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Electronic conductivity in solids

� How are donor atoms and acceptor atoms in
semiconductors differentiated?

� What is a quantum well?

� What are Cooper pairs?

The electronic conductivity of solids varies widely

(Figure 13.1). Solids that allow an electric current to

flow when a small voltage is applied are called

conductors. Solids that do not allow a current to

flow are called insulators. Semiconductors fall

between these two classes. As gauged from Figure

13.1, it is a matter of degree whether a solid is a

conductor, semiconductor or an insulator but, irre-

spective of the magnitude of the effect, conductivity

requires the presence of mobile charge carriers. In

this chapter, solids that have reasonable numbers of

mobile charge carriers present, either because of

their native electronic properties or because they

have been deliberately introduced by doping, are

considered. In addition, superconductors, a group of

materials that appear not to use ‘normal’ conductiv-

ity mechanisms, are described.

13.1 Metals

13.1.1 Metals, semiconductors and insulators

One of the defining physical properties of a metal is

its electrical conductivity. (Section S4.6 gives defi-

nitions of this and related terms.) Electrical con-

ductivity in a solid is attributable to electrons that

are free to move (i.e. that gain energy) under the

influence of an applied electric field. The metallic

bonding model, described in Sections 2.3.2 and

2.3.3, allows conductivity to be understood most

easily. In this model, the electrons on the atoms

making up the solid are allocated to energy bands

that run throughout the whole of the solid. A simple

one-dimensional band-structure diagram, called a

flat-band diagram (Figure 13.2), allows the broad

distinction between conductors, semiconductors and

insulators to be understood.

If the number of electrons available fills the

energy band completely, and the energy gap

between the top of the filled band and the bottom

of the next higher (empty) energy band is large, the

material is an insulator (Figure 13.2a). This is

because the electrons have no means of taking up

the additional energy needed to allow them to move

under a low voltage, because all of the energy levels

are filled or inaccessible. Only a considerable

voltage will cause electrons to jump from the
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completely filled band to the next-highest empty

band, and when such a transfer does occur the

insulator has broken down.

If the energy gap between the filled and empty

band is small enough that thermal energy is suffi-

cient to cause some electrons to jump from the

lower filled band to the upper empty band, the

electronic properties change. Such materials are

called intrinsic semiconductors (Figure 13.2b).

Once electrons arrive in the empty band, they can

contribute to electrical conductivity, as there are

empty energy levels around them and the solid is

transformed from an insulator into a poor electronic

conductor. The now almost filled band is called the

valence band, and the almost empty band is called

the conduction band. The energy gap is the band

gap, Eg.

Although this picture is simple, it reveals an

important feature. It is found that the ‘vacancies’

left in the valence band when electrons are pro-

moted to the conduction band also contribute to the

conduction process. To a good approximation, these

vacancies can be equated to positive electrons, and

move in the opposite direction to the electrons in an

applied field. They are called positive holes, or just

holes. Semiconductors are characterised by an

increase in conductivity with temperature because

the number of mobile charge carriers, electrons and

holes, will increase as the temperature increases.

If the band gap is so small that thermal energy

at normal temperatures is sufficient to generate a

very high number of charge carriers in each band

the material is classed as a degenerate semicon-

ductor. At 0 K intrinsic semiconductors become

insulators.

Semiconductivity can arise in an insulator if the

material contains an appreciable number of impu-

rities (added intentionally or not). Similarly, the

conductivity of an intrinsic semiconductor can be

manipulated by adding suitable impurities. The

impurities can act as donors, donating electrons to

the conduction band to form n-type semiconductors

(Figure 13.2c), or as acceptors, accepting electrons

from the valence band, and thus donating holes to

the valence band, to form p-type semiconductors

(Figure 13.2d). When all of the impurities are fully

ionised (i.e. when all the donor levels have lost an

electron or all the acceptor levels have gained an

electron) the exhaustion range has been reached. If

the donors and acceptors are present in equal

numbers the material is said to be a compensated

semiconductor. At 0 K these materials are also

insulators. It is difficult in practice to distinguish

between compensated extrinsic semiconductors and

intrinsic semiconductors.

When there are insufficient electrons to fill the

highest band (the valence band becomes indistin-

guishable from the conduction band in this case)

even small amounts of energy will be able to move

the topmost electrons into higher energy levels, and

small voltages will produce significant conducti-

vity and the solid is a metal (Figure 13.2e). The

Figure 13.1 The range of electronic conductivity in

solids
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uppermost filled energy levels form the Fermi sur-

face. Should the bottom of the (nþ 1)th band lie

energetically lower than the top of a full nth band,

electrons will spill over into the bottom of the

empty band until the Fermi level intersects both

sets of bands. Holes and electrons now exist, and

coexist at 0 K. This type of material is called a

semimetal (Figure 13.2f).

From the point of view of metallic conductivity,

the nature of the atoms composing the structure is

not important. The primary point is that there should

be an upper band, a conduction band, which is party

filled with electrons. This depends on crystal struc-

ture and the extent to which the outer electron

orbitals overlap. A large number of compounds

have sufficient overlap of the outer orbitals to

generate bands of reasonable width, and can loosely

be classed as metals. Many oxides, including

ReO3 and TiO, as well as nitrides, phosphides and

silicides have high conductivities and can often

be considered as metals or semimetals. Large

numbers of sulphides and selenides are considered

to be best classified as high-conductivity semicon-

ductors, whereas tellurides tend to be regarded as

metallic.

13.1.2 Conductivity of metals and alloys

Although the conductivity of a metal is dependent

on the shape of the Fermi surface, a good idea of the

conduction properties of metals can be gained by

considering the properties of a metal with a

half-filled conduction band and a spherical Fermi

Figure 13.2 Energy-band representations of materials: (a) insulators, (b) intrinsic semiconductors, (c) n-type extrinsic

semiconductors, (d) p-type extrinsic semiconductors, (e) metals and (f) semimetals. The innermost filled energy bands are

omitted in parts (c) and (d)
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surface. The ideas already described with respect to

the metallic bond (Section 2.3) are able to account

for this.

Return to the simple energy versus wave-vector

diagram of a ‘one-dimensional’ metal (Figure 13.3).

The wave vector, k, can be expressed in terms of the

velocity or the momentum of the electrons:

k ¼ 2�

�
¼ 2�

h

� �
p ¼ 2�m

h

� �
v ð13:1Þ

where � is the wavelength of the electron wave, p is

the momentum of the electron, m is the mass of the

electron, v is the velocity of the electron, and h is

Planck’s constant. Thus k is proportional to both

momentum and velocity. Each energy level is then

associated with an electron velocity, which

increases as the Fermi surface is approached. The

Fermi surface therefore divides the occupied velo-

city states from the unoccupied states.

In the case of a ‘two-dimensional’ metal, the

Fermi surface can be represented as a circle, with

velocity components along the x and y axes (Figure

13.4a). Because velocity states are filled up to the

Fermi surface, when the metal is at normal equili-

brium the velocities sum to zero. Thus, although the

electrons are in motion, no current flows.

When an electric field, E, is applied to the metal,

each electron experiences a force �eE and a change

in momentum, �p, which is equivalent to a change

in the value of the wave vector, �k, and velocity,

�v, of the electrons. An electric field applied along

the x axis will translate the velocity distribution

parallel to the x axis by a small amount opposite to

the direction of the applied field, shown as the solid-

line outer circle as compared with the dotted circle

in Figure 13.4b. The velocities no longer sum to zero

along x, and electrons drift in a direction opposite to

that of the applied field. A current then flows. The

effect is limited by collisions with atoms, impurities

and defects and a steady current is reached.

The electronic conductivity of a metal can be

estimated from this model. It is found (see Section

S4.7) that the conductivity, �, and its reciprocal, the

resistivity, �, are given by:

� ¼ e2n�

m�e

� ¼ m�e
e2n�

where e is the electron charge, n is the number of

mobile electrons in the metal, � is the average time

an electron spends between two successive scatter-

ing events, and m�e is the effective mass of the

electrons. This latter term is used to account for

the fact that the dynamics of electrons in solids is

Figure 13.3 The energy versus wave vector curve for a

free electron in a metal

Figure 13.4 The Fermi surface (circled) marks the

boundary up to which velocity states (shaded circles) of

free electrons in a ‘two-dimensional’ metal are occupied.

(a) In the absence of an electric field, equal numbers of

electrons are moving in all directions, and the sum of the

velocities is zero. (b) In an electric field, E, the distribu-

tion of velocities changes (solid outer boundary compared

with the dotted boundary), causing more to move against

the direction of the electric field. This overfall drift

velocity is observed as electronic conductivity
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quite different from that in a vacuum, and measure-

ments show that the mass that applies to electrons in

a vacuum (the rest mass) needs to be replaced by an

effective mass. The effective mass is not a constant

but depends on temperature and the direction in the

crystal that the electron is travelling.

If it is assumed that the velocity of an electron is

reduced to zero each time it is scattered, then it is

seen that the current will decay to zero in a time �
after the voltage is turned off. The term � , the time

between successive scattering processes, is also

called the relaxation time. The mean free path of

the electron, which is the length of the path between

successive scattering events, is given by:

� ¼ �vF

where vF is the electron velocity at the Fermi sur-

face.

The conductivity is often written in terms of

another variable, the mobility of the electrons, �e:

� ¼ ne�e

where the mobility is given by:

�e ¼
e�

m�e

Scattering is the main cause of resistivity. The

electron wave can be scattered in a variety of ways,

of which three are of most importance. The first is

the interaction of the electron wave with lattice

vibrations, called phonons. This is called thermal

scattering. As the temperature increases so do the

lattice vibrations, and the resistivity rises. At low

temperatures the resistivity drops gradually to a

finite value, maintained at absolute zero (Figure

13.5), except for the superconductors, described

later in this chapter. This is an intrinsic property

of a metal and cannot be altered. Structural imper-

fections present in the solid also contribute to

resistivity. These are mainly defects such as dis-

locations and grain boundaries, or else impurities.

As with lattice vibrations, they scatter the electron

waves and so increase resistivity. Defects and impu-

rities are extrinsic features that can be removed by

careful processing.

The different scattering processes can be allo-

cated relaxation times as follows. Suppose that the

distance between thermal scattering events is Lth.

The number of scattering events per second, nthermal,

will be given by:

nthermal ¼
vF

�th

¼ 1=�th

where vF is the electron velocity at the Fermi sur-

face, and � th is the thermal relaxation time. Analo-

gous equations can be written in respect of the

distance between defect scattering, Ldef, and

between impurity scattering, Limp. Thus the resis-

tivity can be written:

� ¼ m�e
e2nF�th

þ m�e
e2nF�def

þ m�e
e2nF�imp

Taking into account these features, the total resis-

tivity can be written as:

� ¼ �phonons þ �defects þ �impurities

This is known as Mattiesen’s rule, sometimes writ-

ten as:

� ¼ �ideal þ �residual

where �ideal is the intrinsic component due to phonon

interactions and �residual is the extrinsic contribution.

Figure 13.5 The variation of the resistivity of a metal

with temperature; impure solids and alloys have a higher

resistivity than pure metals, at all temperatures
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The resistivity of a substitutional solid solution

alloy will generally be greater than that of a pure

metal because the elements added to form the alloy

have the same effect as impurities (Figure 13.6). If

the alloying atoms order to form a new crystal

structure, the disruptive scattering of the electron

wave is suppressed and the resistivity will drop.

A consequence of the electron collisions is a

transfer of energy from the mobile electrons to the

structure. This is revealed as heat energy and

accounts for the fact that an electric current gen-

erates heat. This effect, which takes place uniformly

along the length of the conductor, is called Joule

heating. The amount of heat generated is:

P ¼ I2R

where P is the power output (W), I is the current

(A), and R is the resistance (�). This heating poses

problems for closely packed electronic circuits,

which have to be cooled to function correctly.

13.2 Semiconductors

13.2.1 Intrinsic semiconductors

The simplest band picture of a semiconductor is

drawn in Figure 13.7. The energy gap between the

top of the valence band, Ev, and the bottom of the

conduction band, Ec, is called the band gap, Eg.

Electron energy increases (and is defined to be

positive) when measured upwards from the top of

the valence band, which is usually taken as the

energy zero. Hole energy increases (and is defined

to be positive) when measured downwards from the

top of the valence band. At absolute zero, the

valance band will be full and the conduction band

empty. As the temperature increases, some electrons

will be promoted across the narrow band gap, and

the material will show a small degree of conductiv-

ity. Because the number of electrons promoted will

increase with temperature, the conductivity will rise

with temperature. This increase is characteristic of a

semiconductor and is of greater importance than the

magnitude of the conductivity. Remember that for

metals conductivity falls with increasing temperature.

The conductivity, �, of a semiconductor is made

up of two components, one due to electrons,

�e ¼ ne�e

and one due to holes,

�h ¼ pe�h

so that the overall conductivity will be given by:

�ðtotalÞ ¼ ne�e þ pe�h

where the subscripts e and h refer to electrons and

holes, respectively; the number of electrons is given

Figure 13.6 The variation of the resistivity of alloys

with concentration of the alloying elements

Figure 13. 7 The simplest ‘flat-band’ energy-band de-

scription of an intrinsic semiconductor
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by n; the number of holes is given by p; and the

mobility is given by �.

It is possible to determine the number of electrons

excited into the conduction band by thermal energy

in an intrinsic semiconductor using Fermi–Dirac

statistics (see Section 2.3.7 and Section S4.12). It

is found that:

n / exp � Eg

2kT

� �

where n is the number of electrons in the conduction

band, Eg is the band gap between the top of the

valence band and the bottom of the conduction

band, k is the Boltzmann constant, and T is the

absolute temperature. As the number of holes is

equal to the number of electrons in an intrinsic

semiconductor,

p / exp � Eg

2kT

� �

The total conductivity, �, which is proportional to

the number of electrons and holes, can be expressed

in the form:

� ¼ �0 exp � Eg

2kT

� �

where �0 is a constant, Eg is the band gap between

the top of the valence band and the bottom of the

conduction band, k is the Boltzmann constant, and T

is the absolute temperature. Taking logarithms of

each side of this equation, we obtain

ln � ¼ ln �0 �
Eg

2kT

The gradient of a plot of conductivity versus 1/T

will therefore yield a value for the (thermal) band

gap (Figure 13.8).

An alternative method of obtaining the magnitude

of the band gap is via the absorption of radiation. In

a semiconductor, almost all of the energy levels

below the conduction band are occupied. This

means that low-energy radiation directed at a crystal

will not interact with the electrons, and the crystal

will be transparent. As the energy gradually

increases, eventually the energy will just be suffi-

cient to promote an electron from the top of the

valence band to the bottom of the conduction band.

The radiation will now be absorbed and the crystal

will become opaque. The (optical) band gap can be

equated to the energy at which this change occurs.

Thus,

Eg ¼ h	g

where h	g is the energy of the photon required to

promote an electron from the valence band and

create a hole in its place.

Note that the absorption of radiation is more

complex than this simple model suggests, and a

more complete description will be given in Section

14.1.3. Moreover, the measured value of the optical

band gap is usually slightly different from the

thermal band gap. This is simply a reflection of

the fact that the bands in a semiconductor are not

flat as drawn in Figure 13.7 but have a more

complex curved shape.

Approximate values for the band gap in some

semiconductors is given in Table 13.1. The band

gap decreases as the atom size increases (i.e. as one

moves down the relevant group in the periodic

table). Thus, within the group of elements listed,

diamond is best regarded as an insulator, whereas

grey tin is regarded as a metal. The second group

Figure 13.8 The variation of resistivity versus recipro-

cal temperature for an intrinsic semiconductor
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are called III–V semiconductors because they are

compounds of elements in groups III and V (now

groups 13 and 15) of the periodic table. The last

compounds listed are called II–VI semiconductors

because they are compounds of elements in groups

II and VI (now groups 12 and 16) of the periodic

table.

The decrease in band gap with size of atom is

simply a consequence of the fact that the outer

orbitals of larger atoms overlap more and give rise

to wider bands. As a consequence, the gaps are

narrower.

13.2.2 Carrier concentrations in intrinsic
semiconductors

To determine more accurate values for the number

of holes and electrons present in an intrinsic semi-

conductor it is appropriate to use Fermi–Dirac

statistics and the density of states at the bottom of

the conduction band (see Section S4.8). To a good

approximation, it is found that the number of

electrons in the conduction band per unit volume,

ni, which is equal to the number of intrinsic holes in

the valence band, pi, at an absolute temperature, T ,

is:

ni¼ pi¼ 4:826	1021 m�em�h
m2

e

� �3=4

T3=2 exp � Eg

2kT

� �

ð13:2Þ

where m�e is the effective mass of the electron, m�h is

the effective mass of a hole, and Eg is the band gap.

In an intrinsic semiconductor

n ¼ p ¼ ni ¼ pi

Equation (13.2) shows that, at a given temperature

n p ¼ constant

The temperature dependence of the equilibrium

constant is given by:

np ¼ 2:33	 1043 m�e m�h
m2

e

� �3=2

T3 exp � Eg

k T

� �

Assuming that the effective mass of electrons and

holes is independent of temperature, we obtain

np / T3 exp � Eg

kT

� �

This equation applies to doped semiconductors as

well as to intrinsic semiconductors, a finding of

considerable practical importance. To a good

approximation, the Fermi energy lies at the centre

of the band gap (Section S4.8):

EF ¼
1

2
Eg þ

3

4
kT ln

m�h
m�e

� �

 1

2
Eg

Writing the total conductivity, �(total), as

�ðtotalÞ ¼ ne�e þ pe�h

we obtain

�ðtotalÞ ¼ 773:1
m�em�h

m2
e

� �3=4

T3=2ð�e þ �hÞ

	 exp � Eg

2kT

� �
ð13:3Þ

Table 13.1 Approximate values for the band gap of

some semiconductors

Symbol or

Compound formula Band gap/eV

Elements:

Diamond C 5.47

Silicon Si 1.12

Germanium Ge 0.66

Grey tin Sn 0.08

III–V semiconductors:

Gallium nitride GaN 3.36

Gallium phosphide GaP 2.26

Gallium arsenide GaAs 1.42

II–VI semiconductors:

Cadmium sulphide CdS 2.42

Cadmium selenide CdSe 1.70

Cadmium telluride CdTe 1.56

Note: the band gap is normally given in electron volts in most
compilations; 1 eV is equal to 1:60219	 10�19 J.
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Although the mobility of electrons and holes

decreases with temperature, exactly as in a metal,

it is found that the conductivity of an intrinsic

semiconductor increases with temperature, as the

exponential term in Equations (13.2) and (13.3)

dominates the other terms.

13.2.3 Extrinsic semiconductors

The deliberate addition of carefully chosen impu-

rities to silicon, germanium and other semicon-

ductors is called doping. It is carried out so as to

modify the electronic conductivity, and the dopants

are chosen so as to add either electrons or holes to

the material. It is possible to gain a good idea of

how this is achieved very simply. Suppose that an

atom such as phosphorus, P, ends up in a silicon

crystal. This can occur, for example, if a small

amount of phosphorus impurity is added to molten

silicon before the solid is crystallised. Experi-

mentally the impurity atom is found to occupy a

position in the crystal that would normally be

occupied by a silicon atom, and so forms a sub-

stitutional defect.

Silicon adopts the diamond structure, in which

each atom is linked to four tetrahedrally disposed

neighbours by four sp3 hybrid bonds (Section 5.3.6).

These use all of the four (3s2, 3p2) valence

electrons available. Phosphorus is found one place

to the right of silicon in the periodic table,

which indicates that the atom has one more electron

in its complement. The outer electron structure of

phosphorus is 3s2, 3p3, and, after forming four sp3

hybrid bonds, one electron is spare and still asso-

ciated with the phosphorus atom (Figure 13.9a.i).

This electron is available to enhance the elec-

trical conductivity if it can enter the conduction

band. Atoms such as phosphorus are called donors

when they are added to silicon as they can donate

the unused valence electron to the conduction

band.

The simplest model to employ for the estimation

of the energy needed to free the electron uses

the Bohr theory of the hydrogen atom. To recall

this model, a single electron is attracted to a

positive nucleus consisting of a single proton.

The energy needed to free this electron is given

by:

E ¼ � mee4

8"2
0h2

where me is the mass of the electron, e is the

electron charge, �0 is the permittivity of free

space, and h is the Planck constant. The value of E

is �2.18	 10�18 J (�13.6 eV). The negative value

reflects the fact that zero is taken as the energy

of a completely free electron. To apply this to an

electron located at a phosphorus atom, suppose

that the attraction of the phosphorus nucleus is

‘diluted’ by the relative permittivity of silicon, �r,

and the mass of the electron is replaced by the

effective mass m�e . The energy to free the electron

Figure 13.9 (a) (i) Donor impurity in a crystal of an

extrinsic semiconductor and (ii) the associated energy-

band diagram; donor impurities add donor energy levels

below the conduction band. (b) (i) Acceptor impurity in a

crystal of an extrinsic semiconductor and (ii) the asso-

ciated energy-band diagram; acceptor impurities add

acceptor energy levels above the valence band
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is now:

EðPÞ ¼ � m�ee4

8"2
0"

2
r h2

¼ Em�e
me"2

r

As the effective mass of an electron in silicon is

approximately one tenth of the electron rest mass,

and as the relative permittivity of silicon is about

10, the energy needed to free the electron is about

one hundredth of the band gap, which suggests that

the electron should be very easily liberated. Donor

energies are often represented by an energy level,

the donor level, drawn under the conduction band

(Figure 13.9a.ii).

An analogous situation arises if silicon is doped

with an element such as aluminium. Aluminium is

also found to form a substitutional defect. However,

aluminium is found one place to the left of silicon in

the periodic table, with a valence electron config-

uration 3s2, 3p1, and has one valence electron less

than silicon. One of the four resulting sp3 hybrid

bonds will be an electron short. This is equivalent to

the introduction of a positive hole, which is loca-

lised on the aluminium impurity (Figure 13.9b.i).

Providing that the energy needed is not too great, an

electron from the full valance band can be promoted

to fill the bond, leaving a hole in the valence band.

The energy needed to free the hole, calculated using

the Bohr model, is similar to that of an electron.

Once in the valance band, the hole is free to move

and to contribute to the conductivity. Dopant atoms

from the left of silicon in the periodic table, such as

aluminium, are called acceptors, because they can

be imagined to accept an electron from the filled

valence band and so create a hole that takes part in

conductivity. These impurities can also be repre-

sented by energy levels, drawn just above the top of

the valence band (Figure 13.9b.ii).

The energy to liberate donor electrons and accep-

tor holes is about 8	 10�21 J (0.05 eV). These

values are comparable to room temperature thermal

energy, and most extrinsic electrons and holes

should be free at room temperature. In this state,

the donors and acceptors are said to be ionised, and

the semiconductor crystal will be a reasonable

conductor. If donor atoms are present in great

numbers, they will govern the conductivity, which

will be by electrons. The material is said to be n-

type. If acceptors are present in greatest quantities,

then holes will control the conduction, and the

material is said to be p-type. When both electrons

and holes are present and both contribute to the

conductivity we talk of majority and minority car-

riers.

The number of holes and electrons present is not

solely dependent on the number of donors and

acceptors present. The equilibrium equation,

np ¼ constant ¼ n2
i ð13:4Þ

governs populations. If large numbers of donors are

added, so that n increases, the number of holes

decreases accordingly. Similarly, if large numbers

of acceptors are added, the population of holes

increases and the number of electrons decreases.

This vital fact makes it possible to fabricate silicon-

chip electronic circuits, founded on the ability to

transform n-type to p-type silicon, and vice versa, at

will. If the relationship given in Equation (13.4) did

not hold, successive doping cycles would simply

increase overall conductivity.

13.2.4 Carrier concentrations in extrinsic
semiconductors

The electronic properties of an extrinsic semicon-

ductor are determined by the number of mobile

charge carriers, electrons and holes, both intrinsic

and extrinsic, and by the position of the Fermi

energy (Figure 13.10). The total numbers of mobile

electrons and holes is related to ni and pi, the

numbers of intrinsic electrons, and holes by:

np ¼ constant ¼ n2
i ¼ p2

i

The number of holes created by the addition of the

acceptors is equal to N�a , where the number of

acceptor atoms per unit volume is Na, and the

number of acceptors that have gained an electron,
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ionised acceptors, is N�a . Similarly, the number of

electrons created by the addition of the donors is

equal to Nþd , where the number of donor atoms per

unit volume is Nd, and the number of donors that

have lost an electron, ionised donors, is Nþd . As a

doped crystal must remain electrically neutral,

nþ N�a ¼ pþ Nþd ð13:5Þ

Equations (13.4) and (13.5) allow the numbers of

mobile charge carriers and the position of the Fermi

level to be found as a function of dopant concentra-

tion, using a similar approach to that outlined in

Section S4.8 for intrinsic semiconductors. Unfortu-

nately, the results are not easily expressed analyti-

cally or displayed graphically.

At elevated temperatures, most of the donors and

acceptors will be ionised, and the electroneutrality

condition, Equation (13.5), can be written as:

nþ Na ¼ pþ Nd ð13:6Þ

In cases where an n-type semiconductor contains

only donors, and at high temperatures, so that the

donors are completely ionised, Equations (13.4) and

(13.6) give the number of electrons and holes as

nðn-typeÞ 
 Nd

pðn-typeÞ 
 n2
i

Nd

Similarly, for a p-type semiconductor crystal that

contains only acceptors at high temperatures, the

number of electrons and holes is:

nðp-typeÞ 
 n2
i

Na

pðp-typeÞ 
 Na

The position of the Fermi level is a function of the

temperature and the concentration of the electrons

and holes (Figure 13.11). At low temperatures, the

position of the Fermi level approaches the conduc-

tion band in n-type materials and the valence band

in p-type materials. In effect, the Fermi level

changes in order to maintain a balance between

the charges (Figure 13.12). As the temperature

increases, the contribution from the intrinsic

electrons and holes increases. In essence, the

semiconductor gradually changes from an extrinsic

towards an intrinsic material. Because of this, the

Fermi level approaches the position found in

intrinsic semiconductors, near to the middle of

the band gap. The rapidity of this change will

depend on the concentrations of donors and accep-

tors in the semiconductor. A semiconductor will

maintain its extrinsic character to higher tempera-

tures when doped with higher concentrations of

impurities.

13.2.5 Characterisation

Although the resistance of a metal can be mea-

sured easily by attaching two contacts, this gives

Figure 13.10 The position of the Fermi energy in (a) a p-type semiconductor and (b) an n-type semiconductor at low

temperatures
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unreliable results for semiconductors. For these

materials, the resistivity is most often deter-

mined by using a four-point probe on rectangular

(Figure 13.13a) or disc-shaped (Figure 13.13b)

samples. The probes are sharply pointed, equally

spaced, needles and press down with a known

force on the surface of the sample. The current

passes between two outer probes, and the

voltage drop is measured between the two inner

probes. The relationship between the measured

Figure 13.12 The position of the Fermi energy in semiconductors varies with temperature and dopant concentration

so as always to maintain the relationship np ¼ constant: (a) in an n-type semiconductor the concentration of electrons is

much higher than the concentration of holes, and the Fermi energy is to the left-hand side of the ‘balance’; (b) in an

intrinsic semiconductor the concentration of holes and electrons is equal and the Fermi energy is central; (c) in an n-type

semiconductor the concentration of holes is much higher than the concentration of electrons, and the Fermi energy is to

the right-hand side of the ‘balance’. As the temperature increases the intrinsic contribution to the hole and electron

concentrations becomes more important, and the Fermi energy tends towards the centre

Figure 13.11 The variation of the position of the Fermi energy of (a) an n-type and (b) a p-type semiconductor with

temperature

Figure 13.13 Arrangement in the four-point probe method of measurement of resistance of semiconductors for (a)

rectangular specimen and (b) a disc. The spacing, s, of the probes is much smaller than the dimensions of the specimen.

The current is measured between the outer probes, and the voltage drop is measured between the inner two probes
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voltage and current and the resistivity depends on

the geometry of the experimental setup. For a bulk

specimen, in which the thickness of the sample is

much greater than the spacing between the probes,

� ¼ 2�s
V

I

� �

where � is the resistivity of the material, s is

the distance between the probe needles, V is

the voltage drop between the middle two needles,

and I is the current between the outer two needles.

In the case of a thin film, in which the probe

spacing, s, is much greater than the film thickness,

t, and much smaller than the distance to the edge of

the film, that is l;w� s� t (Figure 13.13a), or

d � s� t (Figure 13.13b), the expression for the

resistivity is:

� ¼ �t

ln 2

V

I


 4:54t
V

I

This formula is independent of the probe spacing, s.

The resistance of thin films is sometimes reported

as the sheet resistance, Rs. This is defined in terms

of the bulk resistance of a material, R, of resistivity

�, and the dimensions of the sample. For a rectan-

gular specimen (Figure 13.13a):

Rs ¼
�

t

� ¼ Rwt

l

hence

Rs ¼
Rw

l

The sheet resistance is quoted in unit of ohms per

square (�/&). Thus

� ¼ Rst ð�mÞ

The carrier type can be found in two ways, via the

Hall effect or the Seebeck effect. The second

technique is described in Section 15.2.2. The Hall

effect, discovered in 1879, relies on the displace-

ment of moving charges in a magnetic field to

determine the nature of the mobile carriers. A slab

of material is arranged so that the current flow is

normal to a fairly strong (0.2 T), magnetic induction

(Figure 13.14a). The moving charges will experi-

ence a force due to the magnetic induction in

the solid that is normal both to current direction and

to magnetic field. That is, if the current I is along

the x axis and the magnetic induction is along the

z axis the charge carriers will be deflected in the

y-axis direction. This deflection will build up until

the electric field density is just strong enough to

oppose further charge displacement. The result is a

voltage, the Hall voltage, along the y-axis. Perhaps

counterintuitively the charge carriers will be

deflected in the same direction, irrespective of the

charge that they carry, and the sign of the voltage

will give the sign of the charge carriers. The value

of the Hall voltage, V , can be appreciable.

Figure 13.14 (a) Arrangement of the measurement of the Hall effect, showing the axes used; (b) the sign of the Hall

voltage with respect to the direction of the current and magnetic induction
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The relationship between the current, magnetic

induction and electric field is:

Ey ¼ �RH JxBz ð13:7Þ

where Ey is the electric field along the y axis,

measured in V m�1, Jx is the current density along

the x axis, measured in A m�2, and Bz is the

magnetic induction along the z axis, measured in

T. The constant of proportionality, the Hall

coefficient, RH, has units m3 C�1¼V m A�1 T�1.

The sign of the Hall coefficient differentiates n-type

and p-type semiconductors. For example, if the

magnetic induction is aligned along �z (Figure

13.14a), a positive Hall voltage compared with the

orthogonal V, B and I axes, yields a positive value

for RH and the material is p-type, whereas a nega-

tive voltage and negative RH indicates that the

material is n-type (Figure 13.14b).

The Hall coefficient is related in a simple way to

the number of mobile charge carriers. Suppose that

the current is made up of electrons flowing parallel

to x with a drift velocity vx. The magnetic field

present will exert a force, F, on an electron:

F ¼ evxBz

The force exerted by an electric field, Ey, on an

electron is given by

F ¼ Ey e

When the two forces are equal and equilibrium is

achieved,

Ey ¼ vxBz

The current density is given by:

J ¼ �nevx

where n is the number of mobile electrons per

unit volume. Substituting the expressions for Ey

and J into Equation (13.7), and rearranging, we

obtain:

RH ¼
�1

ne

where n is the number of electrons per unit volume,

each with a charge of �e. For a flow of positive

holes:

RH ¼
1

pe

where p is the number of mobile holes per unit

volume, each with a charge of þe.

In general, only one mobile charge carrier, either

electrons or holes, is present. In this case, by

measuring both the conductivity, �, and the Hall

coefficient, RH, it is possible to determine the

number of charge carriers and their mobility as:

�e ¼ ne�e

�RH�e ¼ �e

or

�h ¼ pe�h

þRH�h ¼ �h

If both electrons and holes are present:

�ðtotalÞ ¼ ne�e þ pe�h

¼ jejðn�e þ p�hÞ

and

RH ¼
n�2

e þ p�2
h

ðn�e þ p�hÞ2
1

jej

The mobility derived from a Hall measurement is

often called the Hall mobility to distinguish it from

the drift mobility (see Section S4.7).

For noncubic single crystals the Hall coefficient

varies with direction, although the effect is averaged

when measurements are made on polycrystalline

samples. A number of ordinary metals have positive

Hall coefficients, including Be, Al, Cd, In, As and

W. These results could not be explained in terms of

the classical ‘electron gas’ model. In some metals,

such as Er and Ho, the Hall coefficient varies from

negative to positive as a function of crystallographic

direction. The explanation of these findings requires

404 ELECTRONIC CONDUCTIVITY IN SOLIDS

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


a detailed knowledge of the three-dimensional

shape of the Fermi surface in these metals.

13.2.6 The p–n junction diode

The electrical behaviour that emerges when a region

of p-type semiconductor is adjacent to a region of n-

type semiconductor, a p–n junction diode, often just

called a diode, is different from the behaviour of the

separate components. (Note that p–n junction

diodes are fabricated by selective doping of differ-

ent regions of a semiconductor crystal and not by

joining separate crystals together.)

The simplest band picture of a p–n junction is

shown in Figure 13.15. In separated materials, the

Fermi energies are unequal (Figures 13.15a and

13.15b). When a p-type region abuts an n-type

Figure 13.15 The p–n junction. (a) energy bands of separated p-type and n-type materials; (b) schematic energy bands

for juxtaposed p-type and n-type materials. (c) energy bands on joining; (d) distorted energy bands in the junction region

at equilibrium; and (e) the numbers of electrons and holes across the junction region at equilibrium
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region, electrons move into the p-type region from

the n-type side, and holes move into the n-type

region from the p-type region, by diffusion. This

can be thought of as electrons spilling down the

Fermi surface, EF, from p to n, and holes spilling up

the Fermi surface, EF, from p to n. Most of these

moving displaced charge carriers will recombine,

holes with electrons in the n region, and electrons

with holes in the p region. As electrons leave the n-

type material, positively charged donor atoms are

left behind, and negatively charged acceptor atoms

are left in the p-type material as holes leave. These

charges will create an electric potential, the contact

potential, of about 0.3 V. At equilibrium, the Fermi

level must be the same on each side of the junction

(Figure 13.15c). The energy levels have been shifted

vertically with respect to each other, by the differ-

ence in EF values, to give a distorted band structure

in the junction region (Figure 13.15d), and the

electron and hole populations change dramatically

as the junction is traversed (Figure 13.15e).

The transition region has a width of about 1 mm.

The density of mobile charge carriers in the transi-

tion region is low, and for this reason the transition

region is also called the depletion region. At equili-

brium (thermal and electrical) there will still be an

exchange of carriers at the junction, but the current

in each direction will be the same. Dynamic equili-

brium holds.

The conductivity of the p–n junction in one

direction is totally different from that in the other.

An applied voltage, which will drop across the

transition region, because of the absence of mobile

charge carriers, can be applied with the positive

side connected either to the p-type region or to the

n-type region. The arrangement in which the posi-

tive voltage is connected to the p-type region is

called forward bias. This causes the potential barrier

to be reduced. The Fermi level changes to allow

electrons to ‘roll down’ the Fermi level and the

holes ‘roll up’ the Fermi level, causing a current to

flow (Figure 13.16a). Under a forward bias there is a

rapid increase in the current flowing across the

junction. The situation when the negative voltage

is applied to the p-type region is called reverse bias

(Figure 13.16b). The effect of the reverse bias is to

raise the potential barrier, so that electrons cannot

pass up it or holes down it. Current flow now

virtually ceases.

The change of current with applied voltage is

given by the Shockley equation. In a simplified form

this is:

I ¼ I0 exp
eV

kT

� �
� 1

� �

where I0 is a constant term, the saturation current,

determined by the junction geometry and the doping

levels; e is the charge on the electrons and holes; V

is the applied voltage; k is the Boltzmann constant;

and T is the temperature (Figure 13.17).

The total current across the device, which is

constant for any applied voltage, is made up of

Figure 13.16 (a) (i) A p–n junction under forward bias

and (ii) band structure of the junction; (b) (i) a p–n

junction under reverse bias and (ii) band structure of the

junction
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hole and electron flows in opposite directions.

Consider the situation when a forward bias is

applied (Figure 13.18). The number of electrons

moving to the left will increase rapidly, by a factor

of exp(V=kT). If V is 0.1 V, this is a factor of about

	55 at room temperature. Thus the number of

electrons appearing at the p-type boundary is

about 55 times higher than the equilibrium concen-

tration there. A similar situation describes the holes

appearing at the n-type boundary. In general, the

hole current will be greater than the electron current

under forward bias, but the actual currents on each

side will depend on the doping levels.

When the electrons reach the p-type region they

are annihilated by combination with holes. The

penetration depth depends on a number of factors,

but can be taken to be about 1 mm. In order to

maintain charge neutrality, the hole population must

be replenished and holes must be move into the

p-type region from the left to balance the electron

density. Similarly, the holes that arrive in the n-type

region are gradually annihilated by recombination

with electrons. In order to maintain charge balance,

an extra electron current must flow into the n-type

region from the right.

The total current flowing will be made up of six

components (Figure 13.18):

� Ia, total current (constant) ¼ Ib þ Ie þ Ig ¼ Icþ
Id þ If ;

� Ib, electron current flowing in the n-type region

(constant);

� Ic, injected electron current in p-type region

(decaying);

� Id, hole current in p-type region (constant);

� Ie, injected hole current in n-type region (decay-

ing);

� If , declining hole current in p-type region to

balance and annihilate Ic;

� Ig, declining electron current in n-type region to

balance and annihilate Ie.

This is quite different than in a metal, in which an

applied voltage allows the mobile electrons to

acquire a drift voltage. In a p–n junction, minority

carriers are injected into both regions. They were

not there originally and arise as a consequence of

the applied voltage.

From what has been said, it can be seen that a p–n

junction diode acts as a rectifier. That is, the device

Figure 13.17 The ideal current–voltage characteristics

for a p–n junction. Note: I and I0, the current and the

saturation current, respectively; e, charge on the electrons

and holes; V , applied voltage; k, the Boltzmann constant;

T , temperature

Figure 13.18 The currents Ia–Ig flowing across a p–n

junction under forward bias
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exhibits a very low resistance to current flow in one

direction and a very high resistance in the other.

13.2.7 Modification of insulators

The properties of insulators can be modified in the

same way as the properties of semiconductors, and

an insulator can be transformed into a semiconduc-

tor by suitable doping. The impurities can act as

donors, donating electrons to the conduction band,

or as acceptors, accepting electrons from the valence

band, and thus donating holes to the valence band.

Nickel oxide, NiO, has the halite (B1) structure and

can be considered to be an ionic oxide, containing

equal numbers of Ni2þ and O� ions. Green nickel

oxide can be reacted with colourless lithium oxide,

Li2O, to give a black solid solution LixNi1�xO. The

Liþ ions occupy Ni2þ sites in the structure to form

substitutional defects. In order to maintain charge

neutrality, every Liþ ion in the crystal must be

balanced by a Ni3þ ion. This can be regarded as a

Ni2þ ion together with a trapped hole. The situation

is thus analogous to that of Al3þ doped into silicon,

and the defect can be regarded as an acceptor

(Figure 13.19a). The process of creating electronic

defects in a crystal in this way is called valence

induction. Black LixNi1�xO is a p-type semiconduc-

tor, and as the holes are only weakly bound to the

cations the material posses a high conductivity.

It is equally possible to impart n-type conductiv-

ity to an insulator by suitable doping. An example is

provided by the reaction of small amounts of gallium

oxide, Ga2O3, with zinc oxide, ZnO. In this case,

Ga3þ ions substitute for Zn2þ ions in the zinc oxide

structure to form GaxZn1� xO. To maintain charge

neutrality, one electron must be added to balance

each Ga3þ ion in the structure. It is generally

believed that these rest on Zn2þ ions to generate

Znþ ions in the crystal. The electrons are not

strongly attached to the Zn2þ ions, and each Znþ

ion can be regarded as a donor (Figure 13.19b).

The key to valence induction is that the cation of

the host structure can take two valence states, one of

which is regarded as the host cation plus a weakly

bound hole or electron.

The electronic properties of complex oxides can

be changed in the same way, provided that one of

the cations present can take part in the valence

change. SrVO3 provides an example. The structure

of this phase is of the cubic perovskite type. This

material, which is an insulator, contains Sr2þ ions in

the large sites between the metal–oxygen octahedra

and V4þ ions in the octahedra. If some of the Sr2þ

ions are replaced by La3þ ions, charge neutrality is

maintained by transforming some V4þ ions into V3þ

ions. The V3þ ions can be regarded as V4þ ions plus

a trapped electron, and are donors. Thus although

SrVO3 is a poor electronic conductor, LaxSr1�xVO3

is quite a good one.

13.2.8 Conducting polymers

Ordinary polymers are good insulators, and they are

widely used in this capacity, as insulating covering

Figure 13.19 The conversion of insulating oxides into

semiconductors. (a) (i) Nickel oxide (NiO) doped with

lithium oxide (Li2O), making it a p-type semiconductor,

and (ii) the energy-band structure of Liþ-doped NiO. (b)

(i) Zinc oxide (ZnO) doped with gallium oxide (Ga2O3),

making it an n-type semiconductor, and (ii) the energy-

band structure of Ga3þ-doped ZnO
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on cables and other electrical conductors. The

molecular feature that allows polymers to become

electronically conducting is the presence of conju-

gated double and single bonds (Scheme 13.1). The

framework of the molecule is composed of sp2 hybrid

� bonds, at 120 � to each other (see Section 2.2.6).

The double bonds are formed by overlap of p
orbitals above and below the plane of the carbon

chains. These are not located between specific pairs

of carbon atoms, as drawn, but are spread over all of

the molecule as delocalised p orbitals, similar to

those above and below the planes of the sheets of

carbon atoms in graphite. A long molecule will have

extensive delocalised p orbitals, and it could be

anticipated that these would lead to high electronic

conductivity along the backbone of the molecule, to

give a ‘one-dimensional’ metal.

The first conducting polymer to be synthesised

was polyacetylene. When polymerised, acetylene

(ethyne) forms a silvery flexible film of polyacety-

lene. Acetylene (ethyne) has a formula C2H2. The

carbon atoms are linked by a triple bond, consisting

of 1 sp-hybrid � bond and two p bonds (Scheme

13.2). Generally, polymerisation leads to the all-cis

polymer. At room temperature this changes to the

thermodynamically stable all-trans form. These two

forms are geometrical isomers (see Section S2.1).

Both are poor insulators, with the trans form having

a conductivity similar to that of silicon (approxi-

mately 10�3 S m�1), and the cis form with a con-

ductivity similar to that of water (approximately

0.1 S cm�1).

This is rather surprising if the band structure of

these materials is considered. The sp2 hybrid orbi-

tals are filled and would give lower-energy filled

bands that do not contribute to the conductivity. The

remaining pz orbitals on each carbon contain one

electron. A chain of CH units, each with one

unpaired outer electron, is analogous to a chain of

alkali metal atoms such as lithium. On the one hand,

if the separation of the carbon atoms is rather large,

each electron would be completely localised on

each carbon and the polymer would be a magnetic

insulator, possibly ferromagnetic or antiferromag-

netic (Figure 13.20a; see Section 12.3). On the other

hand, if the intercarbon distance is small, each

electron is able to delocalise over all of the carbon

atoms in a p band. Each atom would contribute just

one electron, which would produce a half-full band

and the material should show metallic conductivity

(Figure 13.20b).

The discrepancy is resolved in the following way.

A linear chain of equispaced atoms in a metal, such

as a chain of sodium atoms, is found to be energe-

tically unstable. Instead, the spacing between the

atoms will adjust itself so that an energy gap opens

Scheme 13.1 Part of a conjugated hydrocarbon mole-

cule, in which carbon atoms are linked alternately by

single and double bonds. Note: C, carbon; H, hydrogen;

bonds connecting the atoms are shown as lines

Scheme 13.2 Schematic structures of polyacetylenes:

(a) acetylene (ethyne), (b) repeating unit of the trans

polymer and (c) repeating unit of the cis polymer
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at the Fermi level. The variation in spacing is called

a Peierls distortion. As a consequence, the half-

filled band is transformed into two – a filled band

and an empty band – and, as a result the solid

becomes a semiconductor (Figure 13.21). In agree-

ment with this, C–C bonds along the chain in trans

and cis polyacetylene alternate between two

lengths. The band gap is approximately 1.8 eV

(2.88	 10�19 J) in the trans form and about 2 eV

(3.20	10�19 J) in the cis form of the polymer.

Polyacetylene is transformed into a metallic

conductor by doping. This involves oxidation or

reduction of the polymer. Electron acceptors such as

halogens (chlorine, iodine, etc.) oxidise the poly-

mer. In this process, electrons are taken from the

filled lower band and used to form halide ions,

leaving holes, which result in a ‘p-type’ material.

A typical reaction is:

½CH�n þ
3x

2
I2 ! ½ðCHÞxþn xðI�3 Þ�

The iodine enters the polymer between the mole-

cular chains.

Doping with alkali metals (lithium, sodium, etc.)

reduces the polymer. In this process, the alkali metal

donates electrons to the empty band, forming an

alkali metal ion and transforming the polymer into

an ‘n-type’ material. A typical reaction can be

written as:

½CH�n þ xLi! ½ðCHÞx�xLiþ�

Conductivity of these doped materials is of the order

of 108 S m�1, similar to that of copper or silver. The

variation of the conductivity with dopant concentra-

tion is illustrated in Figure 13.22. Notice that much

greater concentrations of dopant are needed (at %)

than those used in the traditional semiconductors

such as silicon (parts per million). Heavy doping

has transformed the insulating polymer into a mate-

rial that seems to be metallic. This is an example of

an insulator-to-metal transition.

However, the conductivity and other electrical

properties of both the semiconducting and the

Figure 13.20 (a) (i) A chain of isolated half-occupied

p orbitals, which will lead to a magnetic insulator and (ii)

the magnetic dipoles in one possible orientation. (b) (i) A

chain of overlapping p orbitals, which will lead to (ii) a

half-filled conduction band and metallic conductivity

Figure 13.21 (a) Delocalised orbitals along a polymer

chain leads to equally spaced atoms and a half-filled

energy band. Peierls distortion in (b) trans-polyacetylene

and (c) cis-polyacetylene, leads to alternating short and

long bonds and a band structure similar to that of an

intrinsic semiconductor
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metallic region are not identical to those of the

semiconductors and metals already discussed. For

example, the conductivity in the metallic region of

iodine-doped polyacetylene decreases as the tem-

perature decreases (Figure 13.23) whereas in an

ordinary metal the reverse is true. Moreover, the

resistivity seems to have an Arrhenius-like tempera-

ture dependence:

� ¼ �0 exp � Ea

kT

� �

where Ea is the activation energy, k is Boltzmann’s

constant, T is the temperature, and �0 is a constant

(Figure 13.23). This suggests that the dopant does

not simply add mobile carriers to a conduction or

valence band, as with silicon.

The explanation of this feature is bound up with

both the microstructure and the nanostructure of the

polymer. Polyacetylene is composed of ordered,

fairly crystalline, regions linked by disordered

regions in which the polymer chains are twisted

and coiled, which indicates that the band picture is a

severe approximation. This is why dopants do not

simply add mobile charge carriers to bands. The

dopants, in fact, modify the nanostructure of the

polymer chains. Acetylene polymerises preferen-

tially to form the cis isomer, and this transforms

into the stable trans form. The transformation pro-

cess is initiated at random, rather like the nucleation

of a crystal in a liquid. In the same way that

crystallites grow together to form a polycrystalline

mass, when two regions of polymer chain that have

transformed from cis to trans meet there is fre-

quently a mismatch (Figure 13.24). This mismatch

is called a soliton, which can be thought of as an

interruption in the orderly pattern of conjugated

double bonds, extending over several adjacent car-

bon atoms. In some cases there will be a p electron

missing, which will give the soliton a positive

charge. In other cases, the soliton can attract an

unbound p electron to give a neutral soliton, or two

Figure 13.22 Schematic variation of the conductivity

of polyacetylene doped with iodine. The concentration is

in moles of I2 per CH unit. The conductivity changes from

that typical of an insulator to that associated with a metal

Figure 13.23 Schematic variation of the conductivity

of polyacetylene doped with iodine versus reciprocal

temperature. Dopant concentration is approximately (a)

0.15 mol%, (b) 0.01 mol% and (c) 0.005 mol% of I2 per

CH unit

Figure 13.24 A soliton in trans-polyacetylene. The

shaded ellipse in the centre of the soliton may represent

either an electron hole (creating a positively charged

soliton), a single electron (creating a neutral soliton) or

two electrons (creating a negative soliton)
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p electrons to give a negative soliton. Doping adds

to the soliton density along the polymer chains by

extracting or adding electrons.

Solitons give rise to two effects. First, at the

soliton, the alternating bond lengths required for

the Peierls transition are suppressed. Ultimately,

when enough solitons are present, the Peierls transi-

tion fails and a half-filled band is reinstated, recreat-

ing the metallic state. Second, the solitons give rise

to impurity energy levels in the band gap. When

enough of these are present, they merge and bridge the

band gap, again making high conductivity possible.

The conduction process is not simply the spread

of electron waves throughout the solid, as in a

crystalline metal. Instead, the charge on the soliton

jumps from one location to a neighbouring one

under the influence of an electric field. This is

similar to ionic conductivity, and this produces the

Arrhenius-like behaviour.

The conductivity of the polymer depends on the

microstructure of the solid. Stretching the polymer

sheet at moderate temperatures increases the align-

ment of the chains and leads to significant improve-

ment in properties along the chain direction. In this

form, polyactylene is widely used as an electrode

material in lightweight batteries.

13.3 Nanostructures and quantum
confinement of electrons

Section 3.2.5 introduced the ideas of quantum wells,

quantum wires and quantum dots. These structures

have unique electronic and optical properties

because of the way in which electrons are localised,

or confined. In bulk solids, electrons are located on

atom cores in ionic solids, in localised bonds in

normal covalent solids, delocalised over molecular

orbitals, as in graphite, or completely delocalised, as

in metals. Quantum nanostructures confine the elec-

trons (and holes in semiconductors) at a scale

different from any of these, and this gives rise to

the novel properties that such structures possess. An

electron or hole bonding energy much greater than

thermal energy characterises strongly confined

charge carriers.

13.3.1 Quantum wells

A quantum well is constructed by laying down a

thin layer of a semiconductor with a smaller band

gap within a semiconductor with a larger band gap.

The most studied quantum well structures are

those formed from a layer of gallium arsenide,

GaAs, sandwiched in gallium aluminium arsenide,

GaAlAs (Figure 13.25a). Gallium arsenide has a

band gap of about 1.42 eV, whereas aluminium

arsenide has a band gap of about 2.16 eV. Gallium

Figure 13.25 (a) A single quantum well of gallium

arsenide, GaAs, formed from a thin layer in gallium

aluminium arsenide, GaAlAs; (b) the energy band struc-

ture of the quantum well; (c) a multiple quantum well

superlattice in gallium arsenide; and (d) the schematic

energy band structure of the superlattice. Note: CB,

conduction band; VB; valence band; Eg, band gap
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aluminium arsenide alloys have band gaps between

these values. The electrons in the thin GaAs layer

are effectively trapped in the ‘well’ formed in the

conduction band of the composite material (Figure

13.25b). Similarly, the holes in the thin layer of

semiconductor are trapped at the ‘hill’ in the

valence band of the composite material.

The properties of single quantum wells are

enhanced when a number of these features are

combined to form a multiple quantum well or

superlattice (Figures 13.25c and 13.25d).

The dimension at which quantum confinement

becomes important, �x, is derived from the

Heisenberg uncertainty principle (see Section 1.2.1).

It is found that

�x 
 h2

m�ekT

� �1=2

for electrons, and

�x 
 h2

m�hkT

� �1=2

for holes, where h is the Planck constant, m�e is the

effective mass of the electron in the semiconductor,

m�h is the effective mass of the hole in the semi-

conductor, k is the Boltzmann constant, and T is the

temperature (in kelvin). For quantum confinement

to be important, quantum wells must be about 10

atom layers or less in thickness.

The energy of an electron in a quantum well can

be calculated using the approach outlined in Section

2.3.6. If it is assumed that the electron is free, and

trapped by an infinite boundary potential, the same

equations for a free electron in a metal apply. Thus,

the energy, E, of a free electron in a rectangular

parallelepiped with edges a, b and c is given by

Equation (2.15):

Eðnx; ny; nzÞ ¼
h2

8me

n2
x

a2
þ

n2
y

b2
þ

n2
z

c2

 !

where h is the Planck constant, me is the mass of the

electron, and nx, ny and nz are the quantum numbers

along the three axes. Exactly the same equation will

apply to a free electron confined to a slab of

material, although it is better to replace the electron

mass with the effective mass, m�e . In the case of a

quantum well, the electron is confined in one

dimension, say x, and unconfined in two directions,

which can be taken as y and z, so it is convenient to

rewrite Equation (2.15) as:

Eðnx; ny; nzÞ ¼
h2

8m�e

� �
nx

2

a2

� �
þ h2

8m�e

� �
n2

y

b2
þ

n2
z

c2

 !

ð13:7Þ

The values of b and c can be taken as about 1 cm,

and the value of a is about 10�8 m. The energy is

therefore dominated by the first term in Equation

(13.7). This introduces a new set of energy levels,

associated with electron waves trapped in the well

(Figure 13.26). The electron energy level in the

lowest, n ¼ 1, state is raised by h2/8m�ea2 compared

with the base of the well. These energy levels are

called electron subbands, and when the energy

levels trap the electron strongly the electrons are

strongly confined.

Exactly the same equations apply to holes, where

the effective mass m�h replaces m�e . The energy levels

that arise from trapped holes are called hole sub-

bands.

Figure 13.26 The first three energy levels for an elec-

tron trapped in a one-dimensional quantum well are the

same as an electron trapped on a line (Section 2.3.6,

Figure 2.27, page 48)
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The density of states for a free electron is para-

bolic in shape (Figures 2.29, page 49, and 13.27a).

The imposition of the quantum well changes the

curve, and the smooth continuum is now broken into

steps (Figure 13.27b). The height of the steps

depends on the dimensions of the quantum well

material.

The optical properties of quantum wells are

described in Section 14.11.1.

13.3.2 Quantum wires and quantum dots

The above considerations can be applied equally

well to confinement in two or three dimensions –

so-called quantum wires and quantum dots (see

Section 3.2.5). For a quantum wire with restricted

dimensions along a and b, the free electron confined

in an infinite potential well will have energy levels

given by:

Eðnx; ny; nzÞ ¼
h2

8m�e

� �
n2

x

a2

� �
þ h2

8m�e

� �
n2

y

b2

 !

þ h2

8m�e

� �
n2

z

c2

� �

ð13:8Þ

where a and b are small, and c is large. The density-

of-states curve for this situation is drawn in Figure

13.27(c). In the case of the quantum dot, Equation

(13.8) is retained, but the third dimension, c, is also

small. The density-of-states curve for a quantum dot

is shown in Figure 13.27(d).

The interesting optical properties of these struc-

tures are described in Section 14.11.2.

Figure 13.27 (a) The density-of-states function, N(E), for a free electron in a metal; (b) the step-like density-of-states

function for an electron trapped in a quantum well; (c) the density-of-states function of an electron trapped on a quantum

wire; and (d) the density-of-states function of an electron trapped in a quantum dot
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13.4 Superconductivity

13.4.1 Superconductors

In 1911 H. Kamerlingh Ohnes found that mercury

lost all electrical resistance when cooled to the

temperature of liquid helium (4.2 K) and reached

the superconducting state. Subsequently, a large

number of materials, including metallic elements,

alloys, organic compounds, sulphides, oxides and

nitrides have been found to exhibit superconductiv-

ity. In the superconducting state all electrical resis-

tance is lost and electrical current, once started, will

flow forever without diminishing (Figure 13.28).

Superconductivity is a quantum mechanical feature,

one of the few that are apparent in the ‘macro-

scopic’ world, and some of its features are puzzling

when viewed from the standpoint of classical

physics.

The temperature at which most materials become

superconducting is called the superconducting tran-

sition temperature, Tc, (Figure 13.28). Most metallic

elements have a Tc that is below 10 K. For many

years the highest value of Tc recorded was close to

18 K, and this seemed to be a genuine limit, but new

techniques of preparation pushed this up to 23.2 K,

in the alloy Nb3Ge, by 1970. This temperature stood

as the record until the ceramic superconductors

were discovered, in 1986. Although the Tc of the

first ceramic compound recognised as a supercon-

ductor, La1.85Ba0.15CuO4, was only about 30 K, the

very existence of superconductivity in a ceramic led

to an explosion of research that produced large

numbers of new ceramic superconductors. The

current record for Tc, 138 K, is held by the oxide

Hg0.8Tl0.2Ba2Ca2Cu3O8.33.

13.4.2 The effect of magnetic fields

The defining characteristic of superconductors is the

loss of all electrical resistivity. However, other

features are important. When a superconductor is

cooled in a magnetic field it expels the magnetic

induction, B, in its interior. This is called the

Meissner effect. Ideally, this expulsion is complete

so that a superconductor behaves as perfectly

diamagnetic (see Figures 13.29a and 13.29b). In

effect, in the superconducting state a surface current

is produced that is sufficient to generate an internal

magnetic field that exactly cancels the magnetic

induction. This current also distorts the external

magnetic field so that it does not penetrate the

superconductor, which is thus screened (Figure

Figure 13.28 The variation of the resistance of a

normal metal compared with that of a superconducting

metal as the temperature approaches 0 K. In a super-

conducting metal all resistance is lost at the transition

temperature, Tc, which is close to 0 K

Figure 13.29 The Meissner effect; (a) a normal metal

or a superconducting metal above the transition tempera-

ture, Tc, allows the penetration of magnetic flux into the

bulk; (b) in a superconducting metal below the transition

temperature, the magnetic flux is ‘expelled’; (c) a surface

current, Js, is induced in the superconductor below the

transition temperature which creates an internal magnetic

flux, Bint, that cancels the external flux, Bext
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13.29c). The surface current is confined to a thin

layer, called the penetration depth, which has a

value of between 10 nm and 100 nm. The exclusion

of the magnetic induction costs energy, and when

that cost outweighs the energy gained by the for-

mation of the superconducting state the material

reverts to normal behaviour. This occurs at a critical

field, Hc, in Type-I superconductors. The value of

the critical field, Hc, is temperature-dependent so

that a phase boundary can be mapped out in H–T

phase space (Figure 13.30a). The relationship

between Hc and the critical temperature, Tc, is

given by the approximation:

Hc 
 Hcð0Þ 1� T

Tc

� �2
" #

ð13:9Þ

where Hc(0) is the critical magnetic field at 0 K, and

T is the absolute temperature. [Note that values of

the critical field are often quoted in tesla, the unit of

magnetic induction, not the unit of magnetic field,

A m�1. In these cases, equate the ‘field’ in tesla to

�0H, where H is the true field, measured in A m�1.]

In many superconductors the transition between

the superconducting and normal state is not sharp.

When the external magnetic field reaches some

lower critical magnetic field value, Hc1, magnetic

flux starts to penetrate the material. The material

becomes normal when the magnetic field reaches a

higher value, the upper critical field, Hc2. This behav-

iour characterises type-II superconductors (Figure

13.30b). The temperature dependence given in

Equation (13.9) holds if Hc is relaced by Hc2(0).

When the field reaches Hc1, filaments of magnetic

flux cross the superconductor. These regions are no

longer superconducting, so that some of the sample

is in the superconducting state and some is normal

(Figure 13.31). These small cylindrical regions of

normal material are isolated from the superconduct-

ing matrix by surface currents forming a vortex.

Figure 13.30 The variation of the superconducting properties with the external magnetic field: (a) a type-I

superconductor Hc(0) is the critical field at 0 K; (b) a type-II superconductor; Hc2(0) and Hc1(0) are, respectively, the

upper and lower critical fields at 0 K

Figure 13.31 A type-II superconductor in the mixed

state. The solid contains small threads of normal material,

fluxoids, which penetrate the superconducting bulk. These

repel each other by virtue of the surface currents, and so

form a regular array, a fluxoid lattice
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The normal threads are called vortices or fluxoids.

The currents act so as to repel each other, so that

the flux lines form an ordered structure called a

fluxon lattice, flux lattice or vortex lattice. At the

core of each flux vortex the material is effectively

normal, but is surrounded by a region of super-

conductor.

The magnetic flux enclosed by a loop of super-

conductor must be quantised in multiples of h=2e,

where h is the Planck constant, and e is the electro-

nic charge. The unit of flux is called the flux

quantum, or fluxon, �o, with a value of 2.07	
10�15 Wb (T m2). The flux enclosed in any circuit

must then be nh=2e, with n taking integral values.

As the magnetic field increases, the amount of

normal phase also increases relative to the super-

conducting part. Ultimately, the flux lines are so

close together that no superconducting material

exists between them, and the solid becomes normal.

The field that finally destroys the superconductivity

is the upper critical field, Hc2.

13.4.3 The effect of current

Although a superconducting solid exhibits no resis-

tivity, at a certain current, the critical current, Jc, a

superconductor reverts to a normal resistive state.

The critical current is a function of the temperature

and the external magnetic field, and hence the

superconducting state of a solid can be mapped

out as a volume with respect to current, field and

temperature axes (Figure 13.32). As either tempera-

ture or magnetic field increase, the critical current

decreases. The critical current is also greatly influ-

enced by the microstructure of the solid, and careful

processing is needed to obtain superconducting

samples with high values of the critical current.

For working devices a value of Jc of about

106 A cm�2 or greater needs to be achieved.

13.4.4 The nature of superconductivity

In a normal metal, resistivity is the result of inter-

actions of the current-carrying electrons with the

crystal structure. This clearly does not happen in the

superconducting state and a completely different

theory of electrical conduction is needed to account

for the properties that superconductors possess.

Type-I superconductors are well explained by the

Bardeen–Cooper–Schrieffer (BCS) theory. In this,

the superconducting state is characterised by having

the mobile electrons coupled in pairs. Each pair

consists of two electrons with opposite spins, called

Cooper pairs. At normal temperatures, electrons

strongly repel one another. As the temperature

falls and the lattice vibrations diminish, a weak

attractive force between pairs of electrons becomes

significant. In Type-I superconductors the ‘glue’

between the Cooper pairs are phonons (lattice

vibrations).

The coupling can be envisaged in the following

way. As an electron passes through a crystal, it

interacts with the surrounding positively charged

atomic cores, weakly attracting them (Figure

13.33). This leads to a slightly enhanced region of

positive charge in the neighbourhood of the passing

electron. Naturally, this weak attraction is swamped

at high temperatures by thermal vibrations. At low

temperatures another electron is able to feel the

influence of the distortion. This second electron is

weakly attracted to the slightly positive region

Figure 13.32 The region supporting superconductivity

depends on the field, the temperature and the current in

the solid. The values shown here for the critical field,

temperature and current are typical of the high-tempera-

ture ceramic superconductor YBa2Cu3O7�x
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generated by the first electron, and is carried along

with it. The two electrons are thus linked.

Formally, this is described as linkage by the

quanta of lattice vibration called phonons. When

an electron in a Cooper pair passes through the

crystal, the atom cores are attracted and then spring

back as the electron passes. This causes a phonon to

be emitted that is picked up by the other electron in

the Cooper pair. At the same time, this electron is

also causing phonons to be emitted, which are

picked up by the first electron. This phonon

exchange acts as the weak glue between the electron

pairs. This coupling is easily destroyed even at

low temperatures, and Cooper pairs are constantly

forming and breaking apart. The pairs of electrons

behave quite differently from single electrons. For

example, they share the same wavefunction and are

able to pass through the crystal unimpeded.

In the newly discovered high-temperature super-

conductors (described in Section 13.4.5) it has been

shown that the electrons are also paired. Unfortu-

nately, the BCS theory is not able to account for the

much stronger coupling that must occur in these

solids, and no satisfactory theory has yet been

suggested.

13.4.5 Ceramic ‘high-temperature’
superconductors

High-temperature superconductors are copper oxi-

des that maintain the superconducting state to tem-

peratures above that of liquid nitrogen. One of the

most interesting features of these new oxide super-

conductors is that they are all nonstoichiometric

oxides and the superconductivity is closely corre-

lated to this feature. The stoichiometric variation of

greatest significance with respect to superconduc-

tivity is the oxygen content. Some representative

materials are listed in Table 13.2.

Crystallographically, the phases are all related to

the perovskite structure type, ABO3, where A is a

Figure 13.33 (a) An electron passing through a solid attracts the positively charged atomic nuclei slightly, creating a

slightly enhanced region of positive charge; (b) at low temperatures, another electron can be attracted into this positive

region to form a Cooper pair, which behaves as a single particle

Table 13.2 Some high-temperature supercon-

ducting oxides

Compounda Tc/K

La1.85Sr0.15CuO4 34

Nd2�xCexCuO4 20

YBa2Cu3O6.95 93

Double Bi-O or Tl–O layers:

Bi2Sr2CuO6 10

Bi2CaSr2Cu2O8 92

Bi2Ca2Sr2Cu3O10 110

Tl2Ba2CuO6 92

Tl2CaBa2Cu2O8 119

Tl2Ca2Ba2Cu3O10 128

Tl2Ca3Ba2Cu4O12 119

Single Tl–O or Hg–O layers:

TlCaBa2Cu2O7 103

TlCa2Ba2Cu3O9 110

HgBa2CuO4 94

HgCaBa2Cu2O6 127

HgCa2Ba2Cu3O8 133

Hg0.8Tl0.2Ca2Ba2Cu3O8.33 138

HgCa3Ba2Cu4O10 126

a The formulae are representative and do not always show
the exact oxygen stoichiometry for the optimum Tc values
given.

Note: Tc, superconducting transition temperature.
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large cation and B is copper (see Section 5.4.3). The

structures of the superconductors can be built up of

slices of perovskite structure linked by slabs with

structures mainly equivalent to slices of the halite

and fluorite structures. The copper valence in most

compounds lies between the formal values of Cu2þ

and Cu3þ. Moreover, the appearance of supercon-

ductivity and the transition temperature are closely

connected to the composition of these nonstoichio-

metric solids, which all exhibit considerable degrees

of oxygen composition variation.

13.4.5.1 Lanthanum cuprate, La2CuO4

The phase La2CuO4 contains trivalent La and diva-

lent Cu and adopts a slightly distorted version of

the K2NiF4 structure in which the CuO6 octahedra

are lengthened along the c axis compared with the

regular octahedra in the parent phase (Figure 13.34).

The structure can be thought of as sheets of the

perovskite-type one CuO6 octahedron in thickness,

and can also be described as built from CuO2 and

LaO layers, stacked in the sequence . . . CuO2, LaO,

LaO, CuO2 . . . .

When prepared in air by heating the oxides CuO

and La2O3, the compound is usually stoichiometric,

with oxygen content close to 4.00. Electronically,

the material is an insulator. The substance can be

transformed into a superconductor via valence

induction to generate Cu3þ ions. Replacing some

of the La3þ cations with the alkaline earth cations

Ba2þ, Sr2þ or Ca2þ achieves this. In the resulting

compounds the dopant A2þ cations substitute for

La3þ. Because these ions have a lower charge than

the La3þ, charge neutrality can be maintained by

creating one Cu3þ ion for each A2þ, to give a

formula La2�xAxCu2þ
1�xCu3þ

x O4.

The first copper oxide superconductor, La2�xBax

CuO4, was produced in this way, although the

isostructural material La2�xSrxCuO4 has been inves-

tigated in most detail. This latter compound shows a

maximum Tc of 37 K at a composition near to

La1:85Sr0:15CuO4. Charge neutrality can be main-

tained in one of two ways in this compound. If

valence induction occurs, one Cu3þ forms for each

Sr2þ substituent, to give a formula La2�xSrxCu2þ
1�x

Cu3þ
x O4. It is also possible to generate one oxygen

vacancy for every two Sr2þ added, to give a charge-

neutral formula La2�xSrxCu2þO4�ðx=2Þ.
The balance between these two alternatives is

very delicately poised, and leads to a surprising

situation. Initially, the Cu3þ option is preferred.

Because Cu3þ can be looked on as Cu2þ together

with a trapped hole, valence induction generates a

hole population which leads to a superconducting

state. As the Sr2þ concentration rises the Cu3þ

population rises, peaking when x is approximately

0.2. As more Sr2þ is added, the preferred defect now

becomes the oxygen vacancy and the oxygen con-

tent of the parent phase falls below 4.0. The number

of Cu3þ ions decreases as oxygen vacancies form,

and when the concentration of Sr2þ reaches

approximately 0.32 all of the compensation is via

vacancies and the material is no longer a super-

conductor (Figure 13.35). The nature of the defects

in the phase is, therefore, directly related to the

appearance of superconductivity.

13.4.5.2 Yttrium barium copper oxide (123),
YBa2Cu3O7

The compound YBa2Cu3O7 has been widely studied

because it is relatively easy to prepare and it was

the first superconductor discovered with a Tc above

the boiling point of liquid nitrogen. The crystal

Figure 13.34 The crystal structure of La2CuO4, shown

as (a) atom packing and (b) CuO6 octahedra. The dimen-

sions of the room-temperature orthorhombic unit cell are

a0 ¼ 0:535 nm, b0 ¼ 0:540 nm, and c0 ¼ 1:314 nm
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structure of YBa2Cu3O7 consists of three perovs-

kite-like unit cells stacked one on top of the other

(Figure 13.36). The middle perovskite unit contains

Y as the large A atom and Cu as the smaller B atom.

The cells above and below this contain Ba as the A

atom and Cu as the B atom, to give a metal formula

of YBa2Cu3 as one would expect for a tripled

perovskite cell, A3B3O9. The unit cell of the super-

conductor should contain nine oxygen atoms.

Instead the seven oxygen atoms present are

arranged in such a way as to give the copper

atoms square pyramidal and square planar coordi-

nation, rather than octahedral coordination as in the

normal perovskites. If the ions are allocated the

normal formal charges of Y3þ, Ba2þ and O2�, the

Cu must take an average charge of 2.33, which can

be considered to arise from the presence of two

Cu2þ ions and one Cu3þ ion per unit cell.

The appearance of superconductivity in this mate-

rial is closely related to the oxygen content, and,

like La2CuO4, it is a hole superconductor. At the

exact composition YBa2Cu3O7.0 the material is an

insulator. Superconductivity appears when a small

amount of oxygen is lost. The compound can read-

ily lose oxygen down to a composition of YBa2-

Cu3O6.0, and the superconducting transition

temperature changes continuously over this compo-

sition range (Figure 13.37). The maximum value of

Tc, close to 93 K, is found near to the composition

YBa2Cu3O6.95. As more oxygen is removed the

value of Tc falls to a plateau of approximately

60 K, when the composition lies between the

approximate limits of YBa2Cu3O6.7 to YBa2-

Cu3O6.5. Continued oxygen removal down to the

phase limit of YBa2Cu3O6.0 rapidly leads to a loss

of superconductivity. The exact behaviour of any

Figure 13.35 The variation of the superconducting

transition temperature, Tc, with composition parameter

x, for La2�xSrxCuO4. The superconducting state exists

over only a small region of composition. Outside of this,

the solid does not show superconducting behaviour

Figure 13.36 (a) The crystal structure of the high-

temperature ceramic superconductor YBa2Cu3O7; (b)

the crystal structure showing cations only, revealing that

the metal skeleton of the material is identical to a stack of

three perovskite-like unit cells. The oxygen atoms are

distributed so that no copper ions have six oxygen

neighbours, as they would in a perovskite. Some copper

ions have only four oxygen neighbours, thus changing the

composition from YBa2Cu3O9 to YBa2Cu3O7. The di-

mensions of the orthorhombic unit cell are a0 ¼
0:381 nm, b0 ¼ 0:388 nm, and c0 ¼ 1:165 nm

Figure 13.37 The variation of the superconducting

transition temperature, Tc, with oxygen content, x, for

YBa2Cu3Ox. Outside of the approximate range of x of

6.95–6.35 the material behaves as a typical insulating

ceramic
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sample depends on the defects present and this in

turn depends on whether the samples are cooled

quickly or slowly.

The oxygen atoms are not lost at random during

reduction but come solely from the CuO4 square

planar units. This has the effect of converting the

copper coordination from square planar to linear,

resulting in CuO2 chains running through the struc-

ture. This structural feature is of vital importance in

allowing the superconducting transition to take

place.

13.4.6 Josephson junctions

Cooper pairs can tunnel through a thin layer of

insulator, called a weak link, separating two super-

conducting regions, without destroying the coupling

between them or the superconductivity of the

adjoining phases. In such cases a direct current

(dc) flows across the insulating layer without the

application of an accompanying voltage. This is

called the dc Josephson effect. In essence, the

insulator behaves as if it were a superconductor. The

Josephson effect persists only for a certain range of

currents and, eventually, above a critical current, ic,

a voltage develops across the junction.

When two Josephson junctions are connected in

parallel (Figure 13.38a), the maximum current, ic,

that can flow across the device is function of the

magnetic flux enclosed in the loop. As the magnetic

flux penetrating the loop varies, the value of icmax

varies from a maximum at zero flux or an integral

number of flux quanta to a minimum for a half-

integer number of flux quanta. The relationship is

given by:

icmax ¼ 2IJ cos
��

�0

� �

where IJ is a constant depending on the junction

geometry, � is the enclosed magnetic flux, and �0 is

the flux quantum.

A dc SQUID is a device based on this effect, used

for the measurement of microscopic magnetic

fields. The acronym SQUID stands for supercon-

ducting quantum interference device. In operation, a

bias current is used which is just above that needed

to produce a voltage across the circuit. The critical

current icn when a whole number of flux quanta

penetrate the loop is higher than when an odd half

number of flux quanta penetrate the loop, ic½nþð1=2Þ�.
Because of this, the voltage recorded, Vn, Vnþð1=2Þ,
or an intermediate value, depends on the magnetic

flux penetrating the loop (Figure 13.38b), and as

the magnetic flux changes the voltage varies in a

Figure 13.38 (a) A dc (direct-current) SQUID (super-

conducting quantum interference device) circuit, consist-

ing of a loop of superconducting material containing two

Josephson junctions, one in each arm. (b) With a bias

current above the critical current, ic, the voltage depends

on the number of flux quanta that penetrate the loop. (c) In

a varying magnetic field, the voltage cycles sinusoidally,

with a period equal to the flux quantum
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sinusoidal fashion (Figure 13.38c). A SQUID is a

magnetic flux to voltage converter. Typically, the

gain is about 1 volt per flux quantum. As fractions

of a volt are easily measured, a SQUID has a

sensitivity of approximately 10�4 to 10�6 of a flux

quantum. This is sensitive enough to measure the

magnetic fields produced by changes in the elec-

trical activity of the brain.

Answers to introductory questions

How are donor atoms and acceptor atoms in
semiconductors differentiated?

Donor atoms donate electrons to the conduction

band in a semiconductor. This means that they

have at least one extra valence electron over that

required to fulfil the local bonding requirements of

the structure. This electron can be promoted to the

conduction band and enhance the number of mobile

electrons present. For the elemental semiconductors

silicon and germanium, this indicates atoms to the

right of group 14 in the periodic table. The converse

is true for acceptors. These have one less valence

electron than required to fulfil the local bonding

requirements in the structure. This shortfall is made

up by appropriating an electron from the valence

band, leaving behind a hole that adds to the existing

hole population. For the elemental semiconductors

silicon and germanium, this indicates atoms to the

left of group 14 in the periodic table.

What is a quantum well?

A quantum well consists of a thin layer of a

semiconductor with a smaller band gap within a

semiconductor with a larger band gap. The most

studied quantum well structures are those formed

from a layer of gallium arsenide, GaAs, sandwiched

in gallium aluminium arsenide, GaAlAs. The

electrons in the thin GaAs layer are effectively

trapped in the ‘well’ formed in the conduction

band of the composite material. Similarly, the

holes in the thin layer of semiconductor are trapped

at the ‘hill’ in the valence band of the composite

material.

What are Cooper pairs?

Cooper pairs are pairs of mobile electrons that form

at very low temperatures. Each pair consists of two

electrons with opposite spin. The electrons share the

same wavefunction and are able to pass through the

crystal unimpeded.

At normal temperatures, electrons strongly repel

one another. As the temperature falls and the lattice

vibrations diminish, a weak attractive force between

pairs of electrons becomes significant. In Type-I

superconductors the ‘glue’ between the Cooper

pairs are phonons (lattice vibrations). When an

electron in a Cooper pair passes through the crystal,

the atom cores are attracted and then spring back

as the electron passes. This causes a phonon to

be emitted that is picked up by the other electron

in the Cooper pair. At the same time, this electron

is also causing phonons to be emitted, which are

picked up by the first electron. This coupling is

easily destroyed even at low temperatures, and

Cooper pairs are constantly forming and break-

ing apart.

Further reading

A. Cottrell, 1988, Introduction to the Modern Theory of

Metals, Institute of Metals, London.

P.A. Cox, 1987, The Electronic Structure and Chemistry of

Solids, Oxford University Press, Oxford.

W.B. Pearson, 1972, The Crystal Chemistry and Physics of

Metals and Alloys, Wiley-Interscience, New York,

especially Ch. 5.

M. Aldissi, 1987, ‘Recent Advances in Inherently Con-

ducting Polymers and Multicomponent Systems’, Jour-

nal of Materials Education 9 333.

A.P. Epstein, 1997, ‘Eletrically Conducting Polymers:

Science and Technology’, Materials Research Society

Bulletin 22 (June) 6.

A.J. Heeger, 2001, ‘Semiconducting and Metallic Poly-

mers: The Fourth Generation of Polymeric Materials’,

Materials Research Society Bulletin 22 (November)

900.
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J.R. Waldron, 1996, Superconductivity of Metals and

Cuprates, Institute of Physics, Bristol.

The following articles in Scientific American (in

order of publication) give a good overview of super-

conductivity

R.M. Hazen, 1988, ‘Perovskites’, Scientific American 258,

(June) 52.

A.M. Wolsky, R.F. Giese, E.J. Daniels, 1989, ‘The New

Superconductors: Prospects for Applications’, Scienti-

fic American 260 (February) 44.

R.J. Cava, 1990, ‘Superconductors Beyond 1–2–3’, Scien-

tific American 263 (August) 24.

J. Clarke, 1994, ‘SQUIDs’, Scientific American 271

(August) 36.

R. de B. Ouboter, 1997, ‘H.K. Oness’s Discovery of Super-

conducivity’, Scientific American 276 (March) 84.

A number of review articles, which give an

indication of the rapid progress made in the science

and engineering of high-temperature superconduc-

tor compounds, are to be found in

Materials Research Society Bulletin XIV (January

1989).

Materials Research Society Bulletin XV (June

1990).

Materials Research Society Bulletin XVII (August

1992).

Materials Research Society Bulletin XIX (Septem-

ber 1994).

Problems and exercises

Quick quiz

1 An insulator is a material with a full valence

band, an empty conduction band and:

(a) No band gap

(b) A small band gap

(c) A large band gap

2 An intrinsic semiconductor is a material with a

full valence band, an empty conduction band and:

(a) No band gap

(b) A small band gap

(c) A large band gap

3 In an intrinsic semiconductor, the current is

carried by:

(a) Electrons

(b) Holes

(c) Electrons and holes

4 A degenerate semiconductor has:

(a) Few electrons and holes present

(b) Only electrons or else holes present

(c) Large numbers of electrons and holes pre-

sent

5 Donors make a semiconductor:

(a) p-type

(b) n-type

(c) Degenerate

6 Acceptors make a semiconductor:

(a) p-type

(b) n-type

(c) Degenerate

7 A compensated semiconductor has:

(a) Equal numbers of donors and acceptors

present

(b) Equal numbers of electrons and holes present

(c) No intrinsic electrons and holes present

8 A metal has:

(a) A partly filled uppermost band

(b) Overlapping uppermost bands

(c) Zero band gap between the two uppermost

bands

9 A semimetal has:

(a) A partly filled uppermost band

(b) Overlapping uppermost bands

(c) Zero band gap between the two uppermost

bands

10 In a metal not carrying a current:

(a) The electrons are stationary

(b) The electrons at the Fermi surface are

moving with random velocities

(c) The average velocity of all electrons sums

to zero
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11 The conductivity of a metal:

(a) Increases as the temperature increases

(b) Falls as the temperature increases

(c) Is insensitive to temperature

12 The conductivity of a semiconductor:

(a) Increases as the temperature increases

(b) Falls as the temperature increases

(c) Is insensitive to temperature

13 The resistivity of a metal arises from:

(a) Electron scattering from vibrations of the

atoms in the material

(b) Electron scattering from defects

(c) Electron scattering both from defects and

from atomic vibrations

14 The conductivity of a semiconductor increases

as the energy band gap:

(a) Decreases

(b) Increases

(c) Varies

15 A semiconductor crystal is transparent to radia-

tion with energy:

(a) Greater than the band gap

(b) Less than the band gap

(c) Exactly equal to the band gap

16 The band gap of a semiconductor:

(a) Does not depend on atom size

(b) Increases with increasing atom size

(c) Decreases with increasing atom size

17 Atoms to the right of silicon and germanium in

the periodic table act as:

(a) Donors

(b) Acceptors

(c) Neither

18 Atoms to the left of silicon and germanium in

the periodic table make the material:

(a) n-type

(b) p-type

(c) Neither

19 Electrons give rise to:

(a) A positive Hall coefficient

(b) A negative Hall coefficient

(c) A neutral Hall coefficient

20 When a current flows across a p–n junction

under forward bias it is made up of:

(a) Six components

(b) Four components

(c) Two components

21 Doping a transition metal oxide with a cation of

lower valence will make it:

(a) p-type

(b) n-type

(c) Cause no change

22 Conducting polymers contain:

(a) Metal atoms in the structure

(b) Conjugated double bonds

(c) Conjugated triple bonds

23 Doping polyacetylene with sodium makes it:

(a) A metallic conductor.

(b) A p-type semiconductor

(c) An n-type semiconductor

24 A semiconductor quantum well is:

(a) A thin layer of a semiconductor on an

insulator

(b) Alternating layers of two semiconductors

on an insulator

(c) A thin layer of a semiconductor within a

different semiconductor

25 Electrons in a quantum wire are strongly con-

fined:

(a) In one-dimension

(b) In two dimensions

(c) In three dimensions

26 A type-I superconductor:

(a) Does not interact with magnetic fields

(a) Draws an external magnetic field into itself

(c) Expels internal magnetic fields
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27 A material in the superconducting state can be

thought of as:

(a) A perfect diamagnetic solid

(b) A perfect paramagnetic solid

(c) A perfect ferromagnetic solid

28 A superconductor carrying a current becomes a

normal conductor:

(a) Below the critical current

(b) At the critical current

(c) Above the critical current

29 Superconductivity in conventional (low-tem-

perature) superconductors is due to:

(a) Pairs of electrons

(b) Pairs of holes

(c) Electron–hole pairs

30 Ceramic superconductors mostly have struc-

tures closely related to:

(a) Spinel

(b) Perovskite

(c) Halite

31 A Josephson junction consists of:

(a) A very thin layer of insulator separating

two superconducting regions

(b) A very thin layer of superconductor separ-

ating two insulating regions

(c) A thin layer of superconducting material

separating two metallic regions

32 A SQUID measures:

(a) Resistivity

(b) Superconductivity

(c) Magnetic fields

Calculations and questions

13.1 The electrical resistivity of gold, at 273 K,

is 2.05	 10�8 � m. Gold adopts the A1

structure with a cubic lattice parameter, a0,

of 0.4078 nm. The velocity of electrons at

the Fermi surface is 1:40	 106 m s�1. Each

gold atom contributes one electron to the

structure. Calculate the relaxation time, � ,

and the mean free path, L, of the electrons.

Compare L with the interatomic spacing of

gold atoms in the crystal.

13.2 The electrical resistivity of silver, at 273 K,

is 1:47	 10�8 � m. Silver adopts the A1

structure with a cubic lattice parameter, a0,

of 0.4086 nm. The velocity of electrons at

the Fermi surface is 1:39	 106 m s�1. Each

silver atom contributes one electron to the

structure. Calculate the relaxation time, � ,

and the mean free path, L, of the electrons.

Compare L with the interatomic spacing of

silver atoms in the crystal.

13.3 The electrical resistivity of rubidium, at

273 K, is 11:5	 10�8 � m. Rubidium

adopts the A2 structure with a cubic lattice

parameter, a0, of 0.5705 nm. The velocity of

electrons at the Fermi surface is 8:1	
107 m s�1. Each rubidium atom contributes

one electron to the structure. Calculate the

relaxation time, � , and the mean free path,

L, of the electrons. Compare L with the

interatomic spacing of rubidium atoms in the

crystal.

13.4 The electrical resistivity of magnesium, at

273 K, is 4:05	 10�8 � m. Magnesium

adopts the A3 structure with hexagonal lat-

tice parameters of a0 ¼ 0:3209 nm, and c0 ¼
0:5211 nm. The velocity of electrons at the

Fermi surface is 1:58	 106 m s�1. Each

magnesium atom contributes two electrons

to the structure. Calculate the relaxation

time, � , and the mean free path, L, of the

electrons. Compare L with the interatomic

spacing of magnesium atoms in the crystal.

13.5 The electrical resistivity of liquid mercury as

a function of temperature is given in Table

13.3. The velocity of electrons at the Fermi

Table 13.3 Data for Question 13.5

�/(10�8 � m) 94.1 103.5 128.0 214.0 630.0

T /�C 0 100 300 700 1200

PROBLEMS AND EXERCISES 425

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


surface is 1:52	 106 m s�1. Determine how

the mean free path, L, varies with tempera-

ture. The density of liquid mercury is

13456 kg m�3. Assume that this does not

vary with temperature and that each mercury

atom contributes two mobile electrons to the

liquid.

13.6 The resistivity of cadmium metal crystals at

room temperature is 7:79	 10�8 � m paral-

lel to the c axis, and 6:54	 10�8 � m

parallel to the a axis. Cadmium adopts the

A3 structure with hexagonal unit cell para-

meters of a0 ¼ 0:2979 nm, c0 ¼ 0:5620 nm

and each Cd atom contributes two mobile

electrons to the crystal. Calculate the

mobility of the electrons along the unit cell

axes.

13.7 The resistivity of zinc metal crystals at room

temperature is 6:05	 10�8 � m parallel to

the c axis, and 5:83	 10�8 � m parallel to

the a axis. Zinc adopts the A3 structure with

hexagonal unit cell parameters of a0 ¼
0:2665 nm, c0 ¼ 0:4947 nm and each Zn

atom contributes two mobile electrons to

the crystal. Calculate the mobility of the

electrons along the unit cell axes.

13.8 The resistivity of a sample of brass contain-

ing 70 wt% Cu and 30 wt% zinc is 6:3	
10�8 � m at 0 �C, compared with that of

pure copper, which is 1:54	 10�8 � m at

the same temperature. Determine the resi-

dual resistivity at this temperature.

13.9 The resistivity of a sample of bronze con-

taining 90 wt% Cu and 10 wt% tin is 1:36	
10�7 � m at 0 �C, compared with that of

pure copper, which is 1:54	 10�8 � m at

the same temperature. Determine the resi-

dual resistivity at this temperature.

13.10 The resistivity at 0 �C for nickel and for a

number of nickel alloys is given in Table

13.4. Plot the resistivity against the amount

of nickel in the alloy. Comment on the shape

of the plot in terms of the possible structures

of the alloys. [Note: graph is not shown in

the answers at the end of this book.]

13.11 The resistivity at 0 �C aluminium and for a

number of aluminium alloys is given in

Table 13.5. Plot the resistivity against the

amount of aluminium in the alloy. Comment

on the shape of the plot in terms of the

possible structures of the alloys. [Note:

graph is not shown in the answers at the

end of this book.]

13.12 The resistivity at 0 �C for copper and for a

number of copper alloys is given in Table

13.6. Plot the resistivity against the amount

of copper in the alloy. Comment on the shape

of the plot in terms of the possible structures

of the alloys. [Note: graph is not shown in

the answers at the end of this book.]

Table 13.5 Data for Question 13.11

Aluminium RR59 RR57 Alpax gamma Lo-Ex

Resistivity/10�8 � m 2.42 3.5 3.95 3.5 3.95

Wt% Al 100 93 89 87 85

Table 13.4 Data for Question 13.10

Nickel Alumel Chromel P Nichrome Monel

Resistivity/10�8 � m 6.16 28.1 70 107.3 42.9

Wt% Ni 100 95 90 77.3 67.1

426 ELECTRONIC CONDUCTIVITY IN SOLIDS

CuuDuongThanCong.com https://fb.com/tailieudientucntt

cu
u d

uo
ng

 th
an

 co
ng

 . c
om

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt


13.13 Estimate the number of intrinsic electrons, n,

and holes, p, and the product np, for a crystal

of silicon at 300 K taking the effective mass

of electrons and holes as equal to the elec-

tron rest mass, me. The band gap, Eg, is

1.12 eV.

13.14 Estimate the number of intrinsic electrons, n,

and holes, p, and the product np, for a crystal

of gallium arsenide, GaAs, at 300 K, taking

the effective mass of electrons and holes as

equal to the electron rest mass, me. The band

gap, Eg, is 1.42 eV.

13.15 Estimate the number of intrinsic electrons, n,

and holes, p, and the product np, for a crystal

of gallium arsenide, GaAs, at 300 K, taking

the effective mass of electrons to be 0.067me

and holes as 0.082me. The band gap, Eg, is

1.42 eV.

13.16 Estimate the number of intrinsic electrons, n,

and holes, p, and the product np, for a crystal

of cadmium selenide, CdSe, at 300 K, taking

the effective mass of electrons to be 0.13me

and holes as 0.45me. The band gap, Eg, is

1.70 eV.

13.17 Determine the band gap, Eg, of silicon from

the conductivity data given in Table 13.7.

What is the minimum frequency, 	, of light

that will excite an electron across the band

gap?

13.18 Determine the band gap, Eg, of germanium

from the conductivity data given in Table

13.8. What is the minimum frequency, 	, of

light that will excite an electron across the

band gap?

13.19 Calculate the donor energy-level position in

silicon doped with phosphorus using the

‘Bohr model’. The effective mass of an

electron is 0.33me and the relative permit-

tivity of silicon is 11.7.

13.20 Calculate the acceptor energy-level position

in germanium doped with aluminium using

the ‘Bohr model’. The effective mass of a

hole is 0.16me and the relative permittivity

of germanium is 16.0.

13.21 Calculate the donor energy-level position in

indium phosphide, InP, doped with tin, using

the ‘Bohr model’. The effective mass of an

electron is 0.067me and the relative permit-

tivity of indium phosphide is 12.4.

13.22 Calculate the acceptor energy level position

in gallium arsenide, GaAs, doped with zinc,

using the ‘Bohr model’. The effective mass

Table 13.6 Data for Question 13.12

Copper Bronze Manganin Brass German silver Constanin

Resistivity/10�8 � m 1.54 19.8 41.5 6.3 40 49

Wt% Cu 100 90 84 70 62 60

Table 13.7 Data for Question 13.17

Temperature /�C 227 277 327 377 427 477 527

Conductivity/��1 m�1 3	 10�4 9	 10�4 3	 10�3 8	 10�3 2:5	 10�2 6	 10�2 8	 10�2

Table 13.8 Data for Question 13.18

Temperature /�C 5 47 82 122 162 240 344 441

Conductivity/��1 m�1 0.0001 0.0008 0.004 0.009 0.05 0.1 0.6 1.0
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of a hole is 0.082me and the relative permit-

tivity of gallium arsenide is 13.2.

13.23 The energy gap for gallium arsenide, GaAs,

is 1.4 eV at 300 K. The effective mass of

electrons is 0.067me and of holes is 0.082me.

How near to the band gap centre is the Fermi

level?

13.24 The energy gap for gallium phosphide, GaP,

is 2.26 eV at 300 K. The effective mass of

electrons is 0.82me and of holes is 0.60me.

How near to the band gap centre is the Fermi

level?

13.25 A semiconductor containing 1020 holes m�3

and 1018 electrons m�3 has a conductivity of

0.455 ��1 m�1. The ratio of the mobilities

of electrons and holes, �e/�h, is 10. What are

the hole and electron mobilities?

13.26 Gallium arsenide, GaAs, is doped with 1018

donor atoms. The hole mobility is

0.04 m2 V�1 s�1, and the electron mobility

is 0.85 m2 V�1 s�1. Using the results of

Question 13.15, determine the conductivity

of the sample.

13.27 A 1-cm cube of n-type germanium supports

a current of 6.4 mA when a voltage is

applied across two parallel faces. The charge

carriers have a mobility of 0.39 m2 V�1 s�1.

Determine the Hall coefficient of the crystal

assuming that only the majority charge car-

riers need be considered.

13.28 (a) Estimate the Hall coefficient, RH, for

intrinsic silicon, using the following values:

ni ¼ 1	 1016 m�3; mobility of electrons¼
0.15 m2 V�1 s�1; and mobility of holes¼

0.045 m2 V�1 s�1. (b) Calculate the Hall

voltage, V , for a 1-cm cube of pure silicon

at 20 �C, in a magnetic induction of 0.2 T,

when a current of 10�3 A is applied to a

cube face.

13.29 A single crystal of germanium doped with

antimony to make it p-type is used in a Hall

experiment. The crystal dimensions are

20 mm	 10 mm	 1 mm in the x, y, and z

directions, respectively. In a constant induc-

tion of 0.9 T along the z direction, the

current (along x) and voltage (along y) read-

ings were obtained, as given in Table 13.9.

Calculate the Hall coefficient, RH, and the

carrier density, �.

13.30 Using Figure 13.23, estimate the activation

energy for the conductivity of polyacetylene

doped with iodine for the three concentra-

tions shown; that is, for (a) 0.15 mol%, (b)

0.01 mol% and (c) 0.005 mol% of I2 per CH

unit.

13.31 The transition metal titanium forms two

slightly nonstoichiometric oxides, TiO2 and

Ti2O3. The oxide TiO2 loses a small amount

of oxygen to form TiO2�x. Is it likely to

show p-type or n-type semiconductivity?

The oxide Ti2O3 gains a slight amount of

oxygen to form Ti2O3þx. Is it likely to show

n-type or p-type semiconductivity?

13.32 The oxide LaCoO3 is an insulator. What

are the charges on the cations present?

The compound is doped with Sr2þ to

form La1�xSrxCoO3, in which the Sr2þ sub-

stitutes for the La. What are the valences of

the ions in this material? Is the doped mater-

ial a p-type or an n-type semiconductor?

Table 13.9 Data for Question 13.29

Current (along x)/mA 8 16 24 32 40

Voltage (along y)/V 0.081 0.159 0.233 0.318 0.401
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13.33 The compound Mg2TiO4 is an inverse spi-

nel, which can be written as (Mg)[Mg Ti]O4,

where the round brackets indicate cations in

tetrahedral sites and the square brackets

indicate cations in octahedral sites. The

compound MgTi2O4 is a normal spinel,

(Mg)[Ti2]O4. (see Section 5.3.10). Both

compounds are insulators. What are the

charges on the ions? A small amount of

MgTi2O4 is doped into Mg2TiO4 to form

Mg2�xTi1þxO4. What are the charges on the

ions and how are they distributed in the

spinel structure? Will the material be a p-

type or an n-type conductor?

13.34 Gallium arsenide has an electron effective

mass of 0.067me and a hole effective mass of

0.082me. Calculate the dimension at which

quantum confinement becomes significant

for (a) n-type and (b) p-type gallium

arsenide at 300 K. Check the units of the

calculation. (c) The crystal structure of gal-

lium arsenide consists of layers of GaAs

each 0.327 nm in thickness; how many

layers are needed for quantum confinement

of electrons or holes?

13.35 Gallium phosphide, GaP, has an electron

effective mass of 0.82me and a hole effective

mass of 0.60 me. Calculate the dimension at

which quantum confinement becomes sig-

nificant for (a) n-type and (b) p-type gallium

phosphide. (c) The crystal structure of gal-

lium phosphide consists of layers of GaP

each 0.315 nm in thickness; how many

layers are needed for quantum confinement

of electrons or holes?

13.36 Compare the energy of the n ¼ 1 energy

level in the three directions for a quantum

well of dimensions 1 cm	 1 cm	 10 nm, in

a material in which the effective mass of the

electron is 0.1me.

13.37 Determine the energies of the lowest three

states in a gallium arsenide–aluminium

arsenide quantum well structure in which

the potential well has a width of 9.8 nm,

corresponding to 30 GaAs layers. The elec-

tron effective mass is 0.067me.

13.38 Determine the energy of the n ¼ 1 energy

level in a fragment of n-type gallium nitride

20 nm	 393 nm	 1700 nm. The effective

mass of electrons in this material is 0.19me.

13.39 The critical field of the superconductor

PbMo5S6 is given as 60 T. What is the

critical field in A m�1?

13.40 The critical field, Hc2, for the type-II super-

conductor Nb3Sn at 15 K is given as 7 T.

Estimate the value of the critical field at 0 K.

The superconducting transition temperature,

Tc, is 25 K.

13.41 What value of the critical field, Bc2, will

cause the superconductivity of the type-II

superconductor Nb3Ge to be lost at 20 K.

The value of the critical field at 0 K is given

as 37 T, and the superconducting transition

temperature is 23.6 K.

13.42 The superconductor Nd1�xCexCuO4 is

derived from the insulator Nd2CuO4 by

substitution of some Nd3þ by Ce4þ. What

are the charges on the Cu ions present?

Will the superconductivity be via holes or

electrons?

13.43 The compound La2SrCu2O6 can take up

oxygen to a composition La2SrCu2O6.2.

What are the charges on the Cu ions present

in each of these phases? Are either potential

high-temperature superconductors and, if so,

would the superconductivity be via holes or

electrons.
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