of extra atoms (interstitials or

substituted atoms) or removal of atoms (vacancies)

to agree with the real composition. A calculation of

the density of the sample assuming either that

interstitials or vacancies are present is then made.

This is compared with the measured density to

discriminate between the two alternatives.

5.3.2.1 Example: iron monoxide

The method can be illustrated by reference to iron

monoxide. Iron monoxide, often known by its

mineral name of wüstite, has the halite (NaCl)

structure. In the normal halite structure, there are

four metal and four nonmetal atoms in the unit cell,

and compounds with this structure have an ideal

composition MX1.0 (see Section 5.3.9 for further
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information on the halite structure). Wüstite has a

composition that is always oxygen-rich compared

with the ideal formula of FeO1.0. Data for an actual

sample found an oxygen:iron ratio of 1.058, a

density of 5728 kg m	3 and a cubic lattice para-

meter, a0, of 0.4301 nm(3). The real composition can

be obtained by assuming either that there are extra

oxygen atoms in the unit cell, as interstitials

(Model A), or that there are iron vacancies present

(Model B).

Model A Assume that the iron atoms in the

crystal are in a perfect array, identical to the metal

atoms in halite, and that an excess of oxygen is due

to interstitial oxygen atoms present in addition to

those on the normal anion positions. The ideal unit

cell of the structure contains four iron atoms and

four oxygen atoms and so, in this model, the unit

cell must contain four atoms of iron and 4ð1þ xÞ
atoms of oxygen. The unit cell contents are

Fe4O4þ 4x and the composition is FeO1.058.

� The mass of 1 unit cell in model A, mA, is

mA ¼
1

NA

fð4� 55:85Þ þ ½4� 16� ð1þ xÞg

¼ 1

NA

½ð4� 55:85Þ þ ð4� 16� 1:058Þ g

¼ 4:834� 10	25 kg:

� The volume, v, of the cubic unit cell is given by

a3
0, thus:

v ¼ ð0:4301� 10	9Þ3 m3 ¼ 7:9562� 10	29 m3:

� The density, 
, is given by the mass, mA, divided

by the volume, v:


 ¼ 4:834� 10	25 kg

7:9562� 10	29 m3

¼ 6076 kg m	3:

Model B Assume that the oxygen array is perfect

and identical to the nonmetal atom array in the

halite structure. As there are more oxygen atoms

than iron atoms, the unit cell must contain some

vacancies on the iron positions. In this case, one unit

cell will contain four atoms of oxygen and ð4	 4 xÞ
atoms of iron. The unit cell contents are Fe4	4 xO4,

and the composition is Fe1/1.058O1.0 or Fe0.945O.

� The mass of one unit cell in model B, mB, is

mB ¼
1

NA

f½4� ð1	 xÞ � 55:85 þ ð4� 16Þg

¼ 1

NA

½ð4� 0:945� 55:85Þ þ ð4� 16Þ g

¼ 4:568� 10	25 kg:

� The density, 
, is given by mB divided by the

volume, v, to yield


 ¼ 4:568� 10	25 kg

7:9562� 10	29 m3

¼ 5741 kg m	3

Conclusion The difference in the two values is

surprisingly large. The experimental value of the

density, 5728 kg m	3, is in good accord with that for

model B, in which vacancies on the iron positions

are assumed. This indicates that the formula should

be written Fe0.945O.

5.3.3 The cubic close-packed (A1) structure

� General formula: M; example: Cu.

� Lattice: cubic face-centred, a0 ¼ 0:360 nm.

� Z ¼ 4 Cu.

� Atom positions: ð0; 0; 0Þ; ð1
2
; 1

2
; 0Þ; ð0; 1

2
; 1

2
Þ;

ð1
2
; 0; 1

2
Þ.

There are four lattice points in the face-centred unit

cell, and the motif is one atom at ð0; 0; 0Þ. The

structure is typified by copper (Figure 5.17). The

cubic close-packed structure is adopted by many

metals (see Figure 6.1, page 152) and by the noble

(3)The data are from the classical paper by E.R. Jette and F.

Foote; Journal of Chemical Physics, volume 1, page 29,

1933.
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gases, Ne(s), Ar(s), Kr(s), Xe(s). This structure is

often called the face-centred cubic (fcc) structure

but, from a crystallographic point of view, this name

is not ideal(4) and it is convenient to use the

Strukturbericht symbol, A1. Each atom has 12

nearest neighbours and, if the atoms are supposed

to be hard touching spheres, the fraction of the

volume occupied is 0.7405. More information on

this structure is given in Section 6.1.1

5.3.4 The body-centred cubic (A2) structure

� General formula: M; example: W.

� Lattice: cubic body-centred, a0 ¼ 0:316 nm.

� Z ¼ 2 W.

� Atom positions: ð0; 0; 0Þ; ð1
2
; 1

2
; 1

2
Þ.

There are two lattice points in the body-centred unit

cell, and the motif is one atom at ð0; 0; 0Þ. The

structure is adopted by tungsten, W (Figure 5.18)

and by many other metallic elements (see Figure

6.1, page 152). This structure is often called the

body-centred cubic (bcc) structure. As with the A1

structure, this is not a good name (see Footnote 4)

and it is better to refer to the Strukturbericht

symbol, A2. In this structure, each atom has eight

nearest neighbours and six next-nearest neighbours

at only 15 % greater distance. If the atoms are

supposed to be hard touching spheres, the fraction

of the volume occupied is 0.6802. This is less than

that for either the A1 structure (Section 5.3.3) or the

A3 structure (Section 5.3.5), both of which have a

volume fraction of occupied space of 0.7405. The

bcc structure is often the high-temperature structure

of a metal that has a close-packed structure at lower

temperature. More information on this structure is

given in Section 6.1.1.

5.3.5 The hexagonal (A3) structure

� General formula: M; example: Mg.

� Lattice: primitive hexagonal, a0¼0:321 nm, c0¼
0:521 nm.

� Z ¼ 2 Mg.

� Atom positions: ð0; 0; 0Þ; 1
3
; 2

3
; 1

2

� �
.

The lattice is primitive, and so there is only one

lattice point in each unit cell. The motif is two

atoms, one atom at ð0; 0; 0Þ and one atom at
1
3
; 2

3
; 1

2

� �
. The structure is represented by magne-

sium, Mg (Figure 5.19). If the atoms are supposed

to be hard touching spheres, the fraction of the

volume occupied is 0.7405 and the ratio c/a is

Figure 5.18 The A2 structure of tungsten

Figure 5.17 The A1 structure of copper

(4)See H.D. Megaw, Crystal Structures, Saunders, London,

1973. Figure 5.19 The A3 structure of magnesium
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equal to
ffiffiffi
8
p

=
ffiffiffi
3
p

;¼ 1:633. Many metals adopt the

A3 structure, some over a limited temperature range

(see Figure 6.1, page 152). More information on this

structure is given in Section 6.1.1.

5.3.6 The diamond (A4) structure

� General formula: M; example: C.

� Lattice: cubic face-centred, a0 ¼ 0:356 nm.

� Z ¼ 8 C.

� Atom positions: ð0; 0; 0Þ; 1
4
; 1

4
; 1

4

� �
; (repeat in the

face-centred pattern).

There are four lattice points in the face-centred unit

cell, and the motif is two atoms, one atom at

ð0; 0; 0Þ and one at 1
4
; 1

4
; 1

4

� �
. The structure is adopted

by diamond and, in it, each carbon atom is bonded

to four other carbon atoms that are arranged tetra-

hedrally around it (Figure 5.20). The bonds, of

length 0.154 nm, are extremely strong sp3 hybrids.

The crystal can be regarded as a giant molecule.

The elements silicon ða0 ¼ 0:542 nmÞ and germa-

nium ða0 ¼ 0:564 nmÞ also have the same structure

as diamond. Grey tin has the same structure

ða0 ¼ 0:649 nmÞ below a temperature of 13.2 �C.

5.3.7 The hexagonal (graphite), A9 structure

� General formula: C; graphite.

� Lattice: primitive hexagonal, a0 ¼ 0:246 nm,

c0 ¼ 0:671 nm.

� Z ¼ 4 C.

� Atom positions: ð0; 0; 0Þ; 0; 0; 1
2

� �
; 1

3
; 2

3
; 0

� �
;

2
3
; 1

3
; 1

2

� �
.

The lattice is primitive, and so there is only one

lattice point in each unit cell. The motif is four

atoms, at the positions specified above.

Graphite is a form of elemental carbon. The

bonding in this material is closely related to that

in benzene. The structure is made up of planar

layers of carbon atoms bonded via sp2 hybrid

orbitals to give a strong framework with a hexago-

nal geometry (Figure 5.21). Because the bonding

electrons are held in place, this skeleton is insulat-

ing. Above and below the layers, delocalised �
bonds form a cloud of delocalised electrons

which, because the layers are stacked directly on

top of each other, repel each other strongly. This

results in a large interlayer distance (0.335 nm)

compared with the C–C distance in the plane

Figure 5.20 The A4 structure of diamond: (a) atoms in the unit cell, (b) projection approximately down the [1 1 1]

direction to show the structure as carbon-centred tetrahedra; and (c) a similar projection to (b), to reveal the tetrahedral

bond geometry
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(0.141 nm). The bonding between layers is very

weak, made up of a van der Waals interaction

between the delocalised electrons. Hence, although

each layer of graphite is strong, the layers slide over

one another easily. Graphite is easily cleaved in this

direction and is a good dry lubricant. The deloca-

lised electrons between the layers are similar to

electrons in a metal, and these make graphite an

electronic conductor parallel to the layers.

5.3.8 The structure of boron nitride

Boron nitride, BN, has a very similar structure to

graphite but the hexagonal sheets are composed of

boron and nitrogen atoms. It is white, chemically

inert and a good insulator. The electronic structure

of boron is 1s22s22p1 and that of nitrogen is

1s22s22p3. In order to generate the BN structure,

the boron and the nitrogen atoms must form sp2

hybrid bonds in the B–N sheets. In the case of

boron, sp2 hybridisation uses all of the outer elec-

trons. In the case of nitrogen, sp2 hybrid orbitals are

formed by promoting one of the 2s2 electrons to give

the configuration 1s22s12p1
x2p1

y2p2
z . After formation

of the sp2 orbitals, the remaining two p electrons are

located in the (filled) pz orbital.

The � bonding in the BN sheets that results is

strong and similar to the bonding in the graphite

sheets. However, � bonding between the full 2 pz

orbitals of nitrogen and the empty 2 pz orbitals of

boron is not possible. This is because the orbital

energies of boron and nitrogen are too dissimilar for

a large energy gain, and hence bonding, to take

place. Thus, no delocalised electrons are present in

the structure, and BN is an insulator. Because of

this, the boron and nitrogen atoms in alternate layers

‘avoid’ each other. This allows for the more efficient

packing of the filled pz orbitals, and the layers are

closer than they are in graphite. Nevertheless, the

lack of bonding between the layers still means that

BN retains the easy cleavage of graphite and is still

a good dry lubricant.

5.3.9 The halite (rock salt, sodium chloride,
B1) structure

� General formula: MX; example: NaCl.

� Lattice: cubic face-centred, a0 ¼ 0:563 nm.

� Z ¼ 4 NaCl.

� Atom positions: Na at ð0; 0; 0Þ; Cl at 1
2
; 1

2
; 1

2

� �
;

(repeat in the face-centred pattern).

There are four lattice points in the face-centred unit

cell, and the motif is one sodium atom at ð0; 0; 0Þ
and one chlorine atom at 1

2
; 1

2
; 1

2

� �
. In this structure,

called the halite, rock salt or sodium chloride

Figure 5.21 The A9 structure of graphite: (a) perspective view of the structure; (b) Projection approximately down the

½0 0 1 direction; (c) the structure drawn as hexagonal sheets, in which a carbon atom lies at each hexagonal vertex
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structure, each ion is surrounded by six ions of the

opposite type at the corners of a regular octahedron

(Figure 5.22).

This structure is extremely common and is

adopted by many oxides, sulphides, halides and

nitrides, with a formula MX.

5.3.10 The spinel (H11) structure

� General formula: AB2X4; example: MgAl2O4.

� Lattice: face-centred cubic, a0 ¼ 0:809 nm.

� Z ¼ 8 MgAl2O4.

� Atom positions: there are 56 atoms in the unit

cell, the positions of which will not be listed here.

There are four lattice points in the face-centred unit

cell, and the motif is two MgAl2O4 complexes. This

structure is named after the mineral spinel,

MgAl2O4. The oxygen atoms in the crystal structure

are in the same relative positions as the chlorine

atoms in eight unit cells of halite, stacked together

to form a 2� 2� 2 cube (Figure 5.23). Thus in the

cubic unit cell of spinel there are 32 oxygen atoms,

to give a unit cell content of Mg8Al16O32. The

magnesium and aluminium atoms are inserted into

this array in an ordered fashion. To a good approx-

imation, all of the magnesium atoms are surrounded

by four oxygen atoms in the form of a tetrahedron

and are said to occupy tetrahedral positions, or sites,

in the structure. Similarly, to a good approximation,

the aluminium atoms are surrounded by six oxygen

atoms and are said to occupy octahedral positions or

sites (see below). When the structure is viewed

down the ½1 1 1 direction the oxygen atoms can be

seen to form cubic close-packed layers, emphasising

the relationship with the halite (NaCl) structure

(see below).

The mineral spinel, MgAl2O4, has given its name

to an important group of compounds with the same

Figure 5.22 The B1 halite structure of NaCl

Figure 5.23 The H11 normal spinel structure of MgAl2O4: (a) projected down the ½1 0 0 direction; (b) projected down

the ½1 1 1 direction (projected)
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structure, collectively known as spinels, which

includes halides, sulphides and nitrides as well as

oxides. Only oxide spinels are considered here.

These are often regarded as ionic compounds. The

formula of the oxide spinels, AB2O4, is satisfied by a

number of combinations of cations, the commonest

of which is A2þ and B3þ, typified by Mg2þ and Al3þ

in spinel itself.

In each unit cell there are the same number of

octahedral sites as there are oxygen ions, that is, 32,

and twice as many tetrahedral sites as oxygen ions,

that is 64. However, not all of these can be occu-

pied. The A2þ and B3þ cations are inserted into this

array in an ordered fashion, filling half of the

available octahedral positions and an eighth of the

available tetrahedral positions. This means that

there are 8 occupied tetrahedral sites and 16 occu-

pied octahedral sites in a unit cell.

There are two principle arrangements of cations

found. If the 8 A2þ ions per unit cell are confined to

the available tetrahedral sites, these are filled com-

pletely. The 16 B3þ ions are then confined to the

octahedral sites. This cation distribution is often

depicted as (A)[B2]O4, with the tetrahedral cations

in round brackets and the octahedral cations in

square brackets. This is called the normal spinel

structure, and spinels with this arrangement of

cations are said to be normal spinels. If the 8 A2þ

ions are placed in half of the available 16 octahedral

sites, half of the B3þ ions must be placed in the

remaining octahedral sites and the other half in the

tetrahedral sites. This can be written as (B)[AB]O4.

This arrangement is called the inverse spinel struc-

ture and compounds with this cation arrangement

are said to be inverse spinels.

In reality, very few spinels have exactly the

normal or inverse structure, and these are sometimes

called mixed spinels. The cation distribution

between the two sites is a function of a number of

parameters, including temperature. This variability

is described by an occupation factor, l, which

gives the fraction of B3þ cations in tetrahedral

positions. A normal spinel is characterised by a

value of � of 0, and an inverse spinel by a value

of � of 0.5. The spinel MgAl2O4 has a value of � of

0.05, and so is quite a good approximation to a

normal spinel.

Cubic A2þFe3þO4 ferrites form an important

group of magnetic oxides that have an inverse spinel

structure, (Fe3þ)[A2þFe3þ]O4. Lodestone, or mag-

netite, Fe3O4, is an inverse spinel with a more

correct formula of (Fe3þ)[Fe2þFe3þ]O4. The tetra-

hedral and octahedral sites in cubic ferrites provide

two magnetic substructures, which give these oxides

very flexible magnetic properties that can be tai-

lored by varying the cations and the distribution

between the octahedral and tetrahedral sites (see

Section 12.3.5). In reality, the distribution of the

cations in cubic ferrites is rarely perfectly normal or

inverse, and the distribution tends to vary with

temperature. Thus processing conditions are impor-

tant if the desired magnetic properties are to be

obtained.

5.4 Structural relationships

A list of atomic positions is often not very helpful

when a variety of structures have to be compared. In

this section two ways of looking at structures that

facilitate comparisons are described. In the first of

these, structures are described in terms of being

built up by packing together spheres, and, in the

other, in terms of polyhedra linked by corners and

edges.

5.4.1 Sphere packing

The structure of many crystals can conveniently be

described in terms of an ordered packing of spheres,

representing spherical atoms or ions. Although there

are an infinite number of ways of doing this, only

two main arrangements, called closest (or close)

packing, are sufficient to describe many crystal

structures. These structures are made up of close-

packed layers of spheres. Each close-packed layer

consists of a hexagonal arrangement of spheres just

touching each other to fill the space as much as

possible (Figure 5.24).

These layers of spheres can be stacked in two

principal ways to generate the structures. In the first

of these, a second layer fits into the dimples in the

first layer, and the third layer is stacked in dimples
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on top of the second layer to lie over the first layer

(Figure 5.25). This sequence is repeated indefinitely.

If the position of the spheres in the first layer is

labelled A, and the positions of the spheres in the

second, B, the complete stacking is described by the

sequence ABABAB. . .. The structure has a hexago-

nal symmetry and unit cell. The a and b axes lay in

the close-packed A sheet, and the hexagonal c axis

is perpendicular to the stacking and runs from one A

sheet to the next. There are two spheres (two atoms)

in a unit cell, at positions ð0; 0; 0Þ and 1
3
; 2

3
; 1

2

� �
. If

the spheres just touch, the relationship between the

sphere radius, r, and the lattice parameter a0, is:

2 r ¼ a0

The ratio of c0=a0 in this ideal sphere packing is

1.633. The structure is identical to the A3 structure,

described in Section 5.3.5. In most real structures

the c0=a0 ratio departs from this ideal value of

1.633.

The second structure of importance is also formed

by two layers of spheres, A and B, as before. The

difference lies in the position of the third layer,

which is not above either A or B, and is given the

position label C (Figure 5.26). This three-layer

stacking is repeated indefinitely, thus: ABCABC. . . .

Although this structure can be described in terms

of a hexagonal unit cell, the structure turns out to be

cubic, and this description is always chosen. In

terms of the cubic unit cell, there are atoms at the

corners of the cell and in the centre of each of the

faces. The close-packed layers lie along the ½1 1 1
direction (Figure 5.27). The spacing of the close-

packed planes for an ideal packing, dcp, is a third of

the body diagonal of the cubic unit cell (i.e. a0=
ffiffiffi
3
p

).

If the spheres just touch, the relationship between

Figure 5.24 A single close-packed layer of spheres

Figure 5.25 Hexagonal closest packing of spheres. All

layers are identical to those in Figure 5.24. The first layer

is labelled A, the second, B. Subsequent layers follow the

sequence . . . ABAB . . .

Figure 5.26 Cubic closest packing of spheres. All

layers are identical to those in Figure 5.24. The first layer

is labelled A, the second B and the third C. Subsequent

layers follow the sequence . . . ABCABC . . .
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the sphere radius, r, and the lattice parameter a0,

is:

r ¼ a0ffiffiffi
8
p

The relationship between the spacing of the close-

packed planes of spheres, dcp, the cell parameter a0,

and r, is therefore:

dcp ¼
a0ffiffiffi

3
p ¼ r

ffiffiffi
8
p
ffiffiffi
3
p ¼ 1:63299 r

The cubic close-packed structure is identical to the

A1 structure described in Section 5.3.3.

Both the hexagonal closest packing of spheres

and the cubic closest packing of spheres result in the

(equally) densest packing of spheres. The fraction

of the total volume occupied by the spheres, when

they touch, is 0.7405.

The sphere arrangements described are only two

of an infinite number of ways for spheres to be

stacked. It is surprising, for example, that the

sequence ABAC is not commonly encountered in

metal structures, although this is the structure of

the metal lanthanum (La). In addition, a number of

more complex arrangements have been found,

especially in the compounds silicon carbide (SiC)

and zinc sulphide (ZnS).

5.4.2 Ionic structures in terms of anion
packing

The ionic model suggests that because many ions

have a closed shell of outer electrons they can be

regarded as spherical. Moreover, because anions

have gained electrons whereas cations have lost

electrons it seems reasonable to regard anions as

larger than cations. Packing the large anions

together and inserting small cations into the gaps

in the anion array so formed can reveal relationships

between structures that are otherwise difficult to

recognise.

The problem of packing spherical anions,

(neglecting charges), is the same as the geometric

problem as packing spheres. In such structures, the

spheres do not fill all the available volume. There

are small holes between the spheres that occur in

layers between the sheets of spheres. These holes,

which are called interstices, interstitial sites or

interstitial positions, are of two types (Figure

5.28). In one type of position, three spheres in the

lower layer are surmounted by one sphere in

the layer above, or vice versa. The geometry of

this site is that of a tetrahedron. The other position is

made up of a lower layer of three spheres and an

upper layer of three spheres. The shape of the

enclosed space is not so easy to see but is found

to have an octahedral geometry.

Figure 5.27 The cubic A1 structure in terms of cubic closest packing. The layers in Figure 5.26 lie perpendicular to

the [1 1 1] direction and form ð1 1 1Þ planes. (a) The first two layers, A and B; (b) the first three layers, A, B and, C; and

(c) the fourth layer, completed by an atom at the top corner; this is identical to the position ð0; 0; 0Þ in the unit cell and so

is part of an A layer
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In the two closest packed sequences, . . .
ABCABC . . . and . . . ABAB . . ., there are 2 N tetra-

hedral interstices and N octahedral interstices for

every N anions. Structures are derived by placing

cations into the interstices, making sure that the

total positive charge on the cations is equal to the

total negative charge on the anions. The formula of

the structure can be found by counting up the

numbers of ions of each sort present.

Consider the structures that arise from a cubic

close-packed array of X anions. If every octahedral

position contains an M cation there are equal

numbers of cations and anions in the structure.

The formula of the compounds with this structure

is MX, and the structure corresponds to the halite

(NaCl, B1) structure. In the case of halide anions,

X�, to maintain charge balance, each cation must

have a charge of þ1, and the alkali halide, MX,

structure results. Should oxygen anions, O2�, form

the anion array, the cations must necessarily have a

charge of 2þ, to ensure that the charges balance,

and the oxides will have a formula MO, but still

retain the halite structure. This structure is pos-

sessed by a number of oxides, including MgO, CaO,

SrO, BaO, MnO, FeO, CoO, NiO and CoO.

Should the anions adopt hexagonal close packing

and all of the octahedral sites contain a cation, the

hexagonal analogue of the halite structure is pro-

duced. In this case, the formula of the crystal is

again MX. The structure is the nicolite (NiAs)

structure and is adopted by a number of alloys

and metallic sulphides, including NiAs, CoS, VS,

FeS and TiS.

If only a fraction of the octahedral positions in the

hexagonal packed array of anions is filled, a variety

of structures results. The corundum structure is

adopted by the oxides �-Al2O3, V2O3, Ti2O3 and

Fe2O3. In this structure two-thirds of the octahedral

sites are filled in an ordered way. Of the structures

that form when only half of the octahedral sites are

occupied, those of rutile (TiO2) and �-PbO2 are best

known. The difference between the two structures

lies in the way in which the cations are ordered. In

the rutile form of TiO2 the cations occupy straight

rows of sites whereas in �-PbO2 the rows are

staggered.

A large number of structures can be generated by

the various patterns of filling the octahedral or

tetrahedral interstices. The number can be extended

if both types of position are occupied. One impor-

tant structure of this type is the spinel structure,

discussed in Section 5.3.10. The oxide lattice can be

equated to a cubic close-packed array of oxygen

ions, and the cubic unit cell contains 32 oxygen

atoms. There are, therefore, 32 octahedral sites and

64 tetrahedral sites for cations. The unit contains

only 16 octahedral (B cations) and 8 tetrahedral

(A cations), which are distributed in an ordered way

over these positions to give the formula AB2O4,

where A ¼ M2þ, and B ¼ M3þ. The formula of the

Figure 5.28 Tetrahedral and octahedral sites in cubic closest packed arrays of spheres: (a) a tetrahedral site between

two layers and (b) the same site drawn as a polyhedron; (c) an octahedral site between two layers and (d) the same site

drawn as a polyhedron
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cubic spinels is therefore A8B16O32 or, as usually

written, AB2O4. If all the A cations are tetrahedral

sites we have a normal spinel, (A)[B2]O4. If they are

in octahedral sites we have an inverse spinel,

(B)[AB]O4.

Structures containing cations in tetrahedral sites

can be described in exactly the same way. In this

case, there are twice as many tetrahedral sites as

anions and so, if all sites are filled, the formula of

the solid will be M2X. When half are filled this

becomes MX, and so on.

A survey of some of the structures that can be

linked in this way is given in Table 5.2.

5.4.3 Polyhedral representations

It is often necessary to focus on the surroundings of

a particular atom or ion in a solid and, for this

purpose, structures drawn in terms of polyhedra are

helpful. The polyhedra selected are generally

metal–nonmetal coordination polyhedra. These are

composed of a central metal atom surrounded by

nonmetal atoms. By reducing the nonmetal atoms to

points and then joining the points by lines one is

able to construct the polyhedral shape. These poly-

hedra are then linked together to build up the

complete structure. This representation has already

been used as a way of describing the structure of

diamond (Figure 5.20).

The advantage of using polyhedral representa-

tions of solids is that family relationships can be

illustrated clearly. The disadvantage is that impor-

tant structural details are often ignored, especially

when polyhedra are idealised.

The complex families of silicates are best com-

pared if the structures are described in terms of

linked tetrahedra. The tetrahedral shape used is the

idealised coordination polyhedron of the [SiO4] unit

(Figure 5.29). Each silicon atom is linked to four

oxygen atoms by tetrahedrally directed sp3 hybrid

bonds. For example, Figure 5.30 shows the way in

which the [SiO4] tetrahedra are linked in the com-

monest form of silica (SiO2), quartz. The [SiO4]

units are very strong and persist during physical and

chemical reactions, so that structural transforma-

tions are also often easily visualised in terms of the

rearrangement of the [SiO4] tetrahedra.

Octahedral coordination is frequently adopted by

the important 3d transition metal ions. In this

coordination polyhedron, each cation is surrounded

by six anions, to form an octahedral [MO6] group

(Figure 5.31). The structure of rhenium trioxide,

ReO3, in terms of linked [ReO6] octahedra, has the

appearance of a three-dimensional chessboard (Fig-

ure 5.32a). This structure is similar to that of

tungsten trioxide, WO3, but in the latter compound

the octahedra are distorted slightly, so that the

symmetry is reduced from cubic in ReO3 to mono-

clinic in WO3. The idealised ABO3 perovskite

structure is similar, but has the large A cation in

the centre of the cage of octahedra (Figure 5.32b).

Most real perovskites, such as barium titanate,

BaTiO3, are built of slightly distorted [MO6]

Table 5.2 Some structures in terms of anion packing

Fraction of sites occupied Sequence of anion layers

tetrahedral octahedral . . . ABAB . . . . . . ABCABC . . .

0 1 NiAs (nicolite) NaCl (halite)

1

2
0 ZnO, ZnS (wurtzite) ZnS (sphalerite or zinc blende)

0
2

3
Al2O3 (corundum) –

0
1

2
TiO2 (rutile), �-PbO2 TiO2 (anatase)

1

8

1

2
Mg2SiO4 (olivine) MgAl2O4 (spinel)
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Figure 5.29 Representations of tetrahedra found in

crystal structure diagrams: (a) a ‘ball-and-stick’ diagram

of a tetrahedron, with a central silicon atom surrounded

by four oxygen atoms and (b) its representation as a

polyhedron. The views in parts (c), and (d) are the

equivalent to those in parts (a) and (b), along the direction

A in part (b), in which one tetrahedral vertex is upper-

most. The views in parts (e) and (f) are the equivalent to

those in parts (a) and (b), along the direction B in part (b),

in which one tetrahedral edge is towards the observer

Figure 5.30 The structure of the high-temperature

form of SiO2, �-quartz, drawn as corner-shared tetrahedra

projected down the hexagonal c axis (normal to the plane

of the page). This projection obscures the fact that the

tetrahedra form three-dimensional spirals, not rings

Figure 5.31 Representations of octahedra found in

crystal structure diagrams: (a) a ‘ball-and-stick’ diagram

of an octahedron, with a central metal atom surrounded by

six oxygen atoms and (b) its representation as a polyhe-

dron. The views in parts (c) and (d) are equivalent to those

in parts (a) and (b), along the direction A in part (b), in

which one octahedral vertex is uppermost. The views in

parts (e) and (f) are the equivalent to those in parts (a) and

(b), along the direction B in part (b), in which one

octahedral face is towards the observer

Figure 5.32 (a) The cubic ReO3 structure represented

as corner-shared ReO6 octahedra; (b) the idealised cubic

perovskite ABO3 structure. The framework is identical to

that in part (a) and consists of corner-shared BO6 octahe-

dra, containing an A cation in the central cage site (note

B 6¼ boron)
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octahedra, which reduces the symmetry from cubic

to orthorhombic or monoclinic.

Answers to introductory questions

How does a lattice differ from a structure?

Crystal structures and crystal lattices are different,

although these terms are frequently (and incor-

rectly) used as synonyms. A crystal structure is

built of atoms. A crystal lattice is an infinite pattern

of points, each of which must have the same

surroundings in the same orientation. A lattice is a

mathematical concept. If any lattice point is chosen

as the origin, the position of any other lattice point

is defined by

Pðu v wÞ ¼ u aþ v bþ w c

where a, b and c are vectors, called basis vectors,

and u, v and w are positive or negative integers.

Clearly there are any number of ways of choosing a,

b and c, and crystallographic convention is to choose

vectors that are small and reveal the underlying

symmetry of the lattice. There are only 14 possible

three-dimensional lattices, called Bravais lattices.

All crystal structures can be built up from the

Bravais lattices by placing an atom or a group of

atoms at each lattice point. The crystal structure of a

simple metal and that of a complex protein may be

described in terms of the same lattice, but whereas

the number of atoms allocated to each lattice point

is often just one for a simple metallic crystal it may

easily be thousands for a protein crystal. The

number of atoms associated with each lattice point

is called the motif, the lattice complex or the basis.

The motif is a fragment of structure that is just

sufficient, when repeated at each of the lattice points,

to construct the whole of the structure. A crystal

structure is built up from a lattice plus a motif.

What is a unit cell?

In a lattice, if any lattice point is chosen as the

origin, the position of any other lattice point is

defined by

Pðu v wÞ ¼ u aþ v bþ w c

where a, b and c are vectors, called basis vectors,

and u, v and w are positive or negative integers.

Clearly, there are any number of ways of choosing

a, b and c, and crystallographic convention is to

choose vectors that are small and reveal the under-

lying symmetry of the lattice. The parallelepiped

formed by the three basis vectors a, b and c defines

the unit cell of the lattice, with edges of length a0,

b0 and c0. The numerical values of the unit cell

edges and the angles between them are collectively

called the lattice parameters or unit cell parameters.

The unit cell is not unique and is chosen for

convenience and to reveal the underlying symmetry

of the crystal.

As a crystal structure can be derived from the

addition of atoms to each lattice point, a crystal

structure can also be described in terms of a unit

cell. The complete crystal is built up by a regular

stacking of unit cells to fill space. The axes used to

describe the crystal structure are the same as those

used for the lattices, corresponding to the basis

vectors lying along the unit cell edges. The position

of an atom within the unit cell is given as ðx; y; zÞ,
where the units are a0 in a direction along the a axis,

b0 along the b axis, and c0 along the c axis.

What is meant by a (1 0 0) plane?

The facets of a well-formed crystal or internal

planes through a crystal structure are specified in

terms of Miller Indices. These indices, h, k and l,

written in round brackets, ðh k lÞ, represent not just

one plane but the set of all parallel planes, ðh k lÞ.
The values of h, k and l are the fractions of a unit

cell edge, a0; b0 and c0, respectively, intersected by

this family of planes. A plane that lies parallel to a

cell edge, and so never cuts it, is given the index 0

(zero). A plane that passes across the end of the unit

cell cutting the a axis and parallel to the b and c

axes of the unit cell has Miller indices ð1 0 0Þ. The

indices indicate that the plane cuts the cell edge

running along the a axis at a position 1 a0, and does
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not cut the cell edges parallel to the b or c axes at

all. Because the unit cell may be chosen anywhere

in the structure, ð1 0 0Þ means all planes that inter-

sect all the unit cells in the structure in the way

specified. There is no need to specify a plane

ð100; 0 0Þ, it is simply ð1 0 0Þ.

Further reading

D.M. Adams, 1974, Inorganic Solids, John Wiley & Sons,

Chichester.

F.D. Bloss, 1971, Crystallography and Crystal Chemistry,

Holt Rinehart and Winston. New York.

H.D. Megaw, 1973, Crystal Structures, Saunders, Phila-

delphia, PA.

M.O’Keeffe, 1977, ‘On the Arrangements of Ions in

Crystals’, Acta Crystallogr. A33, 924.

M.O’Keefe, B.G. Hyde, 1985, ‘An Alternative Approach

to Non-molecular Crystal Structures with Emphasis on

the Arrangement of Solids’, Structure and Bonding, 61,

77.

A.F. Wells, 1984, Structural Inorganic Chemistry, 5th edn,

Oxford University Press, Oxford.

Problems and exercises

Quick quiz

1 A crystal structure is:

(a) A three-dimensional ordered array of points

(b) A three-dimensional ordered array of atoms

(c) A three-dimensional unit cell

2 A lattice is:

(a) A three-dimensional ordered array of

points

(b) A three-dimensional ordered array of atoms

(c) A three-dimensional unit cell

3 The basis vectors in a lattice define:

(a) The unit cell

(b) The crystal structure

(c) The atom positions

4 The number of Bravais lattices is:

(a) 12

(b) 13

(c) 14

5 A face-centred (F) unit cell contains:

(a) One lattice point

(b) Two lattice points

(c) Four lattice points

6 A single face-centred unit cell with a lattice

point in the plane cutting the b axis is:

(a) A face-centred

(b) B face-centred

(c) C face-centred

7 A crystal system is:

(a) A set of axes

(b) A lattice

(c) A unit cell

8 A tetragonal unit cell is defined by:

(a) a ¼ b ¼ c

(b) a ¼ b 6¼ c

(c) a 6¼ b 6¼ c

9 A crystal class summarises:

(a) The internal symmetry of an object

(b) The unit cell of the crystal

(c) The type of crystal

10 A point group is identical to:

(a) A crystal structure

(b) A crystal lattice

(c) A crystal class

11 The Miller indices ðh k lÞ represent:

(a) A single plane in a crystal structure

(b) A set of parallel planes in a crystal structure

(c) A family of planes related by symmetry in

a crystal structure

12 An ðh 0 0Þ plane in a crystal structure is:

(a) Parallel to the a and b axes

(b) Parallel to the b and c axes

(c) Parallel to the a and c axes

13 A (1 1 0) plane in a crystal cuts:

(a) The a and b axes
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(b) The b and c axes

(c) The a and c axes

14 fh k lg represents:

(a) A set of parallel planes

(b) A group of nonequivalent planes

(c) A family of symmetry-related planes

15 Miller–Bravais indices ðh k i lÞ are used with:

(a) All noncubic crystals

(b) Hexagonal crystals

(c) Primitive crystals

16 A direction in a crystal structure is represented

by:

(a) fu v wg
(b) ½u v w
(c) hu v wi

17 A family of directions related by symmetry is

represented by:

(a) fu v wg
(b) ½u v w
(c) hu v wi

18 Bragg’s Law for X-ray diffraction is:

(a) � ¼ 2 dh k l sin 	

(b) � ¼ dh k l sin 	

(c) � ¼ 2 dh k l cos 	

19 The atom coordinates 1
2
; 1

2
; 1

2

� �
represent an

atom at:

(a) The centre of a unit cell

(b) The face centres of a unit cell

(c) A position 1
2

nm from the unit cell origin

20 In a cubic close-packed (A1) unit cell there:

(a) Is one atom

(b) Are two atoms

(c) Are four atoms

21 In a body-centred cubic (A2) unit cell there:

(a) Is one atom

(b) Are two atoms

(c) Are four atoms

22 In a hexagonal (A3) unit cell there:

(a) Is one atom

(b) Are two atoms

(c) Are four atoms

23 The symbol Z gives the number of:

(a) Formula units in a unit cell

(b) Atoms in a unit cell

(c) Positions in a unit cell

24 The lattice parameters give:

(a) The crystal symmetry

(c) The lattice symmetry

(c) The dimensions of the unit cell edges

25 The halite (sodium chloride, B1) structure

has:

(a) Four atoms in a unit cell

(b) Four MX units in a unit cell

(c) Four NaCl units in a unit cell

26 The sphere packing giving rise to a hexagonal

structure is:

(a) . . . ABABAB . . .

(b) . . . ABCABC . . .

(c) . . . ABACABAC . . .

27 In a cubic close-packed array of N spheres there

are:

(a) N tetrahedral interstices

(b) 2 N tetrahedral interstices

(c) 4 N tetrahedral interstices

28 In a hexagonal close-packed array of N spheres

there are:

(a) N octahedral interstices

(b) 2 N octahedral interstices

(c) 4 N octahedral interstices

29 A tetrahedron is a polyhedron with:

(a) Four triangular faces

(b) Six triangular faces

(c) Eight triangular faces

30 An octahedron is a polyhedron with:

(a) Four triangular faces
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(b) Six triangular faces

(c) Eight triangular faces

31 The structure of lithium oxide can be thought of

as having anions in a cubic close-packed array

with lithium ions in all of the tetrahedral posi-

tions; the formula of the oxide is:

(a) Li2O

(b) LiO

(c) LiO2

32 The alloy nickel arsenide has a structure in

which all of the arsenic atoms are in a hexago-

nal close-packed array and the nickel atoms

occupy all of the octahedral positions; the

formula of nickel arsenide is:

(a) Ni3As

(b) Ni2As

(c) NiAs

33 The wurtizite structure of zinc sulphide has the

sulphur atoms in a hexagonal close-packed

array and the zinc atoms occupying half the

tetrahedral positions; the formula of the sul-

phide is:

(a) Zn2S

(b) ZnS

(c) ZnS2

Calculations and questions

5.1 Sketch and define cubic, tetragonal and

orthorhombic unit cells. [Note: answer is

not provided at the end of this book.]

5.2 The lines on Figure 5.33(A) represent planes

in a cubic crystal parallel to the c axis, which

is normal to the plane of the page. The circles

mark the corners of the cubic unit cell. Index

planes (a)–(d).

5.3 The lines on Figure 5.33(B) represent planes

in a cubic crystal parallel to the c axis, which

is normal to the plane of the page. The circles

mark the corners of the cubic unit cell. Index

planes (a)–(d).

5.4 The lines on Figure 5.33(C) represent planes

in a cubic crystal parallel to the c axis, which

is normal to the plane of the page. The circles

mark the corners of the cubic unit cell. Index

planes (a)–(d).

5.5 The lines on Figure 5.33(D) represent planes

in a cubic crystal parallel to the c axis, which

is normal to the plane of the page. The circles

mark the corners of the cubic unit cell. Index

planes (a)–(d).

5.6 Sketch the ð1 1 1Þ and ð1 �11 1Þ planes in a

cubic crystal. [Note: answer is not provided

at the end of this book.]

5.7 How many planes belong to f1 1 0g in a cubic

crystal? List them.

5.8 How many planes belong to f1 1 1g in a cubic

crystal? List them.

5.9 How many planes belong to fh h 0g in a cubic

crystal? List them.

5.10 How many planes belong to fh k 0g in a cubic

crystal? List them.

5.11 The lines on Figure 5.34(A) represent direc-

tions in a cubic crystal in the plane of the

page. The circles mark the corners of the

cubic unit cell. Index directions (a)–(e).

5.12 The lines on Figure 5.34(B) represent direc-

tions in a cubic crystal in the plane of the

page. The circles mark the corners of the

cubic unit cell. Index directions (a)–(e).

5.13 The lines on Figure 5.34(C) represent direc-

tions in a cubic crystal in the plane of the

page. The circles mark the corners of the

cubic unit cell. Index directions (a)–(e).

5.14 The lines on Figure 5.34(D) represent direc-

tions in a cubic crystal in the plane of the

page. The circles mark the corners of the

cubic unit cell. Index directions (a)–(e).

5.15 How many directions does h1 0 0i represent?

List them.

5.16 How many directions does h1 1 0i represent?

List them.
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5.17 What is the angle between (1 1 0) and ½1 1 0
in a cubic crystal?

5.18 What is the angle between (1 3 2) and [1 3 2]

in a cubic crystal?

5.19 Sketch the reciprocal lattice of a cubic crystal

with a0 ¼ 5 nm. [Note: answer is not pro-

vided at the end of this book.]

5.20 Nickel has an A1 (face-centred cubic) struc-

ture, with a0 ¼ 0:352 nm. A powder sample

Figure 5.33 Planes in a cubic crystal, parallel to the c axis (normal to the plane of the page); circles mark the corners

of the cubic unit cell: (A) for Question 5.2, (B) for Question 5.3, (C) for Question 5.4 and (D) for Question 5.5
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is irradiated with X-rays with a wavelength of

0.1542 nm. What angles would the diffracted

beams from the ð1 1 1Þ, (2 2 0) and (4 0 0)

planes make with the incident beam direc-

tion?

5.21 Tantalum has an A2 (body-centred cubic)

structure, with a0 ¼ 0:3303 nm. A powder

sample is irradiated with X-rays with a wave-

length of 0.1542 nm. What angles would the

diffracted beams from the (1 1 0), (2 1 1) and

Figure 5.34 Directions in a cubic crystal, in the plane of the page; circles mark the corners of the cubic cell: (A) for

Question 5.11, (B) for Question 5.12, (C) for Question 5.13 and (D) for Question 5.14
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(3 1 0) planes make with the incident beam

direction?

5.22 A sample of the cubic alloy �-brass (an alloy

of copper and zinc) gives an X-ray powder

pattern in which, when the X-ray wavelength

is 0.229 nm, the first three reflections are:

ð1 0 0Þ, 	 ¼ 22:9�; (1 1 0), 	 ¼ 33:35�;
ð1 1 1Þ, 	 ¼ 42:35�. Calculate the lattice para-

meter of the brass.

5.23. A sample of the cubic spinel CuAl2O4 gives

an X-ray powder pattern in which, when the

X-ray wavelength is 0.1541 nm, the first three

reflections are: ð1 1 1Þ, 	 ¼ 9:51�; (2 0 0),

	 ¼ 11:00�; (2 2 0), 	 ¼ 15:65�. Calculate

the lattice parameter of the spinel.

5.24 A mineral sample contains a crystalline oxide

with a formula NiAl2Ox, where x is uncertain.

The crystals gave an X-ray powder pattern

with reflections characteristic of a cubic

material. The first reflection, ð1 1 1Þ, was at

	 ¼ 9:55� when the X-ray wavelength was

0.1541 nm. Confirm that the sample is the

spinel nickel aluminate, NiAl2O4, which has

a0 ¼ 0:8048 nm.

5.25 The unit cell size of CaO is 0.48105 nm, and

that of SrO is 0.51602 nm. Both adopt the

halite structure type. Estimate the composi-

tion of a crystal of formula CaxSr1	xO,

which was found to have a unit cell of

0.5003 nm.

5.26 A mixed cubic spinel ZnAl2	xGaxO4 is made

up by heating together ZnAl2O4 ða0 ¼

0:8086 nmÞ and ZnGa2O4 ða0 ¼ 0:8328 nmÞ.
The X-ray powder pattern, taken using radia-

tion of wavelength 0.1541 nm, gave the first

reflection, ð1 1 1Þ, at a position 	 ¼ 9:435�.
Estimate the value of x and give the composi-

tion.

5.27 The cubic unit cell of iridium is drawn in

Figure 5.35(a). What are the atomic coordi-

nates? What is the unit cell type?

5.28 The cubic unit cell of CsCl is drawn in Figure

5.35(b). What are the atomic coordinates of

each ion?

5.29 The cubic unit cell of perovskite, CaTiO3, is

drawn in Figure 5.35(c). What are the atomic

coordinates of the atoms?

5.30 The coordinates of cubic nickel oxide are

Ni :ð0; 0; 0Þ; 1
2
; 1

2
; 0

� �
; 0; 1

2
; 1

2

� �
; 1

2
; 0; 1

2

� �
;

O : 1
2
; 1

2
; 1

2

� �
; 0; 0; 1

2

� �
; 1

2
; 0; 0

� �
; 0; 1

2
; 0

� �
:

Sketch the unit cell [Note: not shown in

answers at the end of this book.]. What is

the formula of the oxide? What is the struc-

ture type?

5.31 A copper–gold alloy has a cubic structure.

The atom positions are:

Au : ð0; 0; 0Þ;
Cu : 0; 1

2
; 1

2

� �
; 1

2
; 0; 1

2

� �
; 1

2
; 1

2
; 0

� �
:

Sketch the unit cell [Note: not shown in

answers at the end of this book] and deter-

mine the formula of the alloy.

Figure 5.35 The cubic unit cells of (a) iridium, (b) CsCl and (c) perovskite (CaTiO3)
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5.32 Aluminium has a cubic A1 structure, with a

lattice parameter of 0.361 nm. Estimate the

density of the metal.

5.33 Tungsten has a cubic A2 structure, with a

lattice parameter of 0.31651 nm. Estimate the

density of the metal.

5.34 Magnesium has an A3 structure, with hexa-

gonal lattice parameters of a0 ¼ 0:320 nm,

c0 ¼ 0:520 nm. Estimate the density of the

metal.

5.35 Copper has a cubic A1 structure and a density

of 8:96� 103 kg m	3. What is the length of

the unit cell edge?

5.36 A sample of calcia-stabilised zirconia was

prepared by heating 85 mol% ZrO2 with

15 mol% CaO at 1600 �C. The material had

a cubic unit cell with a lattice parameter, a0,

of 0.5144 nm and a measured density of

5485 kg m	3. Calculate the theoretical den-

sity of the sample assuming that it contains

either anion vacancies or cation interstitials

and hence determine whether interstitials or

vacancies are more likely to be present in the

structure. [The parent structure is cubic fluor-

ite, in which each unit cell contains four

metal positions and eight nonmetal positions,

to give an overall composition of MX2.]

5.37 The unit cell of a zirconium sulphide, with a

measured composition of 77 Zr:100 S, is of

the halite (B1) type, with a0 ¼ 0:514 nm. The

measured density is 4:80� 103 kg m	3.

Calculate the theoretical density of ideal

ZrS with the B1 structure assuming that it

contains either zirconium vacancies or sul-

phur interstitials, and give an opinion on the

defect structure of the real material.

5.38 Will the density of a crystal go up or down if

it contains: (a) Schottky defects; (b) Frenkel

defects; (c) vacancies; (d) interstitials?

5.39 An iron titanium oxide has the anions

in a hexagonal close-packed array. The

iron and titanium atoms each occupy a third

of the octahedral sites available in an ordered

array. What is the formula of the oxide?

What is the likely parent structure of the

oxide?
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