
Week 9:
Software Testing

Nguyễn Thị Minh Tuyền

Adapted from slides of Ian Sommerville

Software Testing

1. What is it?
2. Who does it?
3. What are the steps?
4. What is the work product?
5. How do I ensure that I’ve done it right?

Topics covered

1. Development testing
2. Test-driven development
3. Release testing
4. User testing

3

Program testing

£ Testing is intended
p to show that a program does what it is intended to do and
p to discover program defects before it is put into use.

£ When you test software, you execute a program using
artificial data.

£ You check the results of the test run for errors,
anomalies or information about the program's non-
functional attributes.

£ Can reveal the presence of errors NOT their absence.
£ Testing is part of a more general verification and

validation process, which also includes static validation
techniques.

4

Program testing goals

To demonstrate to the developer and the customer that the
software meets its requirements.

To discover situations in which the behavior of the software
is incorrect, undesirable or does not conform to its
specification.

5

Validation
testing

Defect
testing

An input-output model of program testing

Ie
Input test data

Oe
Output test results

System

Inputs causing
anomalous
behaviour

Outputs which reveal
the presence of
defects

6

£ Verification:
"Are we building the product right”.

p The software should conform to its specification.
£ Validation:

"Are we building the right product”.
p The software should do what the user really requires.

Verification vs validation

7

V & V confidence

£ Aim of V & V is to establish confidence that the
system is 'fit for purpose'.

£ Depends on
p Software purpose: The level of confidence

depends on how critical the software is to an
organisation.

p User expectations: Users may have low
expectations of certain kinds of software.

p Marketing environment: Getting a product to
market early may be more important than finding
defects in the program.

8

£ Software inspections
p Concerned with analysis of the static system

representation to discover problems(static
verification)

p May be supplement by tool-based document and
code analysis.

£ Software testing
p Concerned with exercising and observing product

behaviour (dynamic verification)
p The system is executed with test data and its

operational behaviour is observed.

Inspections and testing

9

Inspections and testing

UML design
models

Software
architecture

Requirements
specification

Database
schemas Program

System
prototype Testing

Inspections

10

Software inspections

£ Involve people examining the source
representation with the aim of discovering
anomalies and defects.

£ Do not require execution of a system so may be
used before implementation.

£ May be applied to any representation of the
system (requirements, design, configuration data,
test data, etc.).

£ Have been shown to be an effective technique for
discovering program errors.

11

Advantages of inspections

£ During testing, errors can mask (hide) other
errors. Because inspection is a static process,
you don’t have to be concerned with
interactions between errors.

£ Incomplete versions of a system can be
inspected without additional costs.

£ As well as searching for program defects, an
inspection can also consider broader quality
attributes of a program
p such as compliance with standards, portability and

maintainability.
12

Inspections and testing

£ Both are complementary and not opposing
verification techniques.

£ Both should be used during the V & V process.
£ Inspections can check conformance with a

specification but not conformance with the
customer's real requirements.

£ Inspections cannot check non-functional
characteristics such as performance, usability, etc.

13

A model of the software testing process

Design test
cases

Prepare test
data

Run program
with test data

Compare results
to test cases

Test
cases

Test
data

Test
results

Test
reports

14

An abstract model of the ‘traditional’ testing process, as used in plan-driven
development

Stages of testing

£ Development testing
p the system is tested during development to discover

bugs and defects.
£ Release testing

p a separate testing team tests a complete version of the
system before it is released to users.

£ User testing
p users or potential users of a system test the system in

their own environment.

15

Topics covered

1. Development testing
2. Test-driven development
3. Release testing
4. User testing

16

Development testing

£ Includes all testing activities that are carried out by the
team developing the system.

£ Unit testing
p Individual program units or object classes are tested.
p Should focus on testing the functionality of objects or methods.

£ Component testing
p Several individual units are integrated to create composite

components.
p Should focus on testing component interfaces.

£ System testing
p Some or all of the components in a system are integrated and

the system is tested as a whole.
p Should focus on testing component interactions.

17

Unit testing

£ Is the process of testing individual components in
isolation.

£ Is a defect testing process.
£ Units may be:

p Individual functions or methods within an object
p Object classes with several attributes and methods
p Composite components with defined interfaces used to

access their functionality.

18

Object class testing

£ Complete test coverage of a class involves
p Testing all operations associated with an object
p Setting and interrogating all object attributes
p Exercising the object in all possible states.

£ Inheritance makes it more difficult to design object
class tests as the information to be tested is not
localised.

19

The weather station object interface

identifier

reportWeather ()
reportStatus ()
powerSave (instruments)
remoteControl (commands)
reconfigure (commands)
restart (instruments)
shutdown (instruments)

WeatherStation

20

Remind: Weather station state diagram

transmission done

remoteControl()

reportStatus()restart()

shutdown()

test complete

weather summary
complete

clock collection
done

Operation

reportWeather()

Shutdown Running Testing

Transmitting

Collecting
Summarizing

Controlled

Configuring

reconfigure()

configuration done

powerSave()

21

Weather station testing

£ Using a state model, identify sequences of state
transitions to be tested and the event sequences
to cause these transitions

£ For example:
p Shutdown à Running à Shutdown
p Configuring à Running à Testing à Transmitting à

Running
p Running à Collecting à Running à Summarizing à

Transmitting à Running

22

Automated testing

£ Whenever possible, unit testing should be
automated so that tests are run and checked
without manual intervention.

£ In automated unit testing: use a test
automation framework (such as JUnit) to write
and run program tests.
p Unit testing frameworks provide generic test

classes that you extend to create specific test
cases.

p They can then run all of the tests that you have
implemented and report, often through some GUI,
on the success of otherwise of the tests.

23

Automated test components

£ A setup part
p initialize the system with the test case, namely the inputs

and expected outputs.
£ A call part

p call the object or method to be tested.
£ An assertion part

p compare the result of the call with the expected result. If
the assertion evaluates to true, the test has been
successful; if false, then it has failed.

24

Unit test effectiveness
£ The test cases should show that the component that

you are testing does what it is supposed to do.
£ If there are defects in the component, these should be

revealed by test cases.
£ 2 types of unit test case:

p The first type: reflect normal operation of a program and
should show that the component works as expected.

p The second type: based on testing experience of where
common problems arise. It should use abnormal inputs to
check that these are properly processed and do not crash the
component.

25

Testing strategies

£ Partition testing
p Identify groups of inputs that have common

characteristics and should be processed in the same
way.

p Should choose tests from within each of these groups.
£ Guideline-based testing

p Use testing guidelines to choose test cases.
p These guidelines reflect previous experience of the

kinds of errors that programmers often make when
developing components.

26

Partition testing

£ Input data and output results often fall into different
classes where all members of a class are related.

£ Each of these classes is an equivalence partition
or domain where the program behaves in an
equivalent way for each class member.

£ Test cases should be chosen from each partition.

27

Equivalence partitions

Between 10000 and 99999Less than 10000 More than 99999

9999
10000 50000

100000
99999

Input values

Between 4 and 10Less than 4 More than 10

3
4 7

11
10

Number of input values

28

Equivalence partitioning

System

Possible inputs

Input equivalence partitions

Possible outputsCorrect outputs

Output partitions

29

Example: Testing guidelines (sequences)
£ Test software with sequences which have only a

single value.
£ Use sequences of different sizes in different tests.
£ Derive tests so that the first, middle and last

elements of the sequence are accessed.
£ Test with sequences of zero length.

30

General testing guidelines

£ Choose inputs that force the system to generate all
error messages

£ Design inputs that cause input buffers to overflow
£ Repeat the same input or series of inputs

numerous times
£ Force invalid outputs to be generated
£ Force computation results to be too large or too

small.

31

Component testing

£ Software components are often composite
components that are made up of several
interacting objects.

£ You access the functionality of these objects
through the defined component interface.

£ Testing composite components should therefore
focus on showing that the component interface
behaves according to its specification.
p You can assume that unit tests on the individual

objects within the component have been completed.

32

Interface testing

B

C

Test
cases

A

33

Interface testing

£ Objectives: detect faults due to interface errors or
invalid assumptions about interfaces.

£ Interface types
p Parameter interfaces Data passed from one method or

procedure to another.
p Shared memory interfaces Block of memory is shared

between procedures or functions.
p Procedural interfaces Sub-system encapsulates a set

of procedures to be called by other sub-systems.
p Message passing interfaces Sub-systems request

services from other sub-systems

34

Interface errors

£ Interface misuse
p A calling component calls another component and

makes an error in its use of its interface e.g. parameters
in the wrong order.

£ Interface misunderstanding
p A calling component embeds assumptions about the

behaviour of the called component which are incorrect.
£ Timing errors

p The called and the calling component operate at
different speeds and out-of-date information is
accessed.

35

Interface testing guidelines

£ Design tests so that parameters to a called
procedure are at the extreme ends of their ranges.

£ Always test pointer parameters with null pointers.
£ Design tests which cause the component to fail.
£ Use stress testing in message passing systems.
£ In shared memory systems, vary the order in

which components are activated.

36

System testing

£ Involves integrating components to create a
version of the system and then testing the
integrated system.

£ Focus on testing the interactions between
components.

£ Checks that components are compatible, interact
correctly and transfer the right data at the right
time across their interfaces.

37

System and component testing

£ During system testing, reusable components that
have been separately developed and off-the-shelf
systems may be integrated with newly developed
components. The complete system is then tested.

£ Components developed by different team
members or sub-teams may be integrated at this
stage. System testing is a collective rather than an
individual process.
p In some companies, system testing may involve a

separate testing team with no involvement from
designers and programmers.

38

Use-case testing

£ The use-cases developed to identify system
interactions can be used as a basis for system
testing.

£ Each use case usually involves several system
components so testing the use case forces these
interactions to occur.

£ The sequence diagrams associated with the use
case documents the components and interactions
that are being tested.

39

Collect weather data sequence chart

SatComms

request (report)

acknowledge
reportWeather ()

get (summary)

reply (report)

acknowledge

WeatherStation Commslink

summarise ()

WeatherData

acknowledge

send (report)

acknowledge

Weather
information system

40

Testing policies

£ Exhaustive system testing is impossible so testing
policies which define the required system test
coverage may be developed.

£ Examples of testing policies:
p All system functions that are accessed through menus

should be tested.
p Combinations of functions that are accessed through the

same menu must be tested.
p Where user input is provided, all functions must be

tested with both correct and incorrect input.

41

Topics covered

£ Development testing
£ Test-driven development
£ Release testing
£ User testing

42

Test-driven development (TDD)

£ An approach to program development in
which you inter-leave testing and code
development.

£ Tests are written before code and 'passing'
the tests is the critical driver of development.

£ You develop code incrementally, along with a
test for that increment.

£ Part of agile methods, such as Extreme
Programming.
p It can also be used in plan-driven development

processes.
43

Test-driven development

Identify new
functionality

Write test Run test
Implement

functionality and
refactor

fail

pass

44

TDD process activities
£ Start by identifying the increment of functionality that

is required.
p This should normally be small and implementable in a few

lines of code.
£ Write a test for this functionality and implement this as

an automated test.
£ Run the test, along with all other tests that have been

implemented.
p Initially, you have not implemented the functionality so the

new test will fail.
£ Implement the functionality and re-run the test.
£ Once all tests run successfully, you move on to

implementing the next chunk of functionality.
45

Benefits of test-driven development

£ Code coverage
p Every code segment that you write has at least one

associated test è all code written has at least one test.
£ Regression testing

p A regression test suite is developed incrementally as a
program is developed.

£ Simplified debugging
p When a test fails, it should be obvious where the problem lies.

The newly written code needs to be checked and modified.
£ System documentation

p The tests themselves are a form of documentation that
describe what the code should be doing.

46

Regression testing

£ Regression testing is testing the system to check
that changes have not 'broken' previously working
code.

£ In a manual testing process, regression testing is
expensive but, with automated testing, it is simple
and straightforward. All tests are rerun every time
a change is made to the program.

£ Tests must run 'successfully' before the change is
committed.

47

Topics covered

£ Development testing
£ Test-driven development
£ Release testing
£ User testing

48

Release testing

£ Is the process of testing a particular release of a
system that is intended for use outside of the
development team.

£ Main goal: convince the supplier of the system
that it is good enough for use.

£ Is usually a black-box testing process where
tests are only derived from the system
specification.

49

Release testing and system testing

£ Release testing is a form of system testing.
£ Important differences:

p A separate team that has not been involved in the
system development, should be responsible for release
testing.

p System testing by the development team should focus
on discovering bugs in the system (defect testing). The
objective of release testing is to check that the system
meets its requirements and is good enough for external
use (validation testing).

50

Requirements-based testing

£ Requirements-based testing involves examining
each requirement and developing a test or tests for
it.

£ Mentcare system requirements:
p If a patient is known to be allergic to any particular

medication, then prescription of that medication shall
result in a warning message being issued to the system
user.

p If a prescriber chooses to ignore an allergy warning,
they shall provide a reason why this has been ignored.

51

Requirements tests
1. Set up a patient record with no known allergies. Prescribe

medication for allergies that are known to exist. Check that a
warning message is not issued by the system.

2. Set up a patient record with a known allergy. Prescribe the
medication to that the patient is allergic to, and check that the
warning is issued by the system.

3. Set up a patient record in which allergies to two or more
drugs are recorded. Prescribe both of these drugs separately
and check that the correct warning for each drug is issued.

4. Prescribe two drugs that the patient is allergic to. Check that
two warnings are correctly issued.

5. Prescribe a drug that issues a warning and overrule that
warning. Check that the system requires the user to provide
information explaining why the warning was overruled.

52

Performance testing

£ Part of release testing may involve testing the emergent
properties of a system, such as performance and
reliability.

£ Tests should reflect the profile of use of the system.
£ Performance tests usually involve planning a series of

tests where the load is steadily increased until the
system performance becomes unacceptable.

£ Stress testing is a form of performance testing where the
system is deliberately overloaded to test its failure
behaviour.

53

Topics covered

£ Development testing
£ Test-driven development
£ Release testing
£ User testing

54

User testing

£ Users or customers provide input and advice
on system testing.

£ Is essential, even when comprehensive system
and release testing have been carried out.
p The reason for this is that influences from the user’s

working environment have a major effect on the
reliability, performance, usability and robustness of a
system. These cannot be replicated in a testing
environment.

55

Types of user testing

£ Alpha testing
p Users of the software work with the development team

to test the software at the developer's site.
£ Beta testing

p A release of the software is made available to users to
allow them to experiment and to raise problems that
they discover with the system developers.

£ Acceptance testing
p Customers test a system to decide whether or not it is

ready to be accepted from the system developers and
deployed in the customer environment. Primarily for
custom systems.

56

The acceptance testing process

Define
acceptance

criteria

Test
criteria

Plan
acceptance

testing

Derive
acceptance

tests

Run
acceptance

tests

Negotiate
test results

Accept or
reject

system

Test
plan

Tests Test
results

Testing
report

57

Agile methods and acceptance testing

£ The user/customer is part of the development
team and is responsible for making decisions on
the acceptability of the system.

£ Tests are defined by the user/customer and are
integrated with other tests in that they are run
automatically when changes are made.

£ There is no separate acceptance testing process.
£ Main problem here is whether or not the

embedded user is 'typical' and can represent the
interests of all system stakeholders.

58

V-model

Requirements
specification

System
specification

Acceptance
test

System
integration test

Sub-system
integration test

System
design

Detailed
design

Service

Module and
unit code
and test

Acceptance
test plan

System
integration
test plan

Sub-system
integration
test plan

Questions?

60

