
Software processes
2

Objectives
The objective of this chapter is to introduce you to the idea of a software
process—a coherent set of activities for software production. When you
have read this chapter, you will:

■ understand the concepts of software processes and software
process models;

■ have been introduced to three general software process models and
when they might be used;

■ know about the fundamental process activities of software requirements
engineering, software development, testing, and evolution;

■ understand why processes should be organized to cope with changes
in the software requirements and design;

■ understand the notion of software process improvement and the
factors that affect software process quality.

Contents
2.1 Software process models

2.2 Process activities

2.3 Coping with change

2.4 Process improvement

44    Chapter 2  ■  Software processes

A software process is a set of related activities that leads to the production of a soft-
ware system. As I discussed in Chapter 1, there are many different types of software
systems, and there is no universal software engineering method that is applicable to
all of them. Consequently, there is no universally applicable software process. The
process used in different companies depends on the type of software being devel-
oped, the requirements of the software customer, and the skills of the people writing
the software.

However, although there are many different software processes, they all must
include, in some form, the four fundamental software engineering activities that I
introduced in Chapter 1:

1. Software specification The functionality of the software and constraints on its
operation must be defined.

2. Software development The software to meet the specification must be produced.

3. Software validation The software must be validated to ensure that it does what
the customer wants.

4. Software evolution The software must evolve to meet changing customer needs.

These activities are complex activities in themselves, and they include subactivi-
ties such as requirements validation, architectural design, and unit testing. Processes
also include other activities, such as software configuration management and project
planning that support production activities.

When we describe and discuss processes, we usually talk about the activities in
these processes, such as specifying a data model and designing a user interface, and
the ordering of these activities. We can all relate to what people do to develop soft-
ware. However, when describing processes, it is also important to describe who is
involved, what is produced, and conditions that influence the sequence of activities:

1. Products or deliverables are the outcomes of a process activity. For example, the
outcome of the activity of architectural design may be a model of the software
architecture.

2. Roles reflect the responsibilities of the people involved in the process. Examples
of roles are project manager, configuration manager, and programmer.

3. Pre- and postconditions are conditions that must hold before and after a process
activity has been enacted or a product produced. For example, before architec-
tural design begins, a precondition may be that the consumer has approved all
requirements; after this activity is finished, a postcondition might be that the
UML models describing the architecture have been reviewed.

Software processes are complex and, like all intellectual and creative processes,
rely on people making decisions and judgments. As there is no universal process that
is right for all kinds of software, most software companies have developed their own

  2.1  ■  Software process models    45

development processes. Processes have evolved to take advantage of the capabilities
of the software developers in an organization and the characteristics of the systems
that are being developed. For safety-critical systems, a very structured development
process is required where detailed records are maintained. For business systems, with
rapidly changing requirements, a more flexible, agile process is likely to be better.

As I discussed in Chapter 1, professional Professional software development is a
managed activity, so planning is an inherent part of all processes. Plan-driven pro-
cesses are processes where all of the process activities are planned in advance and
progress is measured against this plan. In agile processes, which I discuss in Chapter 3,
planning is incremental and continual as the software is developed. It is therefore eas-
ier to change the process to reflect changing customer or product requirements. As
Boehm and Turner (Boehm and Turner 2004) explain, each approach is suitable for
different types of software. Generally, for large systems, you need to find a balance
between plan-driven and agile processes.

Although there is no universal software process, there is scope for process improve-
ment in many organizations. Processes may include outdated techniques or may not
take advantage of the best practice in industrial software engineering. Indeed, many
organizations still do not take advantage of software engineering methods in their
software development. They can improve their process by introducing techniques
such as UML modeling and test-driven development. I discuss software process
improvement briefly later in thischapter text and in more detail in web Chapter 26.

	 2.1		 Software	process	models

As I explained in Chapter 1, a software process model (sometimes called a Software
Development Life Cycle or SDLC model) is a simplified representation of a soft-
ware process. Each process model represents a process from a particular perspective
and thus only provides partial information about that process. For example, a pro-
cess activity model shows the activities and their sequence but may not show the
roles of the people involved in these activities. In this section, I introduce a number
of very general process models (sometimes called process paradigms) and present
these from an architectural perspective. That is, we see the framework of the process
but not the details of process activities.

These generic models are high-level, abstract descriptions of software processes
that can be used to explain different approaches to software development. You can
think of them as process frameworks that may be extended and adapted to create
more specific software engineering processes.

The general process models that I cover here are:

1. The waterfall model This takes the fundamental process activities of specifica-
tion, development, validation, and evolution and represents them as separate
process phases such as requirements specification, software design, implemen-
tation, and testing.

46    Chapter 2  ■  Software processes

2. Incremental development This approach interleaves the activities of specifica-
tion, development, and validation. The system is developed as a series of versions
(increments), with each version adding functionality to the previous version.

3. Integration and configuration This approach relies on the availability of reus-
able components or systems. The system development process focuses on
configuring these components for use in a new setting and integrating them
into a system.

As I have said, there is no universal process model that is right for all kinds of
software development. The right process depends on the customer and regulatory
requirements, the environment where the software will be used, and the type of soft-
ware being developed. For example, safety-critical software is usually developed
using a waterfall process as lots of analysis and documentation is required before
implementation begins. Software products are now always developed using an incre-
mental process model. Business systems are increasingly being developed by con-
figuring existing systems and integrating these to create a new system with the
functionality that is required.

The majority of practical software processes are based on a general model but
often incorporate features of other models. This is particularly true for large systems
engineering. For large systems, it makes sense to combine some of the best features
of all of the general processes. You need to have information about the essential
system requirements to design a software architecture to support these requirements.
You cannot develop this incrementally. Subsystems within a larger system may be
developed using different approaches. Parts of the system that are well understood
can be specified and developed using a waterfall-based process or may be bought in
as off-the-shelf systems for configuration. Other parts of the system, which are dif-
ficult to specify in advance, should always be developed using an incremental
approach. In both cases, software components are likely to be reused.

Various attempts have been made to develop “universal” process models that
draw on all of these general models. One of the best known of these universal models
is the Rational Unified Process (RUP) (Krutchen 2003), which was developed by
Rational, a U.S. software engineering company. The RUP is a flexible model that

The Rational Unified Process

The Rational Unified Process (RUP) brings together elements of all of the general process models discussed
here and supports prototyping and incremental delivery of software (Krutchen 2003). The RUP is normally
described from three perspectives: a dynamic perspective that shows the phases of the model in time, a static
perspective that shows process activities, and a practice perspective that suggests good practices to be used in
the process. Phases of the RUP are inception, where a business case for the system is established; elaboration,
where requirements and architecture are developed; construction where the software is implemented; and
transition, where the system is deployed.

http://software-engineering-book.com/web/rup/

http://software-engineering-book.com/web/rup

  2.1  ■  Software process models    47

can be instantiated in different ways to create processes that resemble any of the
general process models discussed here. The RUP has been adopted by some large
software companies (notably IBM), but it has not gained widespread acceptance.

 2.1.1 The waterfall model

The first published model of the software development process was derived from
engineering process models used in large military systems engineering (Royce
1970). It presents the software development process as a number of stages, as shown
in Figure 2.1. Because of the cascade from one phase to another, this model is known
as the waterfall model or software life cycle. The waterfall model is an example of a
plan-driven process. In principle at least, you plan and schedule all of the process
activities before starting software development.

The stages of the waterfall model directly reflect the fundamental software devel-
opment activities:

1. Requirements analysis and definition The system’s services, constraints, and
goals are established by consultation with system users. They are then defined
in detail and serve as a system specification.

2. System and software design The systems design process allocates the require-
ments to either hardware or software systems. It establishes an overall system
architecture. Software design involves identifying and describing the funda-
mental software system abstractions and their relationships.

3. Implementation and unit testing During this stage, the software design is real-
ized as a set of programs or program units. Unit testing involves verifying that
each unit meets its specification.

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenanceFigure 2.1 The

waterfall model

48    Chapter 2  ■  Software processes

4. Integration and system testing The individual program units or programs are
integrated and tested as a complete system to ensure that the software
requirements have been met. After testing, the software system is delivered
to the customer.

5. Operation and maintenance Normally, this is the longest life-cycle phase. The
system is installed and put into practical use. Maintenance involves correcting
errors that were not discovered in earlier stages of the life cycle, improving the
implementation of system units, and enhancing the system’s services as new
requirements are discovered.

In principle, the result of each phase in the waterfall model is one or more docu-
ments that are approved (“signed off”). The following phase should not start until
the previous phase has finished. For hardware development, where high manufactur-
ing costs are involved, this makes sense. However, for software development, these
stages overlap and feed information to each other. During design, problems with
requirements are identified; during coding design problems are found, and so on.
The software process, in practice, is never a simple linear model but involves feed-
back from one phase to another.

As new information emerges in a process stage, the documents produced at previ-
ous stages should be modified to reflect the required system changes. For example,
if it is discovered that a requirement is too expensive to implement, the requirements
document should be changed to remove that requirement. However, this requires
customer approval and delays the overall development process.

As a result, both customers and developers may prematurely freeze the software
specification so that no further changes are made to it. Unfortunately, this means that
problems are left for later resolution, ignored, or programmed around. Premature
freezing of requirements may mean that the system won’t do what the user wants. It
may also lead to badly structured systems as design problems are circumvented by
implementation tricks.

During the final life-cycle phase (operation and maintenance) the software is put
into use. Errors and omissions in the original software requirements are discovered.

Boehm’s spiral process model

Barry Boehm, one of the pioneers in software engineering, proposed an incremental process model that was
risk-driven. The process is represented as a spiral rather than a sequence of activities (Boehm 1988).

Each loop in the spiral represents a phase of the software process. Thus, the innermost loop might be con-
cerned with system feasibility, the next loop with requirements definition, the next loop with system design,
and so on. The spiral model combines change avoidance with change tolerance. It assumes that changes are
a result of project risks and includes explicit risk management activities to reduce these risks.

http://software-engineering-book.com/web/spiral-model/

http://software-engineering-book.com/web/spiral-model

Program and design errors emerge, and the need for new functionality is identified.
The system must therefore evolve to remain useful. Making these changes (software
maintenance) may involve repeating previous process stages.

In reality, software has to be flexible and accommodate change as it is being
developed. The need for early commitment and system rework when changes are
made means that the waterfall model is only appropriate for some types of system:

1. Embedded systems where the software has to interface with hardware systems.
Because of the inflexibility of hardware, it is not usually possible to delay deci-
sions on the software’s functionality until it is being implemented.

2. Critical systems where there is a need for extensive safety and security analysis
of the software specification and design. In these systems, the specification and
design documents must be complete so that this analysis is possible. Safety-
related problems in the specification and design are usually very expensive to
correct at the implementation stage.

3. Large software systems that are part of broader engineering systems developed
by several partner companies. The hardware in the systems may be developed
using a similar model, and companies find it easier to use a common model for
hardware and software. Furthermore, where several companies are involved,
complete specifications may be needed to allow for the independent develop-
ment of different subsystems.

The waterfall model is not the right process model in situations where informal
team communication is possible and software requirements change quickly. Iterative
development and agile methods are better for these systems.

An important variant of the waterfall model is formal system development, where
a mathematical model of a system specification is created. This model is then refined,
using mathematical transformations that preserve its consistency, into executable
code. Formal development processes, such as that based on the B method (Abrial
2005, 2010), are mostly used in the development of software systems that have strin-
gent safety, reliability, or security requirements. The formal approach simplifies the
production of a safety or security case. This demonstrates to customers or regulators
that the system actually meets its safety or security requirements. However, because
of the high costs of developing a formal specification, this development model is
rarely used except for critical systems engineering.

 2.1.2 Incremental development

Incremental development is based on the idea of developing an initial implementa-
tion, getting feedback from users and others, and evolving the software through
several versions until the required system has been developed (Figure 2.2).
Specification, development, and validation activities are interleaved rather than
 separate, with rapid feedback across activities.

  2.1  ■  Software process models    49

50    Chapter 2  ■  Software processes

Incremental development in some form is now the most common approach for
the development of application systems and software products. This approach can
be either plan-driven, agile or, more usually, a mixture of these approaches. In a
plan-driven approach, the system increments are identified in advance; if an agile
approach is adopted, the early increments are identified, but the development of
later increments depends on progress and customer priorities.

Incremental software development, which is a fundamental part of agile
development methods, is better than a waterfall approach for systems whose
requirements are likely to change during the development process. This is the
case for most business systems and software products. Incremental development
reflects the way that we solve problems. We rarely work out a complete prob-
lem solution in advance but move toward a solution in a series of steps, back-
tracking when we realize that we have made a mistake. By developing the
software incrementally, it is cheaper and easier to make changes in the software
as it is being developed.

Each increment or version of the system incorporates some of the functional-
ity that is needed by the customer. Generally, the early increments of the system
include the most important or most urgently required functionality. This means
that the customer or user can evaluate the system at a relatively early stage in
the development to see if it delivers what is required. If not, then only the cur-
rent increment has to be changed and, possibly, new functionality defined for
later increments.

Incremental development has three major advantages over the waterfall model:

1. The cost of implementing requirements changes is reduced. The amount of
analysis and documentation that has to be redone is significantly less than is
required with the waterfall model.

2. It is easier to get customer feedback on the development work that has been
done. Customers can comment on demonstrations of the software and see how

Concurrent
activities

Validation
Final

version

Development
Intermediate

versions

Specification
Initial

version

Outline
description

Figure 2.2 Incremental
development

much has been implemented. Customers find it difficult to judge progress from
software design documents.

3. Early delivery and deployment of useful software to the customer is possible,
even if all of the functionality has not been included. Customers are able to use
and gain value from the software earlier than is possible with a waterfall process.

From a management perspective, the incremental approach has two problems:

1. The process is not visible. Managers need regular deliverables to measure pro-
gress. If systems are developed quickly, it is not cost effective to produce docu-
ments that reflect every version of the system.

2. System structure tends to degrade as new increments are added. Regular change
leads to messy code as new functionality is added in whatever way is possible.
It becomes increasingly difficult and costly to add new features to a system. To
reduce structural degradation and general code messiness, agile methods sug-
gest that you should regularly refactor (improve and restructure) the software.

The problems of incremental development become particularly acute for large,
complex, long-lifetime systems, where different teams develop different parts of the
system. Large systems need a stable framework or architecture, and the responsi-
bilities of the different teams working on parts of the system need to be clearly
defined with respect to that architecture. This has to be planned in advance rather
than developed incrementally.

Incremental development does not mean that you have to deliver each increment
to the system customer. You can develop a system incrementally and expose it to
customers and other stakeholders for comment, without necessarily delivering it
and deploying it in the customer’s environment. Incremental delivery (covered in
Section 2.3.2) means that the software is used in real, operational processes, so user
feedback is likely to be realistic. However, providing feedback is not always possi-
ble as experimenting with new software can disrupt normal business processes.

Problems with incremental development

Although incremental development has many advantages, it is not problem free. The primary cause of the
difficulty is the fact that large organizations have bureaucratic procedures that have evolved over time and
there may be a mismatch between these procedures and a more informal iterative or agile process.

Sometimes these procedures are there for good reasons. For example, there may be procedures to ensure
that the software meets properly implements external regulations (e.g., in the United States, the Sarbanes
Oxley accounting regulations). Changing these procedures may not be possible, so process conflicts may
be unavoidable.

http://software-engineering-book.com/web/incremental-development /

  2.1  ■  Software process models    51

http://software-engineering-book.com/web/incremental-development

52    Chapter 2  ■  Software processes

 2.1.3 Integration and configuration

In the majority of software projects, there is some software reuse. This often happens
informally when people working on the project know of or search for code that is
similar to what is required. They look for these, modify them as needed, and integrate
them with the new code that they have developed.

This informal reuse takes place regardless of the development process that is
used. However, since 2000, software development processes that focus on the reuse
of existing software have become widely used. Reuse-oriented approaches rely on a
base of reusable software components and an integrating framework for the compo-
sition of these components.

Three types of software components are frequently reused:

1. Stand-alone application systems that are configured for use in a particular envi-
ronment. These systems are general-purpose systems that have many features,
but they have to be adapted for use in a specific application.

2. Collections of objects that are developed as a component or as a package to be
integrated with a component framework such as the Java Spring framework
(Wheeler and White 2013).

3. Web services that are developed according to service standards and that are
available for remote invocation over the Internet.

Figure 2.3 shows a general process model for reuse-based development, based on
integration and configuration. The stages in this process are:

1. Requirements specification The initial requirements for the system are pro-
posed. These do not have to be elaborated in detail but should include brief
descriptions of essential requirements and desirable system features.

2. Software discovery and evaluation Given an outline of the software require-
ments, a search is made for components and systems that provide the func-
tionality required. Candidate components and systems are evaluated to see if

Requirements
specification

Software
discovery

Software
evaluation

Requirements
refinement

Configure
application

system

Adapt
components

Integrate
system

Develop new
components

Application system
available

Components
availableFigure 2.3 Reuse-

oriented software
engineering

they meet the essential requirements and if they are generally suitable for
use in the system.

3. Requirements refinement During this stage, the requirements are refined using
information about the reusable components and applications that have been
discovered. The requirements are modified to reflect the available compo-
nents, and the system specification is re-defined. Where modifications are
impossible, the component analysis activity may be reentered to search for
alternative solutions.

4. Application system configuration If an off-the-shelf application system that
meets the requirements is available, it may then be configured for use to create
the new system.

5. Component adaptation and integration If there is no off-the-shelf system, indi-
vidual reusable components may be modified and new components developed.
These are then integrated to create the system.

Reuse-oriented software engineering, based around configuration and integra-
tion, has the obvious advantage of reducing the amount of software to be developed
and so reducing cost and risks. It usually also leads to faster delivery of the software.
However, requirements compromises are inevitable, and this may lead to a system

Software development tools

Software development tools are programs that are used to support software engineering process activities.
These tools include requirements management tools, design editors, refactoring support tools, compilers,
debuggers, bug trackers, and system building tools.

Software tools provide process support by automating some process activities and by providing information
about the software that is being developed. For example:

■ The development of graphical system models as part of the requirements specification or the software
design

■ The generation of code from these graphical models

■ The generation of user interfaces from a graphical interface description that is created interactively by the user

■ Program debugging through the provision of information about an executing program

■ The automated translation of programs written using an old version of a programming language to a more
recent version

Tools may be combined within a framework called an Interactive Development Environment or IDE. This
 provides a common set of facilities that tools can use so that it is easier for tools to communicate and operate
in an integrated way.

http://software-engineering-book.com/web/software-tools/

  2.1  ■  Software process models    53

http://software-engineering-book.com/web/software-tools

54    Chapter 2  ■  Software processes

that does not meet the real needs of users. Furthermore, some control over the sys-
tem evolution is lost as new versions of the reusable components are not under the
control of the organization using them.

Software reuse is very important, and so several chapters in the third I have dedi-
cated several chapters in the 3rd part of the book to this topic. General issues of
software reuse are covered in Chapter 15, component-based software engineering in
Chapters 16 and 17, and service-oriented systems in Chapter 18.

	 2.2		 Process	activities

Real software processes are interleaved sequences of technical, collaborative, and
managerial activities with the overall goal of specifying, designing, implementing,
and testing a software system. Generally, processes are now tool-supported. This
means that software developers may use a range of software tools to help them, such
as requirements management systems, design model editors, program editors, auto-
mated testing tools, and debuggers.

The four basic process activities of specification, development, validation, and
evolution are organized differently in different development processes. In the water-
fall model, they are organized in sequence, whereas in incremental development
they are interleaved. How these activities are carried out depends on the type of
software being developed, the experience and competence of the developers, and the
type of organization developing the software.

 2.2.1 Software specification

Software specification or requirements engineering is the process of understanding
and defining what services are required from the system and identifying the con-
straints on the system’s operation and development. Requirements engineering is a
particularly critical stage of the software process, as mistakes made at this stage
inevitably lead to later problems in the system design and implementation.

Before the requirements engineering process starts, a company may carry out a
feasibility or marketing study to assess whether or not there is a need or a market for
the software and whether or not it is technically and financially realistic to develop
the software required. Feasibility studies are short-term, relatively cheap studies that
inform the decision of whether or not to go ahead with a more detailed analysis.

The requirements engineering process (Figure 2.4) aims to produce an agreed
requirements document that specifies a system satisfying stakeholder requirements.
Requirements are usually presented at two levels of detail. End-users and customers
need a high-level statement of the requirements; system developers need a more
detailed system specification.

There are three main activities in the requirements engineering process:

1. Requirements elicitation and analysis This is the process of deriving the system
requirements through observation of existing systems, discussions with poten-
tial users and procurers, task analysis, and so on. This may involve the develop-
ment of one or more system models and prototypes. These help you understand
the system to be specified.

2. Requirements specification Requirements specification is the activity of trans-
lating the information gathered during requirements analysis into a document
that defines a set of requirements. Two types of requirements may be included
in this document. User requirements are abstract statements of the system
requirements for the customer and end-user of the system; system requirements
are a more detailed description of the functionality to be provided.

3. Requirements validation This activity checks the requirements for realism,
consistency, and completeness. During this process, errors in the require-
ments document are inevitably discovered. It must then be modified to correct
these problems.

Requirements analysis continues during definition and specification, and new
requirements come to light throughout the process. Therefore, the activities of analy-
sis, definition, and specification are interleaved.

In agile methods, requirements specification is not a separate activity but is seen
as part of system development. Requirements are informally specified for each
increment of the system just before that increment is developed. Requirements are
specified according to user priorities. The elicitation of requirements comes from
users who are part of or work closely with the development team.

Requirements
elicitation and

analysis
Requirements
specification

Requirements
validation

System
descriptions

User and system
requirements

Requirements
document

Figure 2.4 The
requirements
engineering process

  2.2  ■  Process activities    55

56    Chapter 2  ■  Software processes

 2.2.2 Software design and implementation

The implementation stage of software development is the process of developing
an executable system for delivery to the customer. Sometimes this involves sepa-
rate activities of software design and programming. However, if an agile approach
to development is used, design and implementation are interleaved, with no for-
mal design documents produced during the process. Of course, the software is
still designed, but the design is recorded informally on whiteboards and program-
mer’s notebooks.

A software design is a description of the structure of the software to be imple-
mented, the data models and structures used by the system, the interfaces between
system components and, sometimes, the algorithms used. Designers do not arrive at
a finished design immediately but develop the design in stages. They add detail as
they develop their design, with constant backtracking to modify earlier designs.

Figure 2.5 is an abstract model of the design process showing the inputs to the
design process, process activities, and the process outputs. The design process activ-
ities are both interleaved and interdependent. New information about the design is
constantly being generated, and this affects previous design decisions. Design
rework is therefore inevitable.

Design inputs

Design outputs

Architectural
design

Interface
design

Database
design

Component
selection

and design

Design activities

Platform
information

Software
requirements

Data
descriptions

System
architecture

Interface
specification

Database
design

Component
descriptionsFigure 2.5 A general

model of the
design process

Most software interfaces with other software systems. These other systems
include the operating system, database, middleware, and other application systems.
These make up the “software platform,’ the environment in which the software will
execute. Information about this platform is an essential input to the design process,
as designers must decide how best to integrate it with its environment. If the system
is to process existing data, then the description of that data may be included in the
platform specification. Otherwise, the data description must be an input to the design
process so that the system data organization can be defined.

The activities in the design process vary, depending on the type of system being
developed. For example, real-time systems require an additional stage of timing design
but may not include a database, so there is no database design involved. Figure 2.5
shows four activities that may be part of the design process for information systems:

1. Architectural design, where you identify the overall structure of the system, the
principal components (sometimes called subsystems or modules), their relation-
ships, and how they are distributed.

2. Database design, where you design the system data structures and how these are
to be represented in a database. Again, the work here depends on whether an
existing database is to be reused or a new database is to be created.

3. Interface design, where you define the interfaces between system components.
This interface specification must be unambiguous. With a precise interface, a
component may be used by other components without them having to know
how it is implemented. Once interface specifications are agreed, the compo-
nents can be separately designed and developed.

4. Component selection and design, where you search for reusable components
and, if no suitable components are available, design new software components.
The design at this stage may be a simple component description with the imple-
mentation details left to the programmer. Alternatively, it may be a list of
changes to be made to a reusable component or a detailed design model
expressed in the UML. The design model may then be used to automatically
generate an implementation.

These activities lead to the design outputs, which are also shown in Figure 2.5.
For critical systems, the outputs of the design process are detailed design documents
setting out precise and accurate descriptions of the system. If a model-driven
approach is used (Chapter 5), the design outputs are design diagrams. Where agile
methods of development are used, the outputs of the design process may not be
separate specification documents but may be represented in the code of the program.

The development of a program to implement a system follows naturally from
system design. Although some classes of program, such as safety-critical systems,
are usually designed in detail before any implementation begins, it is more common
for design and program development to be interleaved. Software development tools
may be used to generate a skeleton program from a design. This includes code to

  2.2  ■  Process activities    57

58    Chapter 2  ■  Software processes

define and implement interfaces, and, in many cases, the developer need only add
details of the operation of each program component.

Programming is an individual activity, and there is no general process that is
usually followed. Some programmers start with components that they understand,
develop these, and then move on to less understood components. Others take the
opposite approach, leaving familiar components till last because they know how to
develop them. Some developers like to define data early in the process and then
use this to drive the program development; others leave data unspecified for as
long as possible.

Normally, programmers carry out some testing of the code they have developed.
This often reveals program defects (bugs) that must be removed from the program.
Finding and fixing program defects is called debugging. Defect testing and debug-
ging are different processes. Testing establishes the existence of defects. Debugging
is concerned with locating and correcting these defects.

When you are debugging, you have to generate hypotheses about the observa-
ble behavior of the program and then test these hypotheses in the hope of finding
the fault that caused the output anomaly. Testing the hypotheses may involve trac-
ing the program code manually. It may require new test cases to localize the prob-
lem. Interactive debugging tools, which show the intermediate values of program
variables and a trace of the statements executed, are usually used to support the
debugging process.

 2.2.3 Software validation

Software validation or, more generally, verification and validation (V & V) is
intended to show that a system both conforms to its specification and meets the
expectations of the system customer. Program testing, where the system is executed
using simulated test data, is the principal validation technique. Validation may also
involve checking processes, such as inspections and reviews, at each stage of the
software process from user requirements definition to program development.
However, most V & V time and effort is spent on program testing.

Except for small programs, systems should not be tested as a single, monolithic
unit. Figure 2.6 shows a three-stage testing process in which system components are
individually tested, then the integrated system is tested. For custom software, cus-
tomer testing involves testing the system with real customer data. For products that
are sold as applications, customer testing is sometimes called beta testing where
selected users try out and comment on the software.

System testing
Component

 testing
Customer

testing

Figure 2.6 Stages
of testing

The stages in the testing process are:

1. Component testing The components making up the system are tested by the people
developing the system. Each component is tested independently, without other
system components. Components may be simple entities such as functions or
object classes or may be coherent groupings of these entities. Test automation
tools, such as JUnit for Java, that can rerun tests when new versions of the
 component are created, are commonly used (Koskela 2013).

2. System testing System components are integrated to create a complete system.
This process is concerned with finding errors that result from unanticipated
interactions between components and component interface problems. It is also
concerned with showing that the system meets its functional and non-functional
requirements, and testing the emergent system properties. For large systems,
this may be a multistage process where components are integrated to form
 subsystems that are individually tested before these subsystems are integrated to
form the final system.

3. Customer testing This is the final stage in the testing process before the system
is accepted for operational use. The system is tested by the system customer (or
potential customer) rather than with simulated test data. For custom-built
 software, customer testing may reveal errors and omissions in the system
requirements definition, because the real data exercise the system in different
ways from the test data. Customer testing may also reveal requirements problems
where the system’s facilities do not really meet the users’ needs or the system
performance is unacceptable. For products, customer testing shows how well
the software product meets the customer’s needs.

Ideally, component defects are discovered early in the testing process, and inter-
face problems are found when the system is integrated. However, as defects are dis-
covered, the program must be debugged, and this may require other stages in the
testing process to be repeated. Errors in program components, say, may come to
light during system testing. The process is therefore an iterative one with informa-
tion being fed back from later stages to earlier parts of the process.

Normally, component testing is simply part of the normal development process.
Programmers make up their own test data and incrementally test the code as it is
developed. The programmer knows the component and is therefore the best person
to generate test cases.

If an incremental approach to development is used, each increment should be
tested as it is developed, with these tests based on the requirements for that incre-
ment. In test-driven development, which is a normal part of agile processes, tests are
developed along with the requirements before development starts. This helps the
testers and developers to understand the requirements and ensures that there are no
delays as test cases are created.

When a plan-driven software process is used (e.g., for critical systems develop-
ment), testing is driven by a set of test plans. An independent team of testers works

  2.2  ■  Process activities    59

60    Chapter 2  ■  Software processes

from these test plans, which have been developed from the system specification and
design. Figure 2.7 illustrates how test plans are the link between testing and develop-
ment activities. This is sometimes called the V-model of development (turn it on its
side to see the V). The V-model shows the software validation activities that corre-
spond to each stage of the waterfall process model.

When a system is to be marketed as a software product, a testing process called
beta testing is often used. Beta testing involves delivering a system to a number of
potential customers who agree to use that system. They report problems to the sys-
tem developers. This exposes the product to real use and detects errors that may not
have been anticipated by the product developers. After this feedback, the software
product may be modified and released for further beta testing or general sale.

 2.2.4 Software evolution

The flexibility of software is one of the main reasons why more and more software
is being incorporated into large, complex systems. Once a decision has been made to
manufacture hardware, it is very expensive to make changes to the hardware design.
However, changes can be made to software at any time during or after the system
development. Even extensive changes are still much cheaper than corresponding
changes to system hardware.

Historically, there has always been a split between the process of software
development and the process of software evolution (software maintenance). People
think of software development as a creative activity in which a software system is
developed from an initial concept through to a working system. However, they
sometimes think of software maintenance as dull and uninteresting. They think
that software maintenance is less interesting and challenging than original soft-
ware development.

This distinction between development and maintenance is increasingly irrelevant.
Very few software systems are completely new systems, and it makes much more

Requirements
specification

System
specification

Customer
test

System
integration test

Sub-system
integration test

System
design

Component
design

Service

Component
code and test

Customer
test plan

System
integration
test plan

Sub-system
integration
test plan

Figure 2.7 Testing
phases in a plan-driven
software process

sense to see development and maintenance as a continuum. Rather than two separate
processes, it is more realistic to think of software engineering as an evolutionary
process (Figure 2.8) where software is continually changed over its lifetime in
response to changing requirements and customer needs.

	 2.3		 Coping	with	change

Change is inevitable in all large software projects. The system requirements
change as businesses respond to external pressures, competition, and changed
management priorities. As new technologies become available, new approaches to
design and implementation become possible. Therefore whatever software pro-
cess model is used, it is essential that it can accommodate changes to the software
being developed.

Change adds to the costs of software development because it usually means
that work that has been completed has to be redone. This is called rework. For
example, if the relationships between the requirements in a system have been ana-
lyzed and new requirements are then identified, some or all of the requirements
analysis has to be repeated. It may then be necessary to redesign the system to
deliver the new requirements, change any programs that have been developed,
and retest the system.

Two related approaches may be used to reduce the costs of rework:

1. Change anticipation, where the software process includes activities that can
anticipate or predict possible changes before significant rework is required. For
example, a prototype system may be developed to show some key features of
the system to customers. They can experiment with the prototype and refine
their requirements before committing to high software production costs.

2. Change tolerance, where the process and software are designed so that changes
can be easily made to the system. This normally involves some form of incre-
mental development. Proposed changes may be implemented in increments that
have not yet been developed. If this is impossible, then only a single increment
(a small part of the system) may have to be altered to incorporate the change.

Assess existing
systems

Define system
requirements

Propose system
changes

Modify
systems

New
system

Existing
systemsFigure 2.8 Software

system evolution

  2.3  ■  Coping with change    61

62    Chapter 2  ■  Software processes

In this section, I discuss two ways of coping with change and changing system
requirements:

1. System prototyping, where a version of the system or part of the system is
developed quickly to check the customer’s requirements and the feasibility of
design decisions. This is a method of change anticipation as it allows users to
experiment with the system before delivery and so refine their requirements.
The number of requirements change proposals made after delivery is therefore
likely to be reduced.

2. Incremental delivery, where system increments are delivered to the customer
for comment and experimentation. This supports both change avoidance and
change tolerance. It avoids the premature commitment to requirements for the
whole system and allows changes to be incorporated into later increments at
relatively low cost.

The notion of refactoring, namely, improving the structure and organization of a
program, is also an important mechanism that supports change tolerance. I discuss
this in Chapter 3 (Agile methods).

 2.3.1 Prototyping

A prototype is an early version of a software system that is used to demonstrate con-
cepts, try out design options, and find out more about the problem and its possible
solutions. Rapid, iterative development of the prototype is essential so that costs are
controlled and system stakeholders can experiment with the prototype early in the
software process.

A software prototype can be used in a software development process to help
anticipate changes that may be required:

1. In the requirements engineering process, a prototype can help with the elicita-
tion and validation of system requirements.

2. In the system design process, a prototype can be used to explore software solu-
tions and in the development of a user interface for the system.

System prototypes allow potential users to see how well the system supports their
work. They may get new ideas for requirements and find areas of strength and weak-
ness in the software. They may then propose new system requirements. Furthermore,
as the prototype is developed, it may reveal errors and omissions in the system
requirements. A feature described in a specification may seem to be clear and useful.
However, when that function is combined with other functions, users often find that
their initial view was incorrect or incomplete. The system specification can then be
modified to reflect the changed understanding of the requirements.

A system prototype may be used while the system is being designed to carry out
design experiments to check the feasibility of a proposed design. For example, a
database design may be prototyped and tested to check that it supports efficient data
access for the most common user queries. Rapid prototyping with end-user involve-
ment is the only sensible way to develop user interfaces. Because of the dynamic
nature of user interfaces, textual descriptions and diagrams are not good enough for
expressing the user interface requirements and design.

A process model for prototype development is shown in Figure 2.9. The objec-
tives of prototyping should be made explicit from the start of the process. These
may be to develop the user interface, to develop a system to validate functional
system requirements, or to develop a system to demonstrate the application to man-
agers. The same prototype usually cannot meet all objectives. If the objectives are
left unstated, management or end-users may misunderstand the function of the pro-
totype. Consequently, they may not get the benefits that they expected from the
prototype development.

The next stage in the process is to decide what to put into and, perhaps more
importantly, what to leave out of the prototype system. To reduce prototyping costs
and accelerate the delivery schedule, you may leave some functionality out of the
prototype. You may decide to relax non-functional requirements such as response
time and memory utilization. Error handling and management may be ignored unless
the objective of the prototype is to establish a user interface. Standards of reliability
and program quality may be reduced.

The final stage of the process is prototype evaluation. Provision must be
made during this stage for user training, and the prototype objectives should
be used to derive a plan for evaluation. Potential users need time to become
comfortable with a new system and to settle into a normal pattern of usage. Once
they are using the system normally, they then discover requirements errors
and omissions. A general problem with prototyping is that users may not use the
prototype in the same way as they use the final system. Prototype testers may
not be typical of system users. There may not be enough time to train users
 during prototype evaluation. If the prototype is slow, the evaluators may adjust
their way of working and avoid those system features that have slow response
times. When provided with better response in the final system, they may use it in
a different way.

Establish
prototype
objectives

Define
prototype

functionality

Develop
prototype

Evaluate
prototype

Prototyping
plan

Outline
definition

Executable
prototype

Evaluation
reportFigure 2.9 Prototype

development

  2.3  ■  Coping with change    63

64    Chapter 2  ■  Software processes

 2.3.2 Incremental delivery

Incremental delivery (Figure 2.10) is an approach to software development where
some of the developed increments are delivered to the customer and deployed for
use in their working environment. In an incremental delivery process, customers
define which of the services are most important and which are least important to
them. A number of delivery increments are then defined, with each increment pro-
viding a subset of the system functionality. The allocation of services to increments
depends on the service priority, with the highest priority services implemented and
delivered first.

Once the system increments have been identified, the requirements for the
services to be delivered in the first increment are defined in detail and that incre-
ment is developed. During development, further requirements analysis for later
increments can take place, but requirements changes for the current increment
are not accepted.

Once an increment is completed and delivered, it is installed in the customer’s
normal working environment. They can experiment with the system, and this helps
them clarify their requirements for later system increments. As new increments are
completed, they are integrated with existing increments so that system functionality
improves with each delivered increment.

Incremental delivery has a number of advantages:

1. Customers can use the early increments as prototypes and gain experience that
informs their requirements for later system increments. Unlike prototypes,
these are part of the real system, so there is no relearning when the complete
system is available.

2. Customers do not have to wait until the entire system is delivered before they
can gain value from it. The first increment satisfies their most critical require-
ments, so they can use the software immediately.

3. The process maintains the benefits of incremental development in that it should
be relatively easy to incorporate changes into the system.

Design system
architecture

Define outline
 requirements

Assign requirements
 to increments

System
incomplete?

Final
system

Develop system
increment

Validate
increment

Integrate
increment

Validate
system

Deploy
increment

System
complete?

Figure 2.10
Incremental delivery

4. As the highest priority services are delivered first and later increments then inte-
grated, the most important system services receive the most testing. This means
that customers are less likely to encounter software failures in the most impor-
tant parts of the system.

However, there are problems with incremental delivery. In practice, it only works in
situations where a brand-new system is being introduced and the system evaluators are
given time to experiment with the new system. Key problems with this approach are:

1. Iterative delivery is problematic when the new system is intended to replace an
existing system. Users need all of the functionality of the old system and are
usually unwilling to experiment with an incomplete new system. It is often
impractical to use the old and the new systems alongside each other as they are
likely to have different databases and user interfaces.

2. Most systems require a set of basic facilities that are used by different parts of the
system. As requirements are not defined in detail until an increment is to be imple-
mented, it can be hard to identify common facilities that are needed by all increments.

3. The essence of iterative processes is that the specification is developed in con-
junction with the software. However, this conflicts with the procurement model
of many organizations, where the complete system specification is part of the
system development contract. In the incremental approach, there is no complete
system specification until the final increment is specified. This requires a new
form of contract, which large customers such as government agencies may find
difficult to accommodate.

For some types of systems, incremental development and delivery is not the best
approach. These are very large systems where development may involve teams working
in different locations, some embedded systems where the software depends on hardware
development, and some critical systems where all the requirements must be analyzed to
check for interactions that may compromise the safety or security of the system.

These large systems, of course, suffer from the same problems of uncertain and
changing requirements. Therefore, to address these problems and get some of the
benefits of incremental development, a system prototype may be developed and used
as a platform for experiments with the system requirements and design. With the
experience gained from the prototype, definitive requirements can then be agreed.

	 2.4		 Process	improvement

Nowadays, there is a constant demand from industry for cheaper, better software,
which has to be delivered to ever-tighter deadlines. Consequently, many software
companies have turned to software process improvement as a way of enhancing the

  2.4  ■  Process improvement    65

66    Chapter 2  ■  Software processes

quality of their software, reducing costs, or accelerating their development pro-
cesses. Process improvement means understanding existing processes and changing
these processes to increase product quality and/or reduce costs and development
time. I cover general issues of process measurement and process improvement in
detail in web Chapter 26.

Two quite different approaches to process improvement and change are used:

1. The process maturity approach, which has focused on improving process and
project management and introducing good software engineering practice into an
organization. The level of process maturity reflects the extent to which good
technical and management practice has been adopted in organizational software
development processes. The primary goals of this approach are improved prod-
uct quality and process predictability.

2. The agile approach, which has focused on iterative development and the reduc-
tion of overheads in the software process. The primary characteristics of agile
methods are rapid delivery of functionality and responsiveness to changing cus-
tomer requirements. The improvement philosophy here is that the best processes
are those with the lowest overheads and agile approaches can achieve this.
I describe agile approaches in Chapter 3.

People who are enthusiastic about and committed to each of these approaches are
generally skeptical of the benefits of the other. The process maturity approach is
rooted in plan-driven development and usually requires increased “overhead,” in the
sense that activities are introduced that are not directly relevant to program develop-
ment. Agile approaches focus on the code being developed and deliberately mini-
mize formality and documentation.

The general process improvement process underlying the process maturity
approach is a cyclical process, as shown in Figure 2.11. The stages in this process are:

1. Process measurement You measure one or more attributes of the software pro-
cess or product. These measurements form a baseline that helps you decide if

Analyze

Measure

Change

Figure 2.11 The process
improvement cycle

process improvements have been effective. As you introduce improvements, you
re-measure the same attributes, which will hopefully have improved in some way.

2. Process analysis The current process is assessed, and process weaknesses and
bottlenecks are identified. Process models (sometimes called process maps) that
describe the process may be developed during this stage. The analysis may be
focused by considering process characteristics such as rapidity and robustness.

3. Process change Process changes are proposed to address some of the identified
process weaknesses. These are introduced, and the cycle resumes to collect data
about the effectiveness of the changes.

Without concrete data on a process or the software developed using that process, it
is impossible to assess the value of process improvement. However, companies starting
the process improvement process are unlikely to have process data available as an
improvement baseline. Therefore, as part of the first cycle of changes, you may have to
collect data about the software process and to measure software product characteristics.

Process improvement is a long-term activity, so each of the stages in the improve-
ment process may last several months. It is also a continuous activity as, whatever
new processes are introduced, the business environment will change and the new
processes will themselves have to evolve to take these changes into account.

The notion of process maturity was introduced in the late 1980s when the
Software Engineering Institute (SEI) proposed their model of process capability
maturity (Humphrey 1988). The maturity of a software company’s processes reflects
the process management, measurement, and use of good software engineering prac-
tices in the company. This idea was introduced so that the U.S. Department of
Defense could assess the software engineering capability of defense contractors,
with a view to limiting contracts to those contractors who had reached a required
level of process maturity. Five levels of process maturity were proposed. as shown in
Figure 2.12. These have evolved and developed over the last 25 years (Chrissis,
Konrad, and Shrum 2011), but the fundamental ideas in Humphrey’s model are still
the basis of software process maturity assessment.

The levels in the process maturity model are:

1. Initial The goals associated with the process area are satisfied, and for all pro-
cesses the scope of the work to be performed is explicitly set out and communi-
cated to the team members.

2. Managed At this level, the goals associated with the process area are met, and organ-
izational policies are in place that define when each process should be used. There
must be documented project plans that define the project goals. Resource manage-
ment and process monitoring procedures must be in place across the institution.

3. Defined This level focuses on organizational standardization and deployment of
processes. Each project has a managed process that is adapted to the project require-
ments from a defined set of organizational processes. Process assets and process
measurements must be collected and used for future process improvements.

  2.4  ■  Process improvement    67

68    Chapter 2  ■  Software processes

4. Quantitatively managed At this level, there is an organizational responsibility to
use statistical and other quantitative methods to control subprocesses. That is, col-
lected process and product measurements must be used in process management.

5. Optimizing At this highest level, the organization must use the process and
product measurements to drive process improvement. Trends must be analyzed
and the processes adapted to changing business needs.

The work on process maturity levels has had a major impact on the software
industry. It focused attention on the software engineering processes and practices
that were used and led to significant improvements in software engineering capabil-
ity. However, there is too much overhead in formal process improvement for small
companies, and maturity estimation with agile processes is difficult. Consequently,
only large software companies now use this maturity-focused approach to software
process improvement.

Level 3
Defined

Level 2
Managed

Level 1
Initial

Level 4
Quantitatively

managed

Level 5
Optimizing

Figure 2.12 Capability
maturity levels

K e y p o i n t s

■ Software processes are the activities involved in producing a software system. Software process
models are abstract representations of these processes.

■ General process models describe the organization of software processes. Examples of these
general models include the waterfall model, incremental development, and reusable component
configuration and integration.

  Chapter 2  ■  Website    69

■ Requirements engineering is the process of developing a software specification. Specifications
are intended to communicate the system needs of the customer to the system developers.

■ Design and implementation processes are concerned with transforming a requirements specifi-
cation into an executable software system.

■ Software validation is the process of checking that the system conforms to its specification and
that it meets the real needs of the users of the system.

■ Software evolution takes place when you change existing software systems to meet new
requirements. Changes are continuous, and the software must evolve to remain useful.

■ Processes should include activities to cope with change. This may involve a prototyping phase that
helps avoid poor decisions on requirements and design. Processes may be structured for iterative
development and delivery so that changes may be made without disrupting the system as a whole.

■ Process improvement is the process of improving existing software processes to improve soft-
ware quality, lower development costs, or reduce development time. It is a cyclic process involv-
ing process measurement, analysis, and change.

F u r t h e r 	 r e a d i n g

“Process Models in Software Engineering.” This is an excellent overview of a wide range of software
engineering process models that have been proposed. (W. Scacchi, Encyclopaedia of Software
 Engineering, ed. J. J. Marciniak, John Wiley & Sons, 2001) http://www.ics.uci.edu/~wscacchi/
Papers/SE-Encyc/Process-Models-SE-Encyc.pdf

Software Process Improvement: Results and Experience from the Field. This book is a collection of
papers focusing on process improvement case studies in several small and medium-sized Norwegian
companies. It also includes a good introduction to the general issues of process improvement.
 (Conradi, R., Dybå, T., Sjøberg, D., and Ulsund, T. (eds.), Springer, 2006).

“Software Development Life Cycle Models and Methodologies.” This blog post is a succinct sum-
mary of several software process models that have been proposed and used. It discusses the advan-
tages and disadvantages of each of these models (M. Sami, 2012). http://melsatar.wordpress.
com/2012/03/15/software-development-life-cycle-models-and-methodologies/

W e b S i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/software-engineering/

http://www.ics.uci.edu/~wscacchi/Papers/SE-Encyc/Process-Models-SE-Encyc.pdf
http://melsatar.wordpress.com/2012/03/15/software-development-life-cycle-models-and-methodologies
http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/software-engineering
http://www.ics.uci.edu/~wscacchi/Papers/SE-Encyc/Process-Models-SE-Encyc.pdf
http://melsatar.wordpress.com/2012/03/15/software-development-life-cycle-models-and-methodologies

70    Chapter 2  ■  Software processes

e x e r C i S e S

 2.1. Suggest the most appropriate generic software process model that might be used as a basis
for managing the development of the following systems. Explain your answer according to the
type of system being developed:

A system to control antilock braking in a car

A virtual reality system to support software maintenance

A university accounting system that replaces an existing system

An interactive travel planning system that helps users plan journeys with the lowest
environmental impact

 2.2. Incremental software development could be very effectively used for customers who do not
have a clear idea about the systems needed for their operations. Discuss.

 2.3. Consider the integration and configuration process model shown in Figure 2.3. Explain why it
is essential to repeat the requirements engineering activity in the process.

 2.4. Suggest why it is important to make a distinction between developing the user requirements
and developing system requirements in the requirements engineering process.

 2.5. Using an example, explain why the design activities of architectural design, database design,
interface design, and component design are interdependent.

 2.6. Explain why software testing should always be an incremental, staged activity. Are program-
mers the best people to test the programs that they have developed?

 2.7. Imagine that a government wants a software program that helps to keep track of the utiliza-
tion of the country’s vast mineral resources. Although the requirements put forward by the
government were not very clear, a software company was tasked with the development of a
prototype. The government found the prototype impressive, and asked it be extended to be
the actual system that would be used. Discuss the pros and cons of taking this approach.

 2.8. You have developed a prototype of a software system and your manager is very impressed by
it. She proposes that it should be put into use as a production system, with new features
added as required. This avoids the expense of system development and makes the system
immediately useful. Write a short report for your manager explaining why prototype systems
should not normally be used as production systems.

 2.9. Suggest two advantages and two disadvantages of the approach to process assessment and
improvement that is embodied in the SEI’s Capability Maturity framework.

2.10. Historically, the introduction of technology has caused profound changes in the labor market
and, temporarily at least, displaced people from jobs. Discuss whether the introduction of
extensive process automation is likely to have the same consequences for software engi-
neers. If you don’t think it will, explain why not. If you think that it will reduce job opportuni-
ties, is it ethical for the engineers affected to passively or actively resist the introduction of
this technology?

70    Chapter 2  ■  Software processes

  Chapter 2  ■  References    71

r e F e r e n C e S

Abrial, J. R. 2005. The B Book: Assigning Programs to Meanings. Cambridge, UK: Cambridge
 University Press.

 . 2010. Modeling in Event-B: System and Software Engineering. Cambridge, UK: Cambridge
University Press.

Boehm, B. W. (1988). “A Spiral Model of Software Development and Enhancement.” IEEE Computer,
21 (5), 61–72. doi:10.1145/12944.12948

Boehm, B. W., and R. Turner. 2004. “Balancing Agility and Discipline: Evaluating and Integrating
Agile and Plan-Driven Methods.” In 26th Int. Conf on Software Engineering, Edinburgh, Scotland.
doi:10.1109/ICSE.2004.1317503.

Chrissis, M. B., M. Konrad, and S. Shrum. 2011. CMMI for Development: Guidelines for Process
 Integration and Product Improvement, 3rd ed. Boston: Addison-Wesley.

Humphrey, W. S. 1988. “Characterizing the Software Process: A Maturity Framework.” IEEE Software
5 (2): 73–79. doi:10.1109/2.59.

Koskela, L. 2013. Effective Unit Testing: A Guide for Java Developers. Greenwich, CT: Manning
Publications.

Krutchen, P. 2003. The Rational Unified Process—An Introduction, 3rd ed. Reading, MA: Addison-Wesley.

Royce, W. W. 1970. “Managing the Development of Large Software Systems: Concepts and
 Techniques.” In IEEE WESTCON, 1–9. Los Angeles, CA.

Wheeler, W., and J. White. 2013. Spring in Practice. Greenwich, CT: Manning Publications.

	Part 1 Introduction to Software Engineering��
	Chapter 2 Software processes�����������������������������������
	2.1 Software process models����������������������������������
	2.2 Process activities�����������������������������
	2.3 Coping with change�����������������������������
	2.4 Process improvement������������������������������

