
Introduction
1

Objectives
The objectives of this chapter are to introduce software engineering and
to provide a framework for understanding the rest of the book. When you
have read this chapter, you will:

■ understand what software engineering is and why it is important;

■ understand that the development of different types of software
system may require different software engineering techniques;

■ understand ethical and professional issues that are important
for software engineers;

■ have been introduced to four systems, of different types, which are
used as examples throughout the book.

Contents
1.1 Professional software development

1.2 Software engineering ethics

1.3 Case studies

18    Chapter 1  ■  Introduction

Software engineering is essential for the functioning of government, society, and national
and international businesses and institutions. We can’t run the modern world without
software. National infrastructures and utilities are controlled by computer-based systems,
and most electrical products include a computer and controlling software. Industrial
manufacturing and distribution is completely computerized, as is the financial system.
Entertainment, including the music industry, computer games, and film and television, is
software-intensive. More than 75% of the world’s population have a software-controlled
mobile phone, and, by 2016, almost all of these will be Internet-enabled.

Software systems are abstract and intangible. They are not constrained by the prop-
erties of materials, nor are they governed by physical laws or by manufacturing pro-
cesses. This simplifies software engineering, as there are no natural limits to the potential
of software. However, because of the lack of physical constraints, software systems can
quickly become extremely complex, difficult to understand, and expensive to change.

There are many different types of software system, ranging from simple embed-
ded systems to complex, worldwide information systems. There are no universal
notations, methods, or techniques for software engineering because different types
of software require different approaches. Developing an organizational information
system is completely different from developing a controller for a scientific instru-
ment. Neither of these systems has much in common with a graphics-intensive com-
puter game. All of these applications need software engineering; they do not all need
the same software engineering methods and techniques.

There are still many reports of software projects going wrong and of “software
failures.” Software engineering is criticized as inadequate for modern software
development. However, in my opinion, many of these so-called software failures
are a consequence of two factors:

1. Increasing system complexity As new software engineering techniques help us
to build larger, more complex systems, the demands change. Systems have to be
built and delivered more quickly; larger, even more complex systems are
required; and systems have to have new capabilities that were previously
thought to be impossible. New software engineering techniques have to be
developed to meet new the challenges of delivering more complex software.

2. Failure to use software engineering methods It is fairly easy to write computer
programs without using software engineering methods and techniques. Many
companies have drifted into software development as their products and ser-
vices have evolved. They do not use software engineering methods in their every-
day work. Consequently, their software is often more expensive and less reliable
than it should be. We need better software engineering education and training to
address this problem.

Software engineers can be rightly proud of their achievements. Of course, we still
have problems developing complex software, but without software engineering we
would not have explored space and we would not have the Internet or modern tele-
communications. All forms of travel would be more dangerous and expensive.
Challenges for humanity in the 21st century are climate change, fewer natural

  1.1  ■  Professional software development    19

resources, changing demographics, and an expanding world population. We will rely
on software engineering to develop the systems that we need to cope with these issues.

	 1.1	 Professional	software	development

Lots of people write programs. People in business write spreadsheet programs to
simplify their jobs; scientists and engineers write programs to process their experi-
mental data; hobbyists write programs for their own interest and enjoyment.
However, most software development is a professional activity in which software is
developed for business purposes, for inclusion in other devices, or as software prod-
ucts such as information systems and computer-aided design systems. The key dis-
tinctions are that professional software is intended for use by someone apart from its
developer and that teams rather than individuals usually develop the software. It is
maintained and changed throughout its life.

Software engineering is intended to support professional software development
rather than individual programming. It includes techniques that support program
specification, design, and evolution, none of which are normally relevant for per-
sonal software development. To help you to get a broad view of software engineer-
ing, I have summarized frequently asked questions about the subject in Figure 1.1.

Many people think that software is simply another word for computer programs.
However, when we are talking about software engineering, software is not just the
programs themselves but also all associated documentation, libraries, support web-
sites, and configuration data that are needed to make these programs useful. A pro-
fessionally developed software system is often more than a single program. A system
may consist of several separate programs and configuration files that are used to set
up these programs. It may include system documentation, which describes the struc-
ture of the system, user documentation, which explains how to use the system, and
websites for users to download recent product information.

This is one of the important differences between professional and amateur soft-
ware development. If you are writing a program for yourself, no one else will use it

History of software engineering

The notion of software engineering was first proposed in 1968 at a conference held to discuss what was then
called the software crisis (Naur and Randell 1969). It became clear that individual approaches to program devel-
opment did not scale up to large and complex software systems. These were unreliable, cost more than
expected, and were delivered late.

Throughout the 1970s and 1980s, a variety of new software engineering techniques and methods were
developed, such as structured programming, information hiding, and object-oriented development. Tools and
standard notations were developed which are the basis of today’s software engineering.

http://software-engineering-book.com/web/history/

http://software-engineering-book.com/web/history

20    Chapter 1  ■  Introduction

Figure 1.1 Frequently
asked questions about
software engineering

Question Answer

What is software? Computer programs and associated documentation. Software
products may be developed for a particular customer or may be
developed for a general market.

What are the attributes of good
software?

Good software should deliver the required functionality and
performance to the user and should be maintainable, dependable
and usable.

What is software engineering? Software engineering is an engineering discipline that is concerned
with all aspects of software production from initial conception to
operation and maintenance.

What are the fundamental
software engineering activities?

Software specification, software development, software validation
and software evolution.

What is the difference between
software engineering and
computer science?

Computer science focuses on theory and fundamentals; software
engineering is concerned with the practicalities of developing and
delivering useful software.

What is the difference between
software engineering and system
engineering?

System engineering is concerned with all aspects of computer-
based systems development including hardware, software and
process engineering. Software engineering is part of this more
general process.

What are the key challenges
facing software engineering?

Coping with increasing diversity, demands for reduced delivery
times and developing trustworthy software.

What are the costs of software
engineering?

Roughly 60% of software costs are development costs, 40% are
testing costs. For custom software, evolution costs often exceed
development costs.

What are the best software
engineering techniques and
methods?

While all software projects have to be professionally managed and
developed, different techniques are appropriate for different types
of system. For example, games should always be developed using
a series of prototypes whereas safety critical control systems
require a complete and analyzable specification to be developed.
There are no methods and techniques that are good for everything.

What differences has the Internet
made to software engineering?

Not only has the Internet led to the development of massive, highly
distributed, service-based systems, it has also supported the
creation of an “app” industry for mobile devices which has
changed the economics of software.

and you don’t have to worry about writing program guides, documenting the pro-
gram design, and so on. However, if you are writing software that other people will
use and other engineers will change, then you usually have to provide additional
information as well as the code of the program.

Software engineers are concerned with developing software products, that is,
software that can be sold to a customer. There are two kinds of software product:

1. Generic products These are stand-alone systems that are produced by a
development organization and sold on the open market to any customer who is
able to buy them. Examples of this type of product include apps for mobile
devices, software for PCs such as databases, word processors, drawing packages,
and project management tools. This kind of software also includes “vertical”

  1.1  ■  Professional software development    21

applications designed for a specific market such as library information systems,
accounting systems, or systems for maintaining dental records.

2. Customized (or bespoke) software These are systems that are commissioned by
and developed for a particular customer. A software contractor designs and
implements the software especially for that customer. Examples of this type of
software include control systems for electronic devices, systems written to
support a particular business process, and air traffic control systems.

The critical distinction between these types of software is that, in generic prod-
ucts, the organization that develops the software controls the software specification.
This means that if they run into development problems, they can rethink what is to
be developed. For custom products, the specification is developed and controlled by
the organization that is buying the software. The software developers must work to
that specification.

However, the distinction between these system product types is becoming increas-
ingly blurred. More and more systems are now being built with a generic product as
a base, which is then adapted to suit the requirements of a customer. Enterprise
Resource Planning (ERP) systems, such as systems from SAP and Oracle, are the
best examples of this approach. Here, a large and complex system is adapted for a
company by incorporating information about business rules and processes, reports
required, and so on.

When we talk about the quality of professional software, we have to consider that
the software is used and changed by people apart from its developers. Quality is
therefore not just concerned with what the software does. Rather, it has to include the
software’s behavior while it is executing and the structure and organization of the sys-
tem programs and associated documentation. This is reflected in the software’s qual-
ity or non-functional attributes. Examples of these attributes are the software’s
response time to a user query and the understandability of the program code.

The specific set of attributes that you might expect from a software system obvi-
ously depends on its application. Therefore, an aircraft control system must be safe, an
interactive game must be responsive, a telephone switching system must be reliable,
and so on. These can be generalized into the set of attributes shown in Figure 1.2,
which I think are the essential characteristics of a professional software system.

	 1.1.1		 Software	engineering

Software engineering is an engineering discipline that is concerned with all aspects
of software production from the early stages of system specification through to
maintaining the system after it has gone into use. In this definition, there are two
key phrases:

1. Engineering discipline Engineers make things work. They apply theories, meth-
ods, and tools where these are appropriate. However, they use them selectively

22    Chapter 1  ■  Introduction

Figure 1.2 Essential
attributes of good
software

Product characteristic Description

Acceptability Software must be acceptable to the type of users for which it is
designed. This means that it must be understandable, usable, and
compatible with other systems that they use.

Dependability and security Software dependability includes a range of characteristics including
reliability, security, and safety. Dependable software should not
cause physical or economic damage in the event of system failure.
Software has to be secure so that malicious users cannot access or
damage the system.

Efficiency Software should not make wasteful use of system resources such
as memory and processor cycles. Efficiency therefore includes
responsiveness, processing time, resource utilization, etc.

Maintainability Software should be written in such a way that it can evolve to
meet the changing needs of customers. This is a critical attribute
because software change is an inevitable requirement of a
changing business environment.

and always try to discover solutions to problems even when there are no appli-
cable theories and methods. Engineers also recognize that they must work
within organizational and financial constraints, and they must look for solutions
within these constraints.

2. All aspects of software production Software engineering is not just concerned
with the technical processes of software development. It also includes activities
such as software project management and the development of tools, methods,
and theories to support software development.

Engineering is about getting results of the required quality within schedule and
budget. This often involves making compromises—engineers cannot be perfection-
ists. People writing programs for themselves, however, can spend as much time as
they wish on the program development.

In general, software engineers adopt a systematic and organized approach to their
work, as this is often the most effective way to produce high-quality software.
However, engineering is all about selecting the most appropriate method for a set of
circumstances, so a more creative, less formal approach to development may be the
right one for some kinds of software. A more flexible software process that accom-
modates rapid change is particularly appropriate for the development of interactive
web-based systems and mobile apps, which require a blend of software and graphi-
cal design skills.

Software engineering is important for two reasons:

1. More and more, individuals and society rely on advanced software systems. We need
to be able to produce reliable and trustworthy systems economically and quickly.

2. It is usually cheaper, in the long run, to use software engineering methods and
techniques for professional software systems rather than just write programs as

  1.1  ■  Professional software development    23

a personal programming project. Failure to use software engineering method
leads to higher costs for testing, quality assurance, and long-term maintenance.

The systematic approach that is used in software engineering is sometimes called
a software process. A software process is a sequence of activities that leads to the
production of a software product. Four fundamental activities are common to all
software processes.

1. Software specification, where customers and engineers define the software that
is to be produced and the constraints on its operation.

2. Software development, where the software is designed and programmed.

3. Software validation, where the software is checked to ensure that it is what the
customer requires.

4. Software evolution, where the software is modified to reflect changing customer
and market requirements.

Different types of systems need different development processes, as I explain in
Chapter 2. For example, real-time software in an aircraft has to be completely speci-
fied before development begins. In e-commerce systems, the specification and the
program are usually developed together. Consequently, these generic activities may
be organized in different ways and described at different levels of detail, depending
on the type of software being developed.

Software engineering is related to both computer science and systems engineering.

1. Computer science is concerned with the theories and methods that underlie
computers and software systems, whereas software engineering is concerned
with the practical problems of producing software. Some knowledge of com-
puter science is essential for software engineers in the same way that some
knowledge of physics is essential for electrical engineers. Computer science
theory, however, is often most applicable to relatively small programs. Elegant
theories of computer science are rarely relevant to large, complex problems that
require a software solution.

2. System engineering is concerned with all aspects of the development and evolu-
tion of complex systems where software plays a major role. System engineering
is therefore concerned with hardware development, policy and process design,
and system deployment, as well as software engineering. System engineers are
involved in specifying the system, defining its overall architecture, and then
integrating the different parts to create the finished system.

As I discuss in the next section, there are many different types of software. There are
no universal software engineering methods or techniques that may be used. However,
there are four related issues that affect many different types of software:

24    Chapter 1  ■  Introduction

1. Heterogeneity Increasingly, systems are required to operate as distributed sys-
tems across networks that include different types of computer and mobile
devices. As well as running on general-purpose computers, software may also
have to execute on mobile phones and tablets. You often have to integrate new
software with older legacy systems written in different programming languages.
The challenge here is to develop techniques for building dependable software
that is flexible enough to cope with this heterogeneity.

2. Business and social change Businesses and society are changing incredibly
quickly as emerging economies develop and new technologies become availa-
ble. They need to be able to change their existing software and to rapidly
develop new software. Many traditional software engineering techniques are
time consuming, and delivery of new systems often takes longer than planned.
They need to evolve so that the time required for software to deliver value to its
customers is reduced.

3. Security and trust As software is intertwined with all aspects of our lives, it is
essential that we can trust that software. This is especially true for remote soft-
ware systems accessed through a web page or web service interface. We have to
make sure that malicious users cannot successfully attack our software and that
information security is maintained.

4. Scale Software has to be developed across a very wide range of scales, from
very small embedded systems in portable or wearable devices through to
Internet-scale, cloud-based systems that serve a global community.

To address these challenges, we will need new tools and techniques as well as
innovative ways of combining and using existing software engineering methods.

	 1.1.2		 Software	engineering	diversity

Software engineering is a systematic approach to the production of software
that takes into account practical cost, schedule, and dependability issues, as
well as the needs of software customers and producers. The specific methods,
tools, and techniques used depend on the organization developing the software,
the type of software, and the people involved in the development process. There
are no universal software engineering methods that are suitable for all systems
and all companies. Rather, a diverse set of software engineering methods and
tools has evolved over the past 50 years. However, the SEMAT initiative
(Jacobson et al. 2013) proposes that there can be a fundamental meta-process
that can be instantiated to create different kinds of process. This is at an early
stage of development and may be a basis for improving our current software
engineering methods.

Perhaps the most significant factor in determining which software engineering
methods and techniques are most important is the type of application being devel-
oped. There are many different types of application, including:

  1.1  ■  Professional software development    25

1. Stand-alone applications These are application systems that run on a personal
computer or apps that run on a mobile device. They include all necessary func-
tionality and may not need to be connected to a network. Examples of such
applications are office applications on a PC, CAD programs, photo manipula-
tion software, travel apps, productivity apps, and so on.

2. Interactive transaction-based applications These are applications that execute
on a remote computer and that are accessed by users from their own computers,
phones, or tablets. Obviously, these include web applications such as e-commerce
applications where you interact with a remote system to buy goods and services.
This class of application also includes business systems, where a business
provides access to its systems through a web browser or special-purpose client
program and cloud-based services, such as mail and photo sharing. Interactive
applications often incorporate a large data store that is accessed and updated in
each transaction.

3. Embedded control systems These are software control systems that control and
manage hardware devices. Numerically, there are probably more embedded sys-
tems than any other type of system. Examples of embedded systems include the
software in a mobile (cell) phone, software that controls antilock braking in a
car, and software in a microwave oven to control the cooking process.

4. Batch processing systems These are business systems that are designed to pro-
cess data in large batches. They process large numbers of individual inputs to
create corresponding outputs. Examples of batch systems are periodic billing
systems, such as phone billing systems, and salary payment systems.

5. Entertainment systems These are systems for personal use that are intended to
entertain the user. Most of these systems are games of one kind or another,
which may run on special-purpose console hardware. The quality of the user
interaction offered is the most important distinguishing characteristic of enter-
tainment systems.

6. Systems for modeling and simulation These are systems that are developed by
scientists and engineers to model physical processes or situations, which include
many separate, interacting objects. These are often computationally intensive
and require high-performance parallel systems for execution.

7. Data collection and analysis systems Data collection systems are systems that
collect data from their environment and send that data to other systems for pro-
cessing. The software may have to interact with sensors and often is installed in
a hostile environment such as inside an engine or in a remote location. “Big
data” analysis may involve cloud-based systems carrying out statistical analysis
and looking for relationships in the collected data.

8. Systems of systems These are systems, used in enterprises and other large organ-
izations, that are composed of a number of other software systems. Some of
these may be generic software products, such as an ERP system. Other systems
in the assembly may be specially written for that environment.

26    Chapter 1  ■  Introduction

Of course, the boundaries between these system types are blurred. If you develop
a game for a phone, you have to take into account the same constraints (power, hard-
ware interaction) as the developers of the phone software. Batch processing systems
are often used in conjunction with web-based transaction systems. For example, in a
company, travel expense claims may be submitted through a web application but
processed in a batch application for monthly payment.

Each type of system requires specialized software engineering techniques because
the software has different characteristics. For example, an embedded control system
in an automobile is safety-critical and is burned into ROM (read-only memory)
when installed in the vehicle. It is therefore very expensive to change. Such a system
needs extensive verification and validation so that the chances of having to recall
cars after sale to fix software problems are minimized. User interaction is minimal
(or perhaps nonexistent), so there is no need to use a development process that relies
on user interface prototyping.

For an interactive web-based system or app, iterative development and delivery is
the best approach, with the system being composed of reusable components.
However, such an approach may be impractical for a system of systems, where
detailed specifications of the system interactions have to be specified in advance so
that each system can be separately developed.

Nevertheless, there are software engineering fundamentals that apply to all types
of software systems:

1. They should be developed using a managed and understood development pro-
cess. The organization developing the software should plan the development
process and have clear ideas of what will be produced and when it will be com-
pleted. Of course, the specific process that you should use depends on the type
of software that you are developing.

2. Dependability and performance are important for all types of system. Software
should behave as expected, without failures, and should be available for use
when it is required. It should be safe in its operation and, as far as possible,
should be secure against external attack. The system should perform efficiently
and should not waste resources.

3. Understanding and managing the software specification and requirements (what
the software should do) are important. You have to know what different custom-
ers and users of the system expect from it, and you have to manage their expec-
tations so that a useful system can be delivered within budget and to schedule.

4. You should make effective use of existing resources. This means that, where
appropriate, you should reuse software that has already been developed rather
than write new software.

These fundamental notions of process, dependability, requirements, manage-
ment, and reuse are important themes of this book. Different methods reflect them in
different ways, but they underlie all professional software development.

  1.1  ■  Professional software development    27

These fundamentals are independent of the program language used for software
development. I don’t cover specific programming techniques in this book because
these vary dramatically from one type of system to another. For example, a dynamic
language, such as Ruby, is the right type of language for interactive system develop-
ment but is inappropriate for embedded systems engineering.

	 1.1.3		 Internet	software	engineering

The development of the Internet and the World Wide Web has had a profound
effect on all of our lives. Initially, the web was primarily a universally accessible
information store, and it had little effect on software systems. These systems ran
on local computers and were only accessible from within an organization. Around
2000, the web started to evolve, and more and more functionality was added to
browsers. This meant that web-based systems could be developed where, instead
of a special-purpose user interface, these systems could be accessed using a web
browser. This led to the development of a vast range of new system products that
delivered innovative services, accessed over the web. These are often funded by
adverts that are displayed on the user’s screen and do not involve direct payment
from users.

As well as these system products, the development of web browsers that could
run small programs and do some local processing led to an evolution in business and
organizational software. Instead of writing software and deploying it on users’ PCs,
the software was deployed on a web server. This made it much cheaper to change
and upgrade the software, as there was no need to install the software on every PC.
It also reduced costs, as user interface development is particularly expensive.
Wherever it has been possible to do so, businesses have moved to web-based inter-
action with company software systems.

The notion of software as a service (Chapter 17) was proposed early in the 21st
century This has now become the standard approach to the delivery of web-based
system products such as Google Apps, Microsoft Office 365, and Adobe Creative
Suite. More and more software runs on remote “clouds” instead of local servers and
is accessed over the Internet. A computing cloud is a huge number of linked com-
puter systems that is shared by many users. Users do not buy software but pay
according to how much the software is used or are given free access in return for
watching adverts that are displayed on their screen. If you use services such as web-
based mail, storage, or video, you are using a cloud-based system.

The advent of the web has led to a dramatic change in the way that business soft-
ware is organized. Before the web, business applications were mostly monolithic,
single programs running on single computers or computer clusters. Communications
were local, within an organization. Now, software is highly distributed, sometimes
across the world. Business applications are not programmed from scratch but involve
extensive reuse of components and programs.

This change in software organization has had a major effect on software engi-
neering for web-based systems. For example:

28    Chapter 1  ■  Introduction

1. Software reuse has become the dominant approach for constructing web-based
systems. When building these systems, you think about how you can assemble
them from preexisting software components and systems, often bundled together
in a framework.

2. It is now generally recognized that it is impractical to specify all the require-
ments for such systems in advance. Web-based systems are always developed
and delivered incrementally.

3. Software may be implemented using service-oriented software engineering,
where the software components are stand-alone web services. I discuss this
approach to software engineering in Chapter 18.

4. Interface development technology such as AJAX (Holdener 2008) and HTML5
(Freeman 2011) have emerged that support the creation of rich interfaces within
a web browser.

The fundamental ideas of software engineering, discussed in the previous section,
apply to web-based software, as they do to other types of software. Web-based sys-
tems are getting larger and larger, so software engineering techniques that deal with
scale and complexity are relevant for these systems.

	 1.2		 Software	engineering	ethics

Like other engineering disciplines, software engineering is carried out within a
social and legal framework that limits the freedom of people working in that area. As
a software engineer, you must accept that your job involves wider responsibilities
than simply the application of technical skills. You must also behave in an ethical
and morally responsible way if you are to be respected as a professional engineer.

It goes without saying that you should uphold normal standards of honesty and
integrity. You should not use your skills and abilities to behave in a dishonest way or
in a way that will bring disrepute to the software engineering profession. However,
there are areas where standards of acceptable behavior are not bound by laws but by
the more tenuous notion of professional responsibility. Some of these are:

1. Confidentiality You should normally respect the confidentiality of your employ-
ers or clients regardless of whether or not a formal confidentiality agreement
has been signed.

2. Competence You should not misrepresent your level of competence. You should
not knowingly accept work that is outside your competence.

3. Intellectual property rights You should be aware of local laws governing the
use of intellectual property such as patents and copyright. You should be careful
to ensure that the intellectual property of employers and clients is protected.

  1.2  ■  Software engineering ethics    29

4. Computer misuse You should not use your technical skills to misuse other peo-
ple’s computers. Computer misuse ranges from relatively trivial (game playing
on an employer’s machine) to extremely serious (dissemination of viruses or
other malware).

Professional societies and institutions have an important role to play in setting
ethical standards. Organizations such as the ACM, the IEEE (Institute of Electrical
and Electronic Engineers), and the British Computer Society publish a code of pro-
fessional conduct or code of ethics. Members of these organizations undertake to
follow that code when they sign up for membership. These codes of conduct are
generally concerned with fundamental ethical behavior.

Professional associations, notably the ACM and the IEEE, have cooperated to
produce a joint code of ethics and professional practice. This code exists in both a
short form, shown in Figure 1.3, and a longer form (Gotterbarn, Miller, and Rogerson
1999) that adds detail and substance to the shorter version. The rationale behind this
code is summarized in the first two paragraphs of the longer form:

Figure 1.3 The ACM/
IEEE Code of Ethics

Software Engineering Code of Ethics and Professional Practice

ACM/IEEE-CS Joint Task Force on Software Engineering Ethics and Professional Practices

PREAMBLE
The short version of the code summarizes aspirations at a high level of the abstraction; the clauses that are
included in the full version give examples and details of how these aspirations change the way we act as soft-
ware engineering professionals. Without the aspirations, the details can become legalistic and tedious; without
the details, the aspirations can become high sounding but empty; together, the aspirations and the details form
a cohesive code.

Software engineers shall commit themselves to making the analysis, specification, design, development, test-
ing, and maintenance of software a beneficial and respected profession. In accordance with their commitment
to the health, safety, and welfare of the public, software engineers shall adhere to the following Eight Principles:

1. PUBLIC — Software engineers shall act consistently with the public interest.
2. CLIENT AND EMPLOYER — Software engineers shall act in a manner that is in the

best interests of their client and employer consistent with the public interest.
3. PRODUCT — Software engineers shall ensure that their products and related

modifications meet the highest professional standards possible.
4. JUDGMENT — Software engineers shall maintain integrity and independence in their

professional judgment.
5. MANAGEMENT — Software engineering managers and leaders shall subscribe to and

promote an ethical approach to the management of software development and
maintenance.

6. PROFESSION — Software engineers shall advance the integrity and reputation of
the profession consistent with the public interest.

7. COLLEAGUES — Software engineers shall be fair to and supportive of their
colleagues.

8. SELF — Software engineers shall participate in lifelong learning regarding
the practice of their profession and shall promote an ethical approach to the
practice of the profession.

(ACM/IEEE-CS Joint
Task Force on Software
Engineering Ethics and
Professional Practices,
short version. http://
www.acm.org/about/
se-code)

(© 1999 by the ACM,
Inc. and the IEEE, Inc.)

http://www.acm.org/about
http://www.acm.org/about

30    Chapter 1  ■  Introduction

Computers have a central and growing role in commerce, industry, government,
medicine, education, entertainment and society at large. Software engineers are
those who contribute by direct participation or by teaching, to the analysis, spec-
ification, design, development, certification, maintenance and testing of software
systems. Because of their roles in developing software systems, software engi-
neers have significant opportunities to do good or cause harm, to enable others to
do good or cause harm, or to influence others to do good or cause harm. To
ensure, as much as possible, that their efforts will be used for good, software
engineers must commit themselves to making software engineering a beneficial
and respected profession. In accordance with that commitment, software engi-
neers shall adhere to the following Code of Ethics and Professional Practice†.

The Code contains eight Principles related to the behaviour of and decisions
made by professional software engineers, including practitioners, educators,
managers, supervisors and policy makers, as well as trainees and students of
the profession. The Principles identify the ethically responsible relationships
in which individuals, groups, and organizations participate and the primary
obligations within these relationships. The Clauses of each Principle are illus-
trations of some of the obligations included in these relationships. These obli-
gations are founded in the software engineer’s humanity, in special care owed
to people affected by the work of software engineers, and the unique elements
of the practice of software engineering. The Code prescribes these as obliga-
tions of anyone claiming to be or aspiring to be a software engineer†.

In any situation where different people have different views and objectives, you are
likely to be faced with ethical dilemmas. For example, if you disagree, in principle, with
the policies of more senior management in the company, how should you react? Clearly,
this depends on the people involved and the nature of the disagreement. Is it best to argue
a case for your position from within the organization or to resign in principle? If you feel
that there are problems with a software project, when do you reveal these problems to
management? If you discuss these while they are just a suspicion, you may be overreact-
ing to a situation; if you leave it too long, it may be impossible to resolve the difficulties.

We all face such ethical dilemmas in our professional lives, and, fortunately, in
most cases they are either relatively minor or can be resolved without too much dif-
ficulty. Where they cannot be resolved, the engineer is faced with, perhaps, another
problem. The principled action may be to resign from their job, but this may well
affect others such as their partner or their children.

A difficult situation for professional engineers arises when their employer acts in
an unethical way. Say a company is responsible for developing a safety-critical
system and, because of time pressure, falsifies the safety validation records. Is the
engineer’s responsibility to maintain confidentiality or to alert the customer or
publicize, in some way, that the delivered system may be unsafe?

†ACM/IEEE-CS Joint Task Force on Software Engineering Ethics and Professional Practices, short
version Preamble. http://www.acm.org/about/se-code Copyright © 1999 by the Association for
Computing Machinery, Inc. and the Institute for Electrical and Electronics Engineers, Inc.

http://www.acm.org/about/se-code

  1.3  ■  Case studies    31

The problem here is that there are no absolutes when it comes to safety. Although
the system may not have been validated according to predefined criteria, these
 criteria may be too strict. The system may actually operate safely throughout its life-
time. It is also the case that, even when properly validated, the system may fail and
cause an accident. Early disclosure of problems may result in damage to the employer
and other employees; failure to disclose problems may result in damage to others.

You must make up your own mind in these matters. The appropriate ethical posi-
tion here depends on the views of the people involved. The potential for damage, the
extent of the damage, and the people affected by the damage should influence the
decision. If the situation is very dangerous, it may be justified to publicize it using
the national press or social media. However, you should always try to resolve the
situation while respecting the rights of your employer.

Another ethical issue is participation in the development of military and nuclear
systems. Some people feel strongly about these issues and do not wish to participate in
any systems development associated with defense systems. Others will work on mili-
tary systems but not on weapons systems. Yet others feel that national security is an
overriding principle and have no ethical objections to working on weapons systems.

In this situation, it is important that both employers and employees should make
their views known to each other in advance. Where an organization is involved in
military or nuclear work, it should be able to specify that employees must be willing
to accept any work assignment. Equally, if an employee is taken on and makes clear
that he or she does not wish to work on such systems, employers should not exert
pressure to do so at some later date.

The general area of ethics and professional responsibility is increasingly important
as software-intensive systems pervade every aspect of work and everyday life. It can
be considered from a philosophical standpoint where the basic principles of ethics are
considered and software engineering ethics are discussed with reference to these
basic principles. This is the approach taken by Laudon (Laudon 1995) and Johnson
(Johnson 2001). More recent texts such as that by Tavani (Tavani 2013) introduce the
notion of cyberethics and cover both the philosophical background and practical and
legal issues. They include ethical issues for technology users as well as developers.

I find that a philosophical approach is too abstract and difficult to relate to every-
day experience so I prefer the more concrete approach embodied in professional
codes of conduct (Bott 2005; Duquenoy 2007). I think that ethics are best discussed
in a software engineering context and not as a subject in its own right. Therefore, I
do not discuss software engineering ethics in an abstract way but include examples
in the exercises that can be the starting point for a group discussion.

	 1.3	 Case	studies

To illustrate software engineering concepts, I use examples from four different types
of system. I have deliberately not used a single case study, as one of the key messages
in this book is that software engineering practice depends on the type of systems

32    Chapter 1  ■  Introduction

being produced. I therefore choose an appropriate example when discussing con-
cepts such as safety and dependability, system modeling, reuse, etc.

The system types that I use as case studies are:

1. An embedded system This is a system where the software controls some hard-
ware device and is embedded in that device. Issues in embedded systems typi-
cally include physical size, responsiveness, and power management, etc. The
example of an embedded system that I use is a software system to control an
insulin pump for people who have diabetes.

2. An information system The primary purpose of this type of system is to manage
and provide access to a database of information. Issues in information systems
include security, usability, privacy, and maintaining data integrity. The example
of an information system used is a medical records system.

3. A sensor-based data collection system This is a system whose primary purposes
are to collect data from a set of sensors and to process that data in some way.
The key requirements of such systems are reliability, even in hostile environ-
mental conditions, and maintainability. The example of a data collection system
that I use is a wilderness weather station.

4. A support environment. This is an integrated collection of software tools that are
used to support some kind of activity. Programming environments, such as
Eclipse (Vogel 2012) will be the most familiar type of environment for readers
of this book. I describe an example here of a digital learning environment that
is used to support students’ learning in schools.

I introduce each of these systems in this chapter; more information about each of
them is available on the website (software-engineering-book.com).

	 1.3.1		 An	insulin	pump	control	system

An insulin pump is a medical system that simulates the operation of the pancreas (an
internal organ). The software controlling this system is an embedded system that
collects information from a sensor and controls a pump that delivers a controlled
dose of insulin to a user.

People who suffer from diabetes use the system. Diabetes is a relatively common
condition in which the human pancreas is unable to produce sufficient quantities of
a hormone called insulin. Insulin metabolizes glucose (sugar) in the blood. The con-
ventional treatment of diabetes involves regular injections of genetically engineered
insulin. Diabetics measure their blood sugar levels periodically using an external
meter and then estimate the dose of insulin they should inject.

The problem is that the level of insulin required does not just depend on the blood
glucose level but also on the time of the last insulin injection. Irregular checking can
lead to very low levels of blood glucose (if there is too much insulin) or very high
levels of blood sugar (if there is too little insulin). Low blood glucose is, in the short
term, a more serious condition as it can result in temporary brain malfunctioning and,

  1.3  ■  Case studies    33

ultimately, unconsciousness and death. In the long term, however, continual high
levels of blood glucose can lead to eye damage, kidney damage, and heart problems.

Advances in developing miniaturized sensors have meant that it is now possible
to develop automated insulin delivery systems. These systems monitor blood sugar
levels and deliver an appropriate dose of insulin when required. Insulin delivery
systems like this one are now available and are used by patients who find it difficult
to control their insulin levels. In future, it may be possible for diabetics to have such
systems permanently attached to their bodies.

A software-controlled insulin delivery system uses a microsensor embedded in
the patient to measure some blood parameter that is proportional to the sugar level.
This is then sent to the pump controller. This controller computes the sugar level and
the amount of insulin that is needed. It then sends signals to a miniaturized pump to
deliver the insulin via a permanently attached needle.

Figure 1.4 shows the hardware components and organization of the insulin pump.
To understand the examples in this book, all you need to know is that the blood sensor
measures the electrical conductivity of the blood under different conditions and that
these values can be related to the blood sugar level. The insulin pump delivers one unit
of insulin in response to a single pulse from a controller. Therefore, to deliver 10 units
of insulin, the controller sends 10 pulses to the pump. Figure 1.5 is a Unified Modeling

Needle
assembly

Sensor

Display1 Display2

Alarm

Pump Clock

Controller

Power supply

Insulin reservoir

Figure 1.4 Insulin pump
hardware architecture

Analyze sensor
reading

Blood
sensor

Insulin
pump

Blood
sugar

Compute
insulin

Insulin
dose

Insulin
log

Log doseCompute pump
commands

Pump
data

Control insulin
pump

Figure 1.5 Activity
model of the
insulin pump

34    Chapter 1  ■  Introduction

Language (UML) activity model that illustrates how the software transforms an input
blood sugar level to a sequence of commands that drive the insulin pump.

Clearly, this is a safety-critical system. If the pump fails to operate or does not
operate correctly, then the user’s health may be damaged or they may fall into a
coma because their blood sugar levels are too high or too low. This system must
therefore meet two essential high-level requirements:

1. The system shall be available to deliver insulin when required.

2. The system shall perform reliably and deliver the correct amount of insulin to
counteract the current level of blood sugar.

The system must therefore be designed and implemented to ensure that it always
meets these requirements. More detailed requirements and discussions of how to
ensure that the system is safe are discussed in later chapters.

	 1.3.2		 A	patient	information	system	for	mental	health	care

A patient information system to support mental health care (the Mentcare system) is a
medical information system that maintains information about patients suffering from
mental health problems and the treatments that they have received. Most mental
health patients do not require dedicated hospital treatment but need to attend special-
ist clinics regularly where they can meet a doctor who has detailed knowledge of their
problems. To make it easier for patients to attend, these clinics are not just run in
hospitals. They may also be held in local medical practices or community centers.

The Mentcare system (Figure 1.6) is a patient information system that is intended
for use in clinics. It makes use of a centralized database of patient information but

Mentcare
client

Mentcare server

Patient database

Mentcare
client

Mentcare
client

Network

Figure 1.6 The
organization of the
Mentcare system

  1.3  ■  Case studies    35

has also been designed to run on a laptop, so that it may be accessed and used from
sites that do not have secure network connectivity. When the local systems have
secure network access, they use patient information in the database, but they can
download and use local copies of patient records when they are disconnected. The
system is not a complete medical records system and so does not maintain informa-
tion about other medical conditions. However, it may interact and exchange data
with other clinical information systems.

This system has two purposes:

1. To generate management information that allows health service managers to
assess performance against local and government targets.

2. To provide medical staff with timely information to support the treatment of
patients.

Patients who suffer from mental health problems are sometimes irrational and
disorganized so may miss appointments, deliberately or accidentally lose prescriptions
and medication, forget instructions and make unreasonable demands on medical
staff. They may drop in on clinics unexpectedly. In a minority of cases, they may be
a danger to themselves or to other people. They may regularly change address or
may be homeless on a long-term or short-term basis. Where patients are dangerous,
they may need to be “sectioned”—that is, confined to a secure hospital for treatment
and observation.

Users of the system include clinical staff such as doctors, nurses, and health visi-
tors (nurses who visit people at home to check on their treatment). Nonmedical users
include receptionists who make appointments, medical records staff who maintain
the records system, and administrative staff who generate reports.

The system is used to record information about patients (name, address, age, next
of kin, etc.), consultations (date, doctor seen, subjective impressions of the patient,
etc.), conditions, and treatments. Reports are generated at regular intervals for medi-
cal staff and health authority managers. Typically, reports for medical staff focus on
information about individual patients, whereas management reports are anonymized
and are concerned with conditions, costs of treatment, etc.

The key features of the system are:

1. Individual care management Clinicians can create records for patients, edit the
information in the system, view patient history, and so on. The system supports
data summaries so that doctors who have not previously met a patient can
quickly learn about the key problems and treatments that have been prescribed.

2. Patient monitoring The system regularly monitors the records of patients that
are involved in treatment and issues warnings if possible problems are detected.
Therefore, if a patient has not seen a doctor for some time, a warning may be
issued. One of the most important elements of the monitoring system is to keep
track of patients who have been sectioned and to ensure that the legally required
checks are carried out at the right time.

36    Chapter 1  ■  Introduction

3. Administrative reporting The system generates monthly management reports
showing the number of patients treated at each clinic, the number of patients
who have entered and left the care system, the number of patients sectioned, the
drugs prescribed and their costs, etc.

Two different laws affect the system: laws on data protection that govern the con-
fidentiality of personal information and mental health laws that govern the compul-
sory detention of patients deemed to be a danger to themselves or others. Mental
health is unique in this respect as it is the only medical speciality that can recommend
the detention of patients against their will. This is subject to strict legislative safe-
guards. One aim of the Mentcare system is to ensure that staff always act in accord-
ance with the law and that their decisions are recorded for judicial review if necessary.

As in all medical systems, privacy is a critical system requirement. It is essential
that patient information is confidential and is never disclosed to anyone apart from
authorized medical staff and the patient themselves. The Mentcare system is also a
safety-critical system. Some mental illnesses cause patients to become suicidal or a
danger to other people. Wherever possible, the system should warn medical staff
about potentially suicidal or dangerous patients.

The overall design of the system has to take into account privacy and safety
requirements. The system must be available when needed; otherwise safety may be
compromised, and it may be impossible to prescribe the correct medication to patients.
There is a potential conflict here. Privacy is easiest to maintain when there is only a
single copy of the system data. However, to ensure availability in the event of server
failure or when disconnected from a network, multiple copies of the data should be
maintained. I discuss the trade-offs between these requirements in later chapters.

	 1.3.3		 A	wilderness	weather	station

To help monitor climate change and to improve the accuracy of weather forecasts in
remote areas, the government of a country with large areas of wilderness decides to
deploy several hundred weather stations in remote areas. These weather stations col-
lect data from a set of instruments that measure temperature and pressure, sunshine,
rainfall, wind speed and wind direction.

Wilderness weather stations are part of a larger system (Figure 1.7), which is a
weather information system that collects data from weather stations and makes it
available to other systems for processing. The systems in Figure 1.7 are:

1. The weather station system This system is responsible for collecting weather
data, carrying out some initial data processing, and transmitting it to the data
management system.

2. The data management and archiving system This system collects the data from
all of the wilderness weather stations, carries out data processing and analysis,
and archives the data in a form that can be retrieved by other systems, such as
weather forecasting systems.

  1.3  ■  Case studies    37

3. The station maintenance system This system can communicate by satellite with
all wilderness weather stations to monitor the health of these systems and pro-
vide reports of problems. It can update the embedded software in these systems.
In the event of system problems, this system can also be used to remotely con-
trol the weather station.

In Figure 1.7, I have used the UML package symbol to indicate that each system is
a collection of components and the separate systems are identified using the UML
 stereotype «system». The associations between the packages indicate there is an exchange
of information but, at this stage, there is no need to define them in any more detail.

The weather stations include instruments that measure weather parameters such
as wind speed and direction, ground and air temperatures, barometric pressure, and
rainfall over a 24-hour period. Each of these instruments is controlled by a software
system that takes parameter readings periodically and manages the data collected
from the instruments.

The weather station system operates by collecting weather observations at fre-
quent intervals; for example, temperatures are measured every minute. However,
because the bandwidth to the satellite is relatively narrow, the weather station carries
out some local processing and aggregation of the data. It then transmits this aggre-
gated data when requested by the data collection system. If it is impossible to make
a connection, then the weather station maintains the data locally until communica-
tion can be resumed.

Each weather station is battery-powered and must be entirely self-contained; there
are no external power or network cables. All communications are through a relatively
slow satellite link, and the weather station must include some mechanism (solar or
wind power) to charge its batteries. As they are deployed in wilderness areas, they are
exposed to severe environmental conditions and may be damaged by animals. The
station software is therefore not just concerned with data collection. It must also:

1. Monitor the instruments, power. and communication hardware and report faults
to the management system.

2. Manage the system power, ensuring that batteries are charged whenever the
environmental conditions permit but also that generators are shut down in
potentially damaging weather conditions, such as high wind.

«system»
Data management

and archiving

«system»
Station maintenance

«system»
Weather station

Figure 1.7 The weather
station’s environment

38    Chapter 1  ■  Introduction

3. Allow for dynamic reconfiguration where parts of the software are replaced
with new versions and where backup instruments are switched into the system
in the event of system failure.

Because weather stations have to be self-contained and unattended, this means
that the software installed is complex, even though the data collection functionality
is fairly simple.

	 1.3.4		 A	digital	learning	environment	for	schools

Many teachers argue that using interactive software systems to support education
can lead to both improved learner motivation and a deeper level of knowledge and
understanding in students. However, there is no general agreement on the ‘best’
strategy for computer-supported learning, and teachers in practice use a range of dif-
ferent interactive, web-based tools to support learning. The tools used depend on the
ages of the learners, their cultural background, their experience with computers,
equipment available, and the preferences of the teachers involved.

A digital learning environment is a framework in which a set of general-purpose
and specially designed tools for learning may be embedded, plus a set of applica-
tions that are geared to the needs of the learners using the system. The framework
provides general services such as an authentication service, synchronous and asyn-
chronous communication services, and a storage service.

The tools included in each version of the environment are chosen by teachers and
learners to suit their specific needs. These can be general applications such as spread-
sheets, learning management applications such as a Virtual Learning Environment
(VLE) to manage homework submission and assessment, games, and simulations.
They may also include specific content, such as content about the American Civil
War and applications to view and annotate that content.

Figure 1.8 is a high-level architectural model of a digital learning environment
(iLearn) that was designed for use in schools for students from 3 to 18 years of
age. The approach adopted is that this is a distributed system in which all compo-
nents of the environment are services that can be accessed from anywhere on the
Internet. There is no requirement that all of the learning tools are gathered together
in one place.

The system is a service-oriented system with all system components considered
to be a replaceable service. There are three types of service in the system:

1. Utility services that provide basic application-independent functionality and
that may be used by other services in the system. Utility services are usually
developed or adapted specifically for this system.

2. Application services that provide specific applications such as email, conferencing,
photo sharing, etc., and access to specific educational content such as scientific
films or historical resources. Application services are external services that are
either specifically purchased for the system or are available freely over the Internet.

  1.3  ■  Case studies    39

3. Configuration services that are used to adapt the environment with a specific set
of application services and to define how services are shared between students,
teachers, and their parents.

The environment has been designed so that services can be replaced as new ser-
vices become available and to provide different versions of the system that are suited
for the age of the users. This means that the system has to support two levels of ser-
vice integration:

1. Integrated services are services that offer an API (application programming
interface) and that can be accessed by other services through that API. Direct
service-to-service communication is therefore possible. An authentication ser-
vice is an example of an integrated service. Rather than use their own authenti-
cation mechanisms, an authentication service may be called on by other services
to authenticate users. If users are already authenticated, then the authentication
service may pass authentication information directly to another service, via an
API, with no need for users to reauthenticate themselves.

2. Independent services are services that are simply accessed through a browser
interface and that operate independently of other services. Information can only
be shared with other services through explicit user actions such as copy and
paste; reauthentication may be required for each independent service.

If an independent service becomes widely used, the development team may then
integrate that service so that it becomes an integrated and supported service.

Authentication

Browser-based user interface

Configuration services

Group
management

Application
management

Identity
management

User storage

Logging and monitoring

Application storage

Interfacing

Search

Utility services

Application services

iLearn app

Email Messaging Video conferencing Newspaper archive

Word processing Simulation Video storage Resource finder

Spreadsheet Virtual learning environment History archive

Figure 1.8 The
architecture of a
digital learning
environment (iLearn)

40    Chapter 1  ■  Introduction

F u r t h e r 	 r e a d i n g

“Software Engineering Code of Ethics Is Approved.” An article that discusses the background to the
development of the ACM/IEEE Code of Ethics and that includes both the short and long form of the
code. (Comm. ACM, D. Gotterbarn, K. Miller, and S. Rogerson, October 1999). http://dx.doi.
org/10.1109/MC.1999.796142

“A View of 20th and 21st Century Software Engineering.” A backward and forward look at software
engineering from one of the first and most distinguished software engineers. Barry Boehm identifies
timeless software engineering principles but also suggests that some commonly used practices are
obsolete. (B. Boehm, Proc. 28th Software Engineering Conf., Shanghai. 2006). http://dx.doi.
org/10.1145/1134285.1134288

“Software Engineering Ethics.” Special issue of IEEE Computer, with several papers on the topic
(IEEE Computer, 42 (6), June 2009).

Ethics for the Information Age. This is a wide-ranging book that covers all aspects of information
technology (IT) ethics, not simply ethics for software engineers. I think this is the right approach
as you really need to understand software engineering ethics within a wider ethical framework
(M. J. Quinn, 2013, Addison-Wesley).

K e y P o i n t s

■ Software engineering is an engineering discipline that is concerned with all aspects of software
production.

■ Software is not just a program or programs but also includes all electronic documentation that
is needed by system users, quality assurance staff, and developers. Essential software product
attributes are maintainability, dependability and security, efficiency, and acceptability.

■ The software process includes all of the activities involved in software development. The high-level
activities of specification, development, validation, and evolution are part of all software processes.

■ There are many different types of system, and each requires appropriate software engineering
tools and techniques for their development. Few, if any, specific design and implementation
techniques are applicable to all kinds of system.

■ The fundamental ideas of software engineering are applicable to all types of software system.
These fundamentals include managed software processes, software dependability and security,
requirements engineering, and software reuse.

■ Software engineers have responsibilities to the engineering profession and society. They should
not simply be concerned with technical issues but should be aware of the ethical issues that
affect their work.

■ Professional societies publish codes of conduct that embed ethical and professional standards.
These set out the standards of behavior expected of their members.

http://dx.doi.org/10.1109/MC.1999.796142
http://dx.doi.org/10.1145/1134285.1134288
http://dx.doi.org/10.1109/MC.1999.796142
http://dx.doi.org/10.1145/1134285.1134288

  1.1  ■  Case studies    41  Chapter 1  ■  Exercises    41

The Essence of Software Engineering: Applying the SEMAT kernel. This book discusses the idea of a
universal framework that can underlie all software engineering methods. It can be adapted and
used for all types of systems and organizations. I am personally skeptical about whether or not a
universal approach is realistic in practice, but the book has some interesting ideas that are worth
exploring. (I. Jacobsen, P-W Ng, P. E. McMahon, I. Spence, and S. Lidman, 2013, Addison-Wesley)

W e b S i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/software-engineering/

Links to case study descriptions:

http://software-engineering-book.com/case-studies/

e x e r C i S e S

 1.1. Explain why professional software that is developed for a customer is not simply the
programs that have been developed and delivered.

 1.2. What is the most important difference between generic software product development and custom
software development? What might this mean in practice for users of generic software products?

 1.3. Briefly discuss why it is usually cheaper in the long run to use software engineering methods
and techniques for software systems.

 1.4. Software engineering is not only concerned with issues like system heterogeneity, business
and social change, trust, and security, but also with ethical issues affecting the domain. Give
some examples of ethical issues that have an impact on the software engineering domain.

 1.5. Based on your own knowledge of some of the application types discussed in Section 1.1.2,
explain, with examples, why different application types require specialized software
engineering techniques to support their design and development.

 1.6. Explain why the fundamental software engineering principles of process, dependability,
requirements management, and reuse are relevant to all types of software system.

 1.7. Explain how electronic connectivity between various development teams can support
software engineering activities.

 1.8. Noncertified individuals are still allowed to practice software engineering. Discuss some of the
possible drawbacks of this.

http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/software-engineering
http://software-engineering-book.com/case-studies

42    Chapter 1  ■  Introduction

 1.9. For each of the clauses in the ACM/IEEE Code of Ethics shown in Figure 1.4, propose an
appropriate example that illustrates that clause.

1.10. The “Drone Revolution” is currently being debated and discussed all over the world. Drones
are unmanned flying machines that are built and equipped with various kinds of software
systems that allow them to see, hear, and act. Discuss some of the societal challenges of
building such kinds of systems.

r e F e r e n C e S

Bott, F. 2005. Professional Issues in Information Technology. Swindon, UK: British Computer
Society.

Duquenoy, P. 2007. Ethical, Legal and Professional Issues in Computing. London: Thomson
Learning.

Freeman, A. 2011. The Definitive Guide to HTML5. New York: Apress.

Gotterbarn, D., K. Miller, and S. Rogerson. 1999. “Software Engineering Code of Ethics Is Approved.”
Comm. ACM 42 (10): 102–107. doi:10.1109/MC.1999.796142.

Holdener, A. T. 2008. Ajax: The Definitive Guide. Sebastopol, CA: O’Reilly and Associates.

Jacobson, I., P-W. Ng, P. E. McMahon, I. Spence, and S. Lidman. 2013. The Essence of Software
Engineering. Boston: Addison-Wesley.

Johnson, D. G. 2001. Computer Ethics. Englewood Cliffs, NJ: Prentice-Hall.

Laudon, K. 1995. “Ethical Concepts and Information Technology.” Comm. ACM 38 (12): 33–39.
doi:10.1145/219663.219677.

Naur, P., and Randell, B. 1969. Software Engineering: Report on a conference sponsored by the NATO
Science Committee. Brussels. http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.pdf

Tavani, H. T. 2013. Ethics and Technology: Controversies, Questions, and Strategies for Ethical
Computing, 4th ed. New York: John Wiley & Sons.

Vogel, L. 2012. Eclipse 4 Application Development: The Complete Guide to Eclipse 4 RCP
Development. Sebastopol, CA: O’Reilly & Associates.

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.pdf

	Part 1 Introduction to Software Engineering��
	Chapter 1 Introduction�����������������������������
	1.1 Professional software development��
	1.2 Software engineering ethics��������������������������������������
	1.3 Case studies�����������������������

