Fundamentals of Computer Programming

C Programming
4. Pointers

—

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

« What Are Pointers?

o Pointer Variables

« Pointer Operators

« Pointer Expressions

Pointer Assignments
Pointer Conversions
Pointer Arithmetic

Pointer Comparisons

o Multiple Indirection

Initializing Pointers

—

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

What Are Pointers?

. Apointeris avariable that holds <l
a memory address. o T

o This address is the location of 1001
another object (typically another 1002
variable) in memory. 1003

. . 1004
o If one variable contains the

address of another variable, the
first variable is said to point to
the second.

“

1005

1006

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Pointer Variables

« type *name,

* where type is the base type of the pointer, the name
of the pointer variable is specified by name.

* All pointer operations are done relative to the
pointer's base type.

* Forexample, when you declare a pointer to be of
type int *, the compiler assumes that any address
that it holds points to an integer.

E

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Pointer Operators

o The &is a unary operator that returns the memory address
of its operand.

« M = &count,;

* You can think of & as returning "the address of.“

 The second pointer operator, *, returns the value located at
the address that follows.

*q = *m;

* You can think of * as ¢ the value at address."

“

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Pointer Expressions - Assignments

#$#include <stdio.h>

int main(void)

{

int x = 99;

int *pl, *pZ2;

pl = &x;

pZz = pl;

/* print the value of x twice */

printf (' 'Values at pl and p2: %d %
d\n", *pl, *p2);

/* print the address of x twice */
printf ("Addresses polnted to by pl and pZ:

return 0;

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Pointer Expressions - Conversions

#include <stdio.h>

int main(void)
{
double x = 100.1, vy;

int *p;
/* The next statement causes p (which is an
integer pointer) to point to a double. */

p = (int *) &x;

/* The next statement does not operate as expected. */
y = *p; /* attempt to assign y the value x through p */

/* The following statement won't output 100.1. */
printf (''The (incorrect) value of x 1s: Stf", vy);

return 0;

“

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Pointer Expressions - Arithmetic

char *ch = (char *) 3000;
* Letp be aninteger pointer int *i = (int *) 3000

with a current value of 2000.

* Assumeints are 4 bytes long. ch—>

« Afterthe expression: p++;, p 1=
contains 2004. chs2—

ch+3=—»

ch+d—»

ch4+5—+

Memory

8
[2] pp. 124-125

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Pointer Expressions - Comparisons

o Ref:[2] pp. 126-127

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Multiple Indirection - Pointers to Pointers

* Inthe case of a pointer to a pointer, the first pointer contains
the address of the second pointer, which points to the object
that contains the desired value.

Pointer Vanable

l address ' t| value I

Single Indirection

Pointer Poanter Variable

address }' -‘ address } — value I

Multiple Indirection

[2] pp. 130-131

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Multiple Indirection - Pointers to Pointers

$#include <stdio.h>

int main(void)
{

int x, *p, **q;

x = 10;
p = &X;
q = &ps

printf ("%d", **q); /* print the value of x */

return 0;

[2] pp. 130-131

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

Initializing Pointers

* A pointer that does not currently point to a valid memory
location is given the value null.

 char *p = 0;
« char *p = NULL; // include <stdio.h>

http://cuuduongthancong.com?src=pdf
https://fb.com/tailieudientucntt

