
Agile software
development

3

Objectives
The objective of this chapter is to introduce you to agile software
development methods. When you have read the chapter, you will:

■ understand the rationale for agile software development methods,
the agile manifesto, and the differences between agile and
plan-driven development;

■ know about important agile development practices such as user
stories, refactoring, pair programming and test-first development;

■ understand the Scrum approach to agile project management;

■ understand the issues of scaling agile development methods and
combining agile approaches with plan-driven approaches in the
development of large software systems.

Contents
3.1 Agile methods

3.2 Agile development techniques

3.3 Agile project management

3.4 Scaling agile methods

Businesses now operate in a global, rapidly changing environment. They have to
respond to new opportunities and markets, changing economic conditions and the
emergence of competing products and services. Software is part of almost all busi-
ness operations, so new software has to be developed quickly to take advantage of
new opportunities and to respond to competitive pressure. Rapid software develop-
ment and delivery is therefore the most critical requirement for most business systems.
In fact, businesses may be willing to trade off software quality and compromise on
requirements if they can deploy essential new software quickly.

Because these businesses are operating in a changing environment, it is practi-
cally impossible to derive a complete set of stable software requirements.
Requirements change because customers find it impossible to predict how a system
will affect working practices, how it will interact with other systems, and what user
operations should be automated. It may only be after a system has been delivered
and users gain experience with it that the real requirements become clear. Even then,
external factors drive requirements change.

Plan-driven software development processes that completely specify the require-
ments and then design, build, and test a system are not geared to rapid software devel-
opment. As the requirements change or as requirements problems are discovered, the
system design or implementation has to be reworked and retested. As a consequence,
a conventional waterfall or specification-based process is usually a lengthy one, and
the final software is delivered to the customer long after it was originally specified.

For some types of software, such as safety-critical control systems, where a com-
plete analysis of the system is essential, this plan-driven approach is the right one.
However, in a fast-moving business environment, it can cause real problems. By the
time the software is available for use, the original reason for its procurement may
have changed so radically that the software is effectively useless. Therefore, for
business systems in particular, development processes that focus on rapid software
development and delivery are essential.

The need for rapid software development and processes that can handle changing
requirements has been recognized for many years (Larman and Basili 2003).
However, faster software development really took off in the late 1990s with the
development of the idea of “agile methods” such as Extreme Programming (Beck
1999), Scrum (Schwaber and Beedle 2001), and DSDM (Stapleton 2003).

Rapid software development became known as agile development or agile meth-
ods. These agile methods are designed to produce useful software quickly. All of the
agile methods that have been proposed share a number of common characteristics:

1. The processes of specification, design and implementation are interleaved.
There is no detailed system specification, and design documentation is mini-
mized or generated automatically by the programming environment used to
implement the system. The user requirements document is an outline definition
of the most important characteristics of the system.

2. The system is developed in a series of increments. End-users and other system
stakeholders are involved in specifying and evaluating each increment.

Chapter 3 ■ Agile software development 73

74 Chapter 3 ■ Agile software development

They may propose changes to the software and new requirements that should be
implemented in a later version of the system.

3. Extensive tool support is used to support the development process. Tools that
may be used include automated testing tools, tools to support configuration man-
agement, and system integration and tools to automate user interface production.

Agile methods are incremental development methods in which the increments are
small, and, typically, new releases of the system are created and made available to
 customers every two or three weeks. They involve customers in the development
 process to get rapid feedback on changing requirements. They minimize documentation
by using informal communications rather than formal meetings with written documents.

Agile approaches to software development consider design and implementation
to be the central activities in the software process. They incorporate other activities,
such as requirements elicitation and testing, into design and implementation. By
contrast, a plan-driven approach to software engineering identifies separate stages in
the software process with outputs associated with each stage. The outputs from one
stage are used as a basis for planning the following process activity.

Figure 3.1 shows the essential distinctions between plan-driven and agile approaches
to system specification. In a plan-driven software development process, iteration
occurs within activities, with formal documents used to communicate between stages
of the process. For example, the requirements will evolve, and, ultimately, a require-
ments specification will be produced. This is then an input to the design and imple-
mentation process. In an agile approach, iteration occurs across activities. Therefore,
the requirements and the design are developed together rather than separately.

In practice, as I explain in Section 3.4.1, plan-driven processes are often used along
with agile programming practices, and agile methods may incorporate some planned

Requirements
specification

Requirements
engineering

Design and
implementation

Requirements change
requests

Plan-based development

Agile development

Requirements
engineering

Design and
implementation

Figure 3.1 Plan-driven
and agile development

 3.1 ■ Agile methods 75

activities apart from programming and testing. It is perfectly feasible, in a plan-driven
process, to allocate requirements and plan the design and development phase as a
series of increments. An agile process is not inevitably code-focused, and it may
 produce some design documentation. Agile developers may decide that an iteration
should not produce new code but rather should produce system models and documentation.

	 3.1	 Agile	methods

In the 1980s and early 1990s, there was a widespread view that the best way to
achieve better software was through careful project planning, formalized quality
assurance, use of analysis and design methods supported by software tools, and con-
trolled and rigorous software development processes. This view came from the soft-
ware engineering community that was responsible for developing large, long-lived
software systems such as aerospace and government systems.

This plan-driven approach was developed for software developed by large teams,
working for different companies. Teams were often geographically dispersed and
worked on the software for long periods of time. An example of this type of software
is the control systems for a modern aircraft, which might take up to 10 years from
initial specification to deployment. Plan-driven approaches involve a significant
overhead in planning, designing, and documenting the system. This overhead is jus-
tified when the work of multiple development teams has to be coordinated, when the
system is a critical system, and when many different people will be involved in
maintaining the software over its lifetime.

However, when this heavyweight, plan-driven development approach is applied
to small and medium-sized business systems, the overhead involved is so large that
it dominates the software development process. More time is spent on how the sys-
tem should be developed than on program development and testing. As the system
requirements change, rework is essential and, in principle at least, the specification
and design have to change with the program.

Dissatisfaction with these heavyweight approaches to software engineering
led to the development of agile methods in the late 1990s. These methods allowed
the development team to focus on the software itself rather than on its design and
documentation. They are best suited to application development where the sys-
tem requirements usually change rapidly during the development process. They
are intended to deliver working software quickly to customers, who can then pro-
pose new and changed requirements to be included in later iterations of the sys-
tem. They aim to cut down on process bureaucracy by avoiding work that has
dubious long-term value and eliminating documentation that will probably never
be used.

The philosophy behind agile methods is reflected in the agile manifesto (http://
agilemanifesto.org) issued by the leading developers of these methods. This mani-
festo states:

http://agilemanifesto.org
http://agilemanifesto.org

76 Chapter 3 ■ Agile software development

We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the
left more†.

All agile methods suggest that software should be developed and delivered incre-
mentally. These methods are based on different agile processes but they share a set
of principles, based on the agile manifesto, and so they have much in common. I
have listed these principles in Figure 3.2.

Agile methods have been particularly successful for two kinds of system development.

1. Product development where a software company is developing a small or
medium-sized product for sale. Virtually all software products and apps are now
developed using an agile approach.

2. Custom system development within an organization, where there is a clear com-
mitment from the customer to become involved in the development process and
where there are few external stakeholders and regulations that affect the software.

Agile methods work well in these situations because it is possible to have con-
tinuous communications between the product manager or system customer and the
development team. The software itself is a stand-alone system rather than tightly
integrated with other systems being developed at the same time. Consequently, there
is no need to coordinate parallel development streams. Small and medium-sized

Principle Description

Customer involvement Customers should be closely involved throughout the development process.
Their role is provide and prioritize new system requirements and to evaluate
the iterations of the system.

Embrace change Expect the system requirements to change, and so design the system to
accommodate these changes.

Incremental delivery The software is developed in increments, with the customer specifying the
requirements to be included in each increment.

Maintain simplicity Focus on simplicity in both the software being developed and in the
development process. Wherever possible, actively work to eliminate
complexity from the system.

People, not process The skills of the development team should be recognized and exploited.
Team members should be left to develop their own ways of working without
prescriptive processes.

Figure 3.2 The
principles of agile
methods

†http://agilemanifesto.org/

http://agilemanifesto.org

 3.2 ■ Agile development techniques 77

 systems can be developed by co-located teams, so informal communications among
team members work well.

	 3.2		 Agile	development	techniques

The ideas underlying agile methods were developed around the same time by a number
of different people in the 1990s. However, perhaps the most significant approach to
changing software development culture was the development of Extreme Programming
(XP). The name was coined by Kent Beck (Beck 1998) because the approach was
developed by pushing recognized good practice, such as iterative development, to
“extreme” levels. For example, in XP, several new versions of a system may be devel-
oped by different programmers, integrated, and tested in a day. Figure 3.3 illustrates
the XP process to produce an increment of the system that is being developed.

In XP, requirements are expressed as scenarios (called user stories), which are
implemented directly as a series of tasks. Programmers work in pairs and develop
tests for each task before writing the code. All tests must be successfully executed
when new code is integrated into the system. There is a short time gap between
releases of the system.

Extreme programming was controversial as it introduced a number of agile prac-
tices that were quite different from the development practice of that time. These prac-
tices are summarized in Figure 3.4 and reflect the principles of the agile manifesto:

1. Incremental development is supported through small, frequent releases of the sys-
tem. Requirements are based on simple customer stories or scenarios that are used
as a basis for deciding what functionality should be included in a system increment.

2. Customer involvement is supported through the continuous engagement of the
customer in the development team. The customer representative takes part in
the development and is responsible for defining acceptance tests for the system.

3. People, not process, are supported through pair programming, collective owner-
ship of the system code, and a sustainable development process that does not
involve excessively long working hours.

Break down
stories to tasks

Select user
stories for this

release
Plan release

Release
software

Evaluate
system

Develop/integrate/
test softwareFigure 3.3 The XP

release cycle

78 Chapter 3 ■ Agile software development

Principle or practice Description

Collective ownership The pairs of developers work on all areas of the system, so that no islands of
expertise develop and all the developers take responsibility for all of the code.
Anyone can change anything.

Continuous
integration

As soon as the work on a task is complete, it is integrated into the whole
system. After any such integration, all the unit tests in the system must pass.

Incremental planning Requirements are recorded on “story cards,” and the stories to be included in
a release are determined by the time available and their relative priority. The
developers break these stories into development “tasks.” See Figures 3.5
and 3.6.

On-site customer A representative of the end-user of the system (the Customer) should be
available full time for the use of the XP team. In an extreme programming
process, the customer is a member of the development team and is
responsible for bringing system requirements to the team for implementation.

Pair programming Developers work in pairs, checking each other's work and providing the
support to always do a good job.

Refactoring All developers are expected to refactor the code continuously as soon as
potential code improvements are found. This keeps the code simple and
maintainable.

Simple design Enough design is carried out to meet the current requirements and no more.

Small releases The minimal useful set of functionality that provides business value is
developed first. Releases of the system are frequent and incrementally add
functionality to the first release.

Sustainable pace Large amounts of overtime are not considered acceptable, as the net effect is
often to reduce code quality and medium-term productivity.

Test first
development

An automated unit test framework is used to write tests for a new piece of
functionality before that functionality itself is implemented.

Figure 3.4 Extreme
programming practices 4. Change is embraced through regular system releases to customers, test-first

development, refactoring to avoid code degeneration, and continuous integra-
tion of new functionality.

5. Maintaining simplicity is supported by constant refactoring that improves code
quality and by using simple designs that do not unnecessarily anticipate future
changes to the system.

In practice, the application of Extreme Programming as originally proposed has
proved to be more difficult than anticipated. It cannot be readily integrated with the
management practices and culture of most businesses. Therefore, companies adopt-
ing agile methods pick and choose those XP practices that are most appropriate for
their way of working. Sometimes these are incorporated into their own development
processes but, more commonly, they are used in conjunction with a management-
focused agile method such as Scrum (Rubin 2013).

 3.2 ■ Agile development techniques 79

I am not convinced that XP on its own is a practical agile method for most com-
panies, but its most significant contribution is probably the set of agile development
practices that it introduced to the community. I discuss the most important of these
practices in this section.

 3.2.1 User stories

Software requirements always change. To handle these changes, agile methods do not
have a separate requirements engineering activity. Rather, they integrate requirements
elicitation with development. To make this easier, the idea of “user stories” was devel-
oped where a user story is a scenario of use that might be experienced by a system user.

As far as possible, the system customer works closely with the development team
and discusses these scenarios with other team members. Together, they develop a
“story card” that briefly describes a story that encapsulates the customer needs. The
development team then aims to implement that scenario in a future release of the
software. An example of a story card for the Mentcare system is shown in Figure 3.5.
This is a short description of a scenario for prescribing medication for a patient.

User stories may be used in planning system iterations. Once the story cards have
been developed, the development team breaks these down into tasks (Figure 3.6) and
estimates the effort and resources required for implementing each task. This usually
involves discussions with the customer to refine the requirements. The customer
then prioritizes the stories for implementation, choosing those stories that can be

Kate is a doctor who wishes to prescribe medication for a patient attending a clinic.
The patient record is already displayed on her computer so she clicks on the
medication field and can select ‘current medication’, ‘new medication’ or ‘formulary’.

If she selects ‘current medication’, the system asks her to check the dose; If she
wants to change the dose, she enters the new dose then confirms the prescription.

If she chooses ‘new medication’, the system assumes that she knows which
medication to prescribe. She types the first few letters of the drug name. The system
displays a list of possible drugs starting with these letters. She chooses the required
medication and the system responds by asking her to check that the medication
selected is correct. She enters the dose then confirms the prescription.

If she chooses ‘formulary’, the system displays a search box for the approved
formulary. She can then search for the drug required. She selects a drug and is asked
to check that the medication is correct. She enters the dose then confirms the
prescription.

The system always checks that the dose is within the approved range. If it isn’t, Kate
is asked to change the dose.

After Kate has confirmed the prescription, it will be displayed for checking. She either
clicks ‘OK’ or ‘Change’. If she clicks ‘OK’, the prescription is recorded on the audit
database. If she clicks on ‘Change’, she reenters the ‘Prescribing medication’ process.

Prescribing medication

Figure 3.5 A
“prescribing medication”
story

80 Chapter 3 ■ Agile software development

used immediately to deliver useful business support. The intention is to identify
 useful functionality that can be implemented in about two weeks, when the next
release of the system is made available to the customer.

Of course, as requirements change, the unimplemented stories change or may be
discarded. If changes are required for a system that has already been delivered, new
story cards are developed and again, the customer decides whether these changes
should have priority over new functionality.

The idea of user stories is a powerful one—people find it much easier to relate to
these stories than to a conventional requirements document or use cases. User stories can
be helpful in getting users involved in suggesting requirements during an initial prede-
velopment requirements elicitation activity. I discuss this in more detail in Chapter 4.

The principal problem with user stories is completeness. It is difficult to judge if
enough user stories have been developed to cover all of the essential requirements
of a system. It is also difficult to judge if a single story gives a true picture of an
activity. Experienced users are often so familiar with their work that they leave
things out when describing it.

 3.2.2 Refactoring

A fundamental precept of traditional software engineering is that you should design
for change. That is, you should anticipate future changes to the software and design
it so that these changes can be easily implemented. Extreme programming, however,
has discarded this principle on the basis that designing for change is often wasted
effort. It isn’t worth taking time to add generality to a program to cope with change.
Often the changes anticipated never materialize, or completely different change
requests may actually be made.

Of course, in practice, changes will always have to be made to the code being devel-
oped. To make these changes easier, the developers of XP suggested that the code being
developed should be constantly refactored. Refactoring (Fowler et al. 1999) means that
the programming team look for possible improvements to the software and implements

Task 1: Change dose of prescribed drug

Task 2: Formulary selection

Task 3: Dose checking

Dose checking is a safety precaution to check that
the doctor has not prescribed a dangerously small or
large dose.

Using the formulary id for the generic drug name,
look up the formulary and retrieve the recommended
maximum and minimum dose.

Check the prescribed dose against the minimum and
maximum. If outside the range, issue an error
message saying that the dose is too high or too low.
If within the range, enable the ‘Confirm’ button.

Figure 3.6 Examples of
task cards for prescribing
medication

 3.2 ■ Agile development techniques 81

them immediately. When team members see code that can be improved, they make
these improvements even in situations where there is no immediate need for them.

A fundamental problem of incremental development is that local changes tend to
degrade the software structure. Consequently, further changes to the software become
harder and harder to implement. Essentially, the development proceeds by finding
workarounds to problems, with the result that code is often duplicated, parts of the
software are reused in inappropriate ways, and the overall structure degrades as code is
added to the system. Refactoring improves the software structure and readability and
so avoids the structural deterioration that naturally occurs when software is changed.

Examples of refactoring include the reorganization of a class hierarchy to remove
duplicate code, the tidying up and renaming of attributes and methods, and the
replacement of similar code sections, with calls to methods defined in a program
library. Program development environments usually include tools for refactoring.
These simplify the process of finding dependencies between code sections and mak-
ing global code modifications.

In principle, when refactoring is part of the development process, the software
should always be easy to understand and change as new requirements are proposed.
In practice, this is not always the case. Sometimes development pressure means that
refactoring is delayed because the time is devoted to the implementation of new
functionality. Some new features and changes cannot readily be accommodated by
code-level refactoring and require that the architecture of the system be modified.

 3.2.3 Test-first development

As I discussed in the introduction to this chapter, one of the important differences
between incremental development and plan-driven development is in the way that
the system is tested. With incremental development, there is no system specification
that can be used by an external testing team to develop system tests. As a conse-
quence, some approaches to incremental development have a very informal testing
process, in comparison with plan-driven testing.

Extreme Programming developed a new approach to program testing to address
the difficulties of testing without a specification. Testing is automated and is central
to the development process, and development cannot proceed until all tests have
been successfully executed. The key features of testing in XP are:

1. test-first development,

2. incremental test development from scenarios,

3. user involvement in the test development and validation, and

4. the use of automated testing frameworks.

XP’s test-first philosophy has now evolved into more general test-driven develop-
ment techniques (Jeffries and Melnik 2007). I believe that test-driven development is
one of the most important innovations in software engineering. Instead of writing code
and then writing tests for that code, you write the tests before you write the code. This

82 Chapter 3 ■ Agile software development

means that you can run the test as the code is being written and discover problems dur-
ing development. I discuss test-driven development in more depth in Chapter 8.

Writing tests implicitly defines both an interface and a specification of behavior for
the functionality being developed. Problems of requirements and interface misunder-
standings are reduced. Test-first development requires there to be a clear relationship
between system requirements and the code implementing the corresponding require-
ments. In XP, this relationship is clear because the story cards representing the require-
ments are broken down into tasks and the tasks are the principal unit of implementation.

In test-first development, the task implementers have to thoroughly understand
the specification so that they can write tests for the system. This means that ambi-
guities and omissions in the specification have to be clarified before implementation
begins. Furthermore, it also avoids the problem of “test-lag.” This may happen when
the developer of the system works at a faster pace than the tester. The implementa-
tion gets further and further ahead of the testing and there is a tendency to skip tests,
so that the development schedule can be maintained.

XP’s test-first approach assumes that user stories have been developed, and these
have been broken down into a set of task cards, as shown in Figure 3.6. Each task
generates one or more unit tests that check the implementation described in that task.
Figure 3.7 is a shortened description of a test case that has been developed to check
that the prescribed dose of a drug does not fall outside known safe limits.

The role of the customer in the testing process is to help develop acceptance tests
for the stories that are to be implemented in the next release of the system. As I
explain in Chapter 8, acceptance testing is the process whereby the system is tested
using customer data to check that it meets the customer’s real needs.

Test automation is essential for test-first development. Tests are written as exe-
cutable components before the task is implemented. These testing components
should be stand-alone, should simulate the submission of input to be tested, and
should check that the result meets the output specification. An automated test frame-
work is a system that makes it easy to write executable tests and submit a set of tests
for execution. Junit (Tahchiev et al. 2010) is a widely used example of an automated
testing framework for Java programs.

Input:
1. A number in mg representing a single dose of the drug.
2. A number representing the number of single doses per day.

Tests:
1. Test for inputs where the single dose is correct but the frequency is too

high.
2. Test for inputs where the single dose is too high and too low.
3. Test for inputs where the single dose * frequency is too high and too low.
4. Test for inputs where single dose * frequency is in the permitted range.

Output:
OK or error message indicating that the dose is outside the safe range.

Test 4: Dose checking

Figure 3.7 Test case
description for dose
checking

 3.2 ■ Agile development techniques 83

As testing is automated, there is always a set of tests that can be quickly and eas-
ily executed. Whenever any functionality is added to the system, the tests can be run
and problems that the new code has introduced can be caught immediately.

Test-first development and automated testing usually result in a large number of
tests being written and executed. However, there are problems in ensuring that test
coverage is complete:

1. Programmers prefer programming to testing, and sometimes they take shortcuts
when writing tests. For example, they may write incomplete tests that do not
check for all possible exceptions that may occur.

2. Some tests can be very difficult to write incrementally. For example, in a com-
plex user interface, it is often difficult to write unit tests for the code that imple-
ments the “display logic” and workflow between screens.

It is difficult to judge the completeness of a set of tests. Although you may have a lot
of system tests, your test set may not provide complete coverage. Crucial parts of
the system may not be executed and so will remain untested. Therefore, although a
large set of frequently executed tests may give the impression that the system is complete
and correct, this may not be the case. If the tests are not reviewed and further tests are
written after development, then undetected bugs may be delivered in the system release.

 3.2.4 Pair programming

Another innovative practice that was introduced in XP is that programmers work in
pairs to develop the software. The programming pair sits at the same computer to
develop the software. However, the same pair do not always program together.
Rather, pairs are created dynamically so that all team members work with each other
during the development process.

Pair programming has a number of advantages.

1. It supports the idea of collective ownership and responsibility for the system.
This reflects Weinberg’s idea of egoless programming (Weinberg 1971) where
the software is owned by the team as a whole and individuals are not held
responsible for problems with the code. Instead, the team has collective respon-
sibility for resolving these problems.

2. It acts as an informal review process because each line of code is looked at by at least
two people. Code inspections and reviews (Chapter 24) are effective in discovering
a high percentage of software errors. However, they are time consuming to organize
and, typically, introduce delays into the development process. Pair programming is a
less formal process that probably doesn’t find as many errors as code inspections.
However, it is cheaper and easier to organize than formal program inspections.

3. It encourages refactoring to improve the software structure. The problem with ask-
ing programmers to refactor in a normal development environment is that effort

84 Chapter 3 ■ Agile software development

involved is expended for long-term benefit. An developer who spends time refac-
toring may be judged to be less efficient than one who simply carries on developing
code. Where pair programming and collective ownership are used, others benefit
immediately from the refactoring so they are likely to support the process.

You might think that pair programming would be less efficient than individual
programming. In a given time, a pair of developers would produce half as much code
as two individuals working alone. Many companies that have adopted agile methods
are suspicious of pair programming and do not use it. Other companies mix pair and
individual programming with an experienced programmer working with a less expe-
rienced colleague when they have problems.

Formal studies of the value of pair programming have had mixed results. Using
student volunteers, Williams and her collaborators (Williams et al. 2000) found that
productivity with pair programming seems to be comparable to that of two people
working independently. The reasons suggested are that pairs discuss the software
before development and so probably have fewer false starts and less rework.
Furthermore, the number of errors avoided by the informal inspection is such that
less time is spent repairing bugs discovered during the testing process.

However, studies with more experienced programmers did not replicate these
results (Arisholm et al. 2007). They found that there was a significant loss of produc-
tivity compared with two programmers working alone. There were some quality
benefits, but these did not fully compensate for the pair-programming overhead.
Nevertheless, the sharing of knowledge that happens during pair programming is
very important as it reduces the overall risks to a project when team members leave.
In itself, this may make pair programming worthwhile.

	 3.3		 Agile	project	management

In any software business, managers need to know what is going on and whether or not
a project is likely to meet its objectives and deliver the software on time with the pro-
posed budget. Plan-driven approaches to software development evolved to meet this
need. As I discussed in Chapter 23, managers draw up a plan for the project showing
what should be delivered, when it should be delivered, and who will work on the devel-
opment of the project deliverables. A plan-based approach requires a manager to have
a stable view of everything that has to be developed and the development processes.

The informal planning and project control that was proposed by the early adher-
ents of agile methods clashed with this business requirement for visibility. Teams
were self-organizing, did not produce documentation, and planned development in
very short cycles. While this can and does work for small companies developing
software products, it is inappropriate for larger companies who need to know what is
going on in their organization.

Like every other professional software development process, agile development
has to be managed so that the best use is made of the time and resources available to

 3.3 ■ Agile project management 85

the team. To address this issue, the Scrum agile method was developed (Schwaber
and Beedle 2001; Rubin 2013) to provide a framework for organizing agile projects
and, to some extent at least, provide external visibility of what is going on. The devel-
opers of Scrum wished to make clear that Scrum was not a method for project man-
agement in the conventional sense, so they deliberately invented new terminology,
such as ScrumMaster, which replaced names such as project manager. Figure 3.8
summarizes Scrum terminology and what it means.

Scrum is an agile method insofar as it follows the principles from the agile mani-
festo, which I showed in Figure 3.2. However, it focuses on providing a framework
for agile project organization, and it does not mandate the use of specific development

Scrum term Definition

Development team A self-organizing group of software developers, which should be no
more than seven people. They are responsible for developing the
software and other essential project documents.

Potentially shippable product
increment

The software increment that is delivered from a sprint. The idea is that
this should be “potentially shippable,” which means that it is in a
finished state and no further work, such as testing, is needed to
incorporate it into the final product. In practice, this is not always
achievable.

Product backlog This is a list of “to do” items that the Scrum team must tackle. They
may be feature definitions for the software, software requirements, user
stories, or descriptions of supplementary tasks that are needed, such as
architecture definition or user documentation.

Product owner An individual (or possibly a small group) whose job is to identify
product features or requirements, prioritize these for development, and
continuously review the product backlog to ensure that the project
continues to meet critical business needs. The Product Owner can be a
customer but might also be a product manager in a software company
or other stakeholder representative.

Scrum A daily meeting of the Scrum team that reviews progress and prioritizes
work to be done that day. Ideally, this should be a short face-to-face
meeting that includes the whole team.

ScrumMaster The ScrumMaster is responsible for ensuring that the Scrum process is
followed and guides the team in the effective use of Scrum. He or she
is responsible for interfacing with the rest of the company and for
ensuring that the Scrum team is not diverted by outside interference.
The Scrum developers are adamant that the ScrumMaster should not
be thought of as a project manager. Others, however, may not always
find it easy to see the difference.

Sprint A development iteration. Sprints are usually 2 to 4 weeks long.

Velocity An estimate of how much product backlog effort a team can cover in a
single sprint. Understanding a team’s velocity helps them estimate what
can be covered in a sprint and provides a basis for measuring
improving performance.

Figure 3.8 Scrum
terminology

86 Chapter 3 ■ Agile software development

practices such as pair programming and test-first development. This means that it
can be more easily integrated with existing practice in a company. Consequently, as
agile methods have become a mainstream approach to software development, Scrum
has emerged as the most widely used method.

The Scrum process or sprint cycle is shown in Figure 3.9. The input to the process
is the product backlog. Each process iteration produces a product increment that
could be delivered to customers.

The starting point for the Scrum sprint cycle is the product backlog—the list of
items such as product features, requirements, and engineering improvement that
have to be worked on by the Scrum team. The initial version of the product backlog
may be derived from a requirements document, a list of user stories, or other descrip-
tion of the software to be developed.

While the majority of entries in the product backlog are concerned with the imple-
mentation of system features, other activities may also be included. Sometimes, when
planning an iteration, questions that cannot be easily answered come to light and addi-
tional work is required to explore possible solutions. The team may carry out some pro-
totyping or trial development to understand the problem and solution. There may also be
backlog items to design the system architecture or to develop system documentation.

The product backlog may be specified at varying levels of detail, and it is the
responsibility of the Product Owner to ensure that the level of detail in the specifica-
tion is appropriate for the work to be done. For example, a backlog item could be a
complete user story such as that shown in Figure 3.5, or it could simply be an instruc-
tion such as “Refactor user interface code” that leaves it up to the team to decide on
the refactoring to be done.

Each sprint cycle lasts a fixed length of time, which is usually between 2 and 4 weeks.
At the beginning of each cycle, the Product Owner prioritizes the items on the product
backlog to define which are the most important items to be developed in that cycle.
Sprints are never extended to take account of unfinished work. Items are returned to the
product backlog if these cannot be completed within the allocated time for the sprint.

The whole team is then involved in selecting which of the highest priority items
they believe can be completed. They then estimate the time required to complete
these items. To make these estimates, they use the velocity attained in previous

Review work
to be done

Select
items

Plan
sprint

Review
sprintSprint

Scrum

Product
backlog

Sprint
backlog

Potentially
shippable
softwareFigure 3.9 The Scrum

sprint cycle

 3.3 ■ Agile project management 87

sprints, that is, how much of the backlog could be covered in a single sprint. This
leads to the creation of a sprint backlog—the work to be done during that sprint. The
team self-organizes to decide who will work on what, and the sprint begins.

During the sprint, the team holds short daily meetings (Scrums) to review pro-
gress and, where necessary, to re-prioritize work. During the Scrum, all team mem-
bers share information, describe their progress since the last meeting, bring up
problems that have arisen, and state what is planned for the following day. Thus,
everyone on the team knows what is going on and, if problems arise, can re-plan
short-term work to cope with them. Everyone participates in this short-term plan-
ning; there is no top-down direction from the ScrumMaster.

The daily interactions among Scrum teams may be coordinated using a Scrum
board. This is an office whiteboard that includes information and post-it notes about
the Sprint backlog, work done, unavailability of staff, and so on. This is a shared
resource for the whole team, and anyone can change or move items on the board. It
means that any team member can, at a glance, see what others are doing and what
work remains to be done.

At the end of each sprint, there is a review meeting, which involves the whole
team. This meeting has two purposes. First, it is a means of process improvement.
The team reviews the way they have worked and reflects on how things could have
been done better. Second, it provides input on the product and the product state for
the product backlog review that precedes the next sprint.

While the ScrumMaster is not formally a project manager, in practice ScrumMasters
take this role in many organizations that have a conventional management structure.
They report on progress to senior management and are involved in longer-term plan-
ning and project budgeting. They may be involved in project administration (agreeing
on holidays for staff, liaising with HR, etc.) and hardware and software purchases.

In various Scrum success stories (Schatz and Abdelshafi 2005; Mulder and van
Vliet 2008; Bellouiti 2009), the things that users like about the Scrum method are:

1. The product is broken down into a set of manageable and understandable chunks
that stakeholders can relate to.

2. Unstable requirements do not hold up progress.

3. The whole team has visibility of everything, and consequently team communi-
cation and morale are improved.

4. Customers see on-time delivery of increments and gain feedback on how the
product works. They are not faced with last-minute surprises when a team
announces that software will not be delivered as expected.

5. Trust between customers and developers is established, and a positive culture is
created in which everyone expects the project to succeed.

Scrum, as originally designed, was intended for use with co-located teams where
all team members could get together every day in stand-up meetings. However,
much software development now involves distributed teams, with team members
located in different places around the world. This allows companies to take advantage

88 Chapter 3 ■ Agile software development

of lower cost staff in other countries, makes access to specialist skills possible, and
allows for 24-hour development, with work going on in different time zones.

Consequently, there have been developments of Scrum for distributed development
environments and multi-team working. Typically, for offshore development, the prod-
uct owner is in a different country from the development team, which may also be
distributed. Figure 3.10 shows the requirements for Distributed Scrum (Deemer 2011).

	 3.4		 Scaling	agile	methods

Agile methods were developed for use by small programming teams that could work
together in the same room and communicate informally. They were originally used
by for the development of small and medium-sized systems and software products.
Small companies, without formal processes or bureaucracy, were enthusiastic initial
adopters of these methods.

Of course, the need for faster delivery of software, which is more suited to cus-
tomer needs, also applies to both larger systems and larger companies. Consequently,
over the past few years, a lot of work has been put into evolving agile methods for
both large software systems and for use in large companies.

Scaling agile methods has closely related facets:

1. Scaling up these methods to handle the development of large systems that are
too big to be developed by a single small team.

2. Scaling out these methods from specialized development teams to more widespread
use in a large company that has many years of software development experience.

Videoconferencing
between the product
owner and the
development team

Distributed Scrum

The ScrumMaster
should be located with
the development team
so that he or she is
aware of everyday
problems.

The Product Owner
should visit the
developers and try to
establish a good
relationship with them.
It is essential that they
trust each other.

Real-time communica-
tions between team
members for informal
communication,
particularly instant
messaging and video
calls.

Continuous integration,
so that all team
members can be aware
of the state of the
product at any time.

A common development
environment for all teams

Figure 3.10 Distributed
Scrum

 3.4 ■ Scaling agile methods 89

Of course, scaling up and scaling out are closely related. Contracts to develop
large software systems are usually awarded to large organizations, with multiple
teams working on the development project. These large companies have often exper-
imented with agile methods in smaller projects, so they face the problems of scaling
up and scaling out at the same time.

There are many anecdotes about the effectiveness of agile methods, and it has
been suggested that these can lead to orders of magnitude improvements in produc-
tivity and comparable reductions in defects. Ambler (Ambler 2010), an influential
agile method developer, suggests that these productivity improvements are exagger-
ated for large systems and organizations. He suggests that an organization moving to
agile methods can expect to see productivity improvement across the organization of
about 15% over 3 years, with similar reductions in the number of product defects.

 3.4.1 Practical problems with agile methods

In some areas, particularly in the development of software products and apps, agile
development has been incredibly successful. It is by far the best approach to use for
this type of system. However, agile methods may not be suitable for other types of
software development, such as embedded systems engineering or the development
of large and complex systems.

For large, long-lifetime systems that are developed by a software company for an
external client, using an agile approach presents a number of problems.

1. The informality of agile development is incompatible with the legal approach to
contract definition that is commonly used in large companies.

2. Agile methods are most appropriate for new software development rather than
for software maintenance. Yet the majority of software costs in large companies
come from maintaining their existing software systems.

3. Agile methods are designed for small co-located teams, yet much software
development now involves worldwide distributed teams.

Contractual issues can be a major problem when agile methods are used. When
the system customer uses an outside organization for system development, a contract
for the software development is drawn up between them. The software requirements
document is usually part of that contract between the customer and the supplier.
Because the interleaved development of requirements and code is fundamental to
agile methods, there is no definitive statement of requirements that can be included
in the contract.

Consequently, agile methods have to rely on contracts in which the customer
pays for the time required for system development rather than the development of a
specific set of requirements. As long as all goes well, this benefits both the customer
and the developer. However, if problems arise, then there may be difficult disputes
over who is to blame and who should pay for the extra time and resources required
to resolve the problems.

90 Chapter 3 ■ Agile software development

As I explain in Chapter 9, a huge amount of software engineering effort goes into the
maintenance and evolution of existing software systems. Agile practices, such as incre-
mental delivery, design for change, and maintaining simplicity all make sense when soft-
ware is being changed. In fact, you can think of an agile development process as a process
that supports continual change. If agile methods are used for software product develop-
ment, new releases of the product or app simply involve continuing the agile approach.

However, where maintenance involves a custom system that must be changed in
response to new business requirements, there is no clear consensus on the suitability
of agile methods for software maintenance (Bird 2011; Kilner 2012). Three types of
problems can arise:

■ lack of product documentation

■ keeping customers involved

■ development team continuity

Formal documentation is supposed to describe the system and so make it easier
for people changing the system to understand. In practice, however, formal docu-
mentation is rarely updated and so does not accurately reflect the program code. For
this reason, agile methods enthusiasts argue that it is a waste of time to write this
documentation and that the key to implementing maintainable software is to produce
high-quality, readable code. The lack of documentation should not be a problem in
maintaining systems developed using an agile approach.

However, my experience of system maintenance is that the most important docu-
ment is the system requirements document, which tells the software engineer what the
system is supposed to do. Without such knowledge, it is difficult to assess the impact of
proposed system changes. Many agile methods collect requirements informally and
incrementally and do not create a coherent requirements document. The use of agile
methods may therefore make subsequent system maintenance more difficult and expen-
sive. This is a particular problem if development team continuity cannot be maintained.

A key challenge in using an agile approach to maintenance is keeping customers
involved in the process. While a customer may be able to justify the full-time involve-
ment of a representative during system development, this is less likely during mainte-
nance where changes are not continuous. Customer representatives are likely to lose
interest in the system. Therefore, it is likely that alternative mechanisms, such as change
proposals, discussed in Chapter 25, will have to be adapted to fit in with an agile approach.

Another potential problem that may arise is maintaining continuity of the devel-
opment team. Agile methods rely on team members understanding aspects of the
system without having to consult documentation. If an agile development team is
broken up, then this implicit knowledge is lost and it is difficult for new team mem-
bers to build up the same understanding of the system and its components. Many
programmers prefer to work on new development to software maintenance, and so
they are unwilling to continue to work on a software system after the first release has
been delivered. Therefore, even when the intention is to keep the development team
together, people leave if they are assigned maintenance tasks.

 3.4 ■ Scaling agile methods 91

 3.4.2 Agile and plan-driven methods

A fundamental requirement of scaling agile methods is to integrate them with plan-
driven approaches. Small startup companies can work with informal and short-term
planning, but larger companies have to have longer-term plans and budgets for
investment, staffing, and business development. Their software development must
support these plans, so longer-term software planning is essential.

Early adopters of agile methods in the first decade of the 21st century were enthu-
siasts and deeply committed to the agile manifesto. They deliberately rejected the
plan-driven approach to software engineering and were reluctant to change the ini-
tial vision of agile methods in any way. However, as organizations saw the value and
benefits of an agile approach, they adapted these methods to suit their own culture
and ways of working. They had to do this because the principles underlying agile
methods are sometimes difficult to realize in practice (Figure 3.11).

To address these problems, most large “agile” software development projects com-
bine practices from plan-driven and agile approaches. Some are mostly agile, and others
are mostly plan-driven but with some agile practices. To decide on the balance between
a plan-based and an agile approach, you have to answer a range of technical, human and
organizational questions. These relate to the system being developed, the development
team, and the organizations that are developing and procuring the system (Figure 3.12).

Agile methods were developed and refined in projects to develop small to medium-
sized business systems and software products, where the software developer controls
the specification of the system. Other types of system have attributes such as size, com-
plexity, real-time response, and external regulation that mean a “pure” agile approach is

Principle Practice

Customer involvement This depends on having a customer who is willing and able to spend time with
the development team and who can represent all system stakeholders. Often,
customer representatives have other demands on their time and cannot play a
full part in the software development. Where there are external stakeholders,
such as regulators, it is difficult to represent their views to the agile team.

Embrace change Prioritizing changes can be extremely difficult, especially in systems for which
there are many stakeholders. Typically, each stakeholder gives different
priorities to different changes.

Incremental delivery Rapid iterations and short-term planning for development does not always fit
in with the longer-term planning cycles of business planning and marketing.
Marketing managers may need to know product features several months in
advance to prepare an effective marketing campaign.

Maintain simplicity Under pressure from delivery schedules, team members may not have time to
carry out desirable system simplifications.

People, not process Individual team members may not have suitable personalities for the intense
involvement that is typical of agile methods and therefore may not interact
well with other team members.

Figure 3.11 Agile
principles and
organizational practice

92 Chapter 3 ■ Agile software development

unlikely to work. There needs to be some up-front planning, design, and documentation

in the systems engineering process. Some of the key issues are as follows:

1. How large is the system that is being developed? Agile methods are most effective
when the system can be developed with a relatively small co-located team who
can communicate informally. This may not be possible for large systems that
require larger development teams, so a plan-driven approach may have to be used.

2. What type of system is being developed? Systems that require a lot of analysis
before implementation (e.g., real-time system with complex timing require-
ments) usually need a fairly detailed design to carry out this analysis. A plan-
driven approach may be best in those circumstances.

3. What is the expected system lifetime? Long-lifetime systems may require more
design documentation to communicate the original intentions of the system
developers to the support team. However, supporters of agile methods rightly
argue that documentation is frequently not kept up to date and is not of much
use for long-term system maintenance.

4. Is the system subject to external regulation? If a system has to be approved
by an external regulator (e.g., the Federal Aviation Administration approves
software that is critical to the operation of an aircraft), then you will probably be
required to produce detailed documentation as part of the system safety case.

Agile methods place a great deal of responsibility on the development team to
cooperate and communicate during the development of the system. They rely on indi-
vidual engineering skills and software support for the development process. However,
in reality, not everyone is a highly skilled engineer, people do not communicate effec-
tively, and it is not always possible for teams to work together. Some planning may be
required to make the most effective use of the people available. Key issues are:

1. How good are the designers and programmers in the development team?
It is sometimes argued that agile methods require higher skill levels than plan-
based approaches in which programmers simply translate a detailed design into
code. If you have a team with relatively low skill levels, you may need to use
the best people to develop the design, with others responsible for programming.

System Team Organization

Scale

Technology Distribution Contracts Delivery

Regulation

Type Lifetime

Competence Culture

Figure 3.12 Factors
influencing the choice
of plan-based or agile
development

 3.4 ■ Scaling agile methods 93

2. How is the development team organized? If the development team is distributed
or if part of the development is being outsourced, then you may need to develop
design documents to communicate across the development teams.

3. What technologies are available to support system development? Agile methods
often rely on good tools to keep track of an evolving design. If you are develop-
ing a system using an IDE that does not have good tools for program visualiza-
tion and analysis, then more design documentation may be required.

Television and films have created a popular vision of software companies as
informal organizations run by young men (mostly) who provide a fashionable work-
ing environment, with a minimum of bureaucracy and organizational procedures.
This is far from the truth. Most software is developed in large companies that have
established their own working practices and procedures. Management in these
 companies may be uncomfortable with the lack of documentation and the informal
decision making in agile methods. Key issues are:

1. Is it important to have a very detailed specification and design before moving to
implementation, perhaps for contractual reasons? If so, you probably need to
use a plan-driven approach for requirements engineering but may use agile
development practices during system implementation.

2. Is an incremental delivery strategy, where you deliver the software to customers
or other system stakeholders and get rapid feedback from them, realistic? Will
customer representatives be available, and are they willing to participate in the
development team?

3. Are there cultural issues that may affect system development? Traditional engi-
neering organizations have a culture of plan-based development, as this is the
norm in engineering. This usually requires extensive design documentation
rather than the informal knowledge used in agile processes.

In reality, the issue of whether a project can be labeled as plan-driven or agile
is not very important. Ultimately, the primary concern of buyers of a software system
is whether or not they have an executable software system that meets their needs and
does useful things for the individual user or the organization. Software developers
should be pragmatic and should choose those methods that are most effective for the
type of system being developed, whether or not these are labeled agile or plan-driven.

 3.4.3 Agile methods for large systems

Agile methods have to evolve to be used for large-scale software development.
The fundamental reason for this is that large-scale software systems are much
more complex and difficult to understand and manage than small-scale systems
or software products. Six principal factors (Figure 3.13) contribute to this
 complexity:

94 Chapter 3 ■ Agile software development

1. Large systems are usually systems of systems—collections of separate, com-
municating systems, where separate teams develop each system. Frequently,
these teams are working in different places, sometimes in different time zones.
It is practically impossible for each team to have a view of the whole system.
Consequently, their priorities are usually to complete their part of the system
without regard for wider systems issues.

2. Large systems are brownfield systems (Hopkins and Jenkins 2008); that is, they
include and interact with a number of existing systems. Many of the system require-
ments are concerned with this interaction and so don’t really lend themselves to
flexibility and incremental development. Political issues can also be significant
here—often the easiest solution to a problem is to change an existing system.
However, this requires negotiation with the managers of that system to convince
them that the changes can be implemented without risk to the system’s operation.

3. Where several systems are integrated to create a system, a significant fraction of
the development is concerned with system configuration rather than original
code development. This is not necessarily compatible with incremental devel-
opment and frequent system integration.

4. Large systems and their development processes are often constrained by exter-
nal rules and regulations limiting the way that they can be developed, that
require certain types of system documentation to be produced, and so on.
Customers may have specific compliance requirements that may have to be fol-
lowed, and these may require process documentation to be completed.

5. Large systems have a long procurement and development time. It is difficult to
maintain coherent teams who know about the system over that period as, inevi-
tably, people move on to other jobs and projects.

6. Large systems usually have a diverse set of stakeholders with different perspec-
tives and objectives. For example, nurses and administrators may be the end-users
of a medical system, but senior medical staff, hospital managers, and others, are
also stakeholders in the system. It is practically impossible to involve all of
these different stakeholders in the development process.

Large software system

System of
systems

Brownfield
development Diverse

stakeholders

Prolonged
procurement System

configuration

Regulatory
constraints

Figure 3.13 Large
project characteristics

 3.4 ■ Scaling agile methods 95

Dean Leffingwell, who has a great deal of experience in scaling agile methods,
has developed the Scaled Agile Framework (Leffingwell 2007, 2011) to support
large-scale, multi-team software development. He reports how this method has been
used successfully in a number of large companies. IBM has also developed a frame-
work for the large-scale use of agile methods called the Agile Scaling Model (ASM).
Figure 3.14, taken from Ambler’s white paper that discusses ASM (Ambler 2010),
shows an overview of this model.

The ASM recognizes that scaling is a staged process where development teams
move from the core agile practices discussed here to what is called Disciplined Agile
Delivery. Essentially, this stage involves adapting these practices to a disciplined
organizational setting and recognizing that teams cannot simply focus on develop-
ment but must also take into account other stages of the software engineering
 process, such as requirements and architectural design.

The final scaling stage in ASM is to move to Agility at Scale where the com-
plexity that is inherent in large projects is recognized. This involves taking account
of factors such as distributed development, complex legacy environments, and
regulatory compliance requirements. The practices used for disciplined agile
delivery may have to be modified on a project-by-project basis to take these into
account and, sometimes, additional plan-based practices added to the process.

No single model is appropriate for all large-scale agile products as the type of
product, the customer requirements, and the people available are all different.
However, approaches to scaling agile methods have a number of things in common:

Core agile
development

Disciplined
agile delivery

Agility at
scale

Agility at scale
Disciplined agile delivery where

scaling factors apply:
Large team size

Geographic distribution
Regulatory compliance

Domain complexity
Organization distribution

Technical complexity
Organizational complexity

Enterprise discipline

Disciplined agile delivery
Risk+value driven life-cycle

Self-organizing with appropriate
governance framework
Full delivery life-cycle

Core agile development
Value-driven life-cycle
Self-organizing teams
Focus on construction

Figure 3.14 IBM’s
Agility at Scale model
(© IBM 2010)

96 Chapter 3 ■ Agile software development

1. A completely incremental approach to requirements engineering is impossible.
Some early work on initial software requirements is essential. You need this
work to identify the different parts of the system that may be developed by
 different teams and, often, to be part of the contract for the system development.
However, these requirements should not normally be specified in detail; details
are best developed incrementally.

2. There cannot be a single product owner or customer representative. Different
people have to be involved for different parts of the system, and they have to
continuously communicate and negotiate throughout the development process.

3. It is not possible to focus only on the code of the system. You need to do more
up-front design and system documentation. The software architecture has to be
designed, and there has to be documentation produced to describe critical
aspects of the system, such as database schemas and the work breakdown
across teams.

4. Cross-team communication mechanisms have to be designed and used. This
should involve regular phone and videoconferences between team members and
frequent, short electronic meetings where teams update each other on progress.
A range of communication channels such as email, instant messaging, wikis,
and social networking systems should be provided to facilitate communications.

5. Continuous integration, where the whole system is built every time any devel-
oper checks in a change, is practically impossible when several separate
programs have to be integrated to create the system. However, it is essential
to maintain frequent system builds and regular releases of the system.
Configuration management tools that support multi-team software develop-
ment are essential.

Scrum has been adapted for large-scale development. In essence, the Scrum team
model described in Section 3.3 is maintained, but multiple Scrum teams are set up.
The key characteristics of multi-team Scrum are:

1. Role replication Each team has a Product Owner for its work component and
ScrumMaster. There may be a chief Product Owner and ScrumMaster for the
entire project.

2. Product architects Each team chooses a product architect, and these architects
collaborate to design and evolve the overall system architecture.

3. Release alignment The dates of product releases from each team are aligned so
that a demonstrable and complete system is produced.

4. Scrum of Scrums There is a daily Scrum of Scrums where representatives from
each team meet to discuss progress, identify problems, and plan the work to be
done that day. Individual team Scrums may be staggered in time so that repre-
sentatives from other teams can attend if necessary.

 3.4 ■ Scaling agile methods 97

 3.4.4 Agile methods across organizations

Small software companies that develop software products have been among the
most enthusiastic adopters of agile methods. These companies are not constrained by
organizational bureaucracies or process standards, and they can change quickly to
adopt new ideas. Of course, larger companies have also experimented with agile
methods in specific projects, but it is much more difficult for them to “scale out”
these methods across the organization.

It can be difficult to introduce agile methods into large companies for a number of
reasons:

1. Project managers who do not have experience of agile methods may be reluctant
to accept the risk of a new approach, as they do not know how this will affect
their particular projects.

2. Large organizations often have quality procedures and standards that all pro-
jects are expected to follow, and, because of their bureaucratic nature, these are
likely to be incompatible with agile methods. Sometimes, these are supported
by software tools (e.g., requirements management tools), and the use of these
tools is mandated for all projects.

3. Agile methods seem to work best when team members have a relatively high
skill level. However, within large organizations, there are likely to be a wide
range of skills and abilities, and people with lower skill levels may not be effec-
tive team members in agile processes.

4. There may be cultural resistance to agile methods, especially in those organiza-
tions that have a long history of using conventional systems engineering processes.

Change management and testing procedures are examples of company procedures
that may not be compatible with agile methods. Change management is the process of
controlling changes to a system, so that the impact of changes is predictable and costs are
controlled. All changes have to be approved in advance before they are made, and this
conflicts with the notion of refactoring. When refactoring is part of an agile process, any
developer can improve any code without getting external approval. For large systems,
there are also testing standards where a system build is handed over to an external testing
team. This may conflict with test-first approaches used in agile development methods.

Introducing and sustaining the use of agile methods across a large organization is
a process of cultural change. Cultural change takes a long time to implement and
often requires a change of management before it can be accomplished. Companies
wishing to use agile methods need evangelists to promote change. Rather than try-
ing to force agile methods onto unwilling developers, companies have found that the
best way to introduce agile is bit by bit, starting with an enthusiastic group of devel-
opers. A successful agile project can act as a starting point, with the project team
spreading agile practice across the organization. Once the notion of agile is widely
known, explicit actions can then be taken to spread it across the organization.

98 Chapter 3 ■ Agile software development

K e y P o i n t s

■ Agile methods are iterative development methods that focus on reducing process overheads and
documentation and on incremental software delivery. They involve customer representatives
directly in the development process.

■ The decision on whether to use an agile or a plan-driven approach to development should depend on
the type of software being developed, the capabilities of the development team, and the culture of the
company developing the system. In practice, a mix of agile and plan-based techniques may be used.

■ Agile development practices include requirements expressed as user stories, pair programming,
refactoring, continuous integration, and test-first development.

■ Scrum is an agile method that provides a framework for organizing agile projects. It is centered
around a set of sprints, which are fixed time periods when a system increment is developed. Plan-
ning is based on prioritizing a backlog of work and selecting the highest priority tasks for a sprint.

■ To scale agile methods, some plan-based practices have to be integrated with agile practice.
These include up-front requirements, multiple customer representatives, more documentation,
common tooling across project teams, and the alignment of releases across teams.

F u r t h e r 	 r e A d i n g

“Get Ready for Agile Methods, With Care.” A thoughtful critique of agile methods that discusses their
strengths and weaknesses, written by a vastly experienced software engineer. Still very relevant, although
almost 15 years old. (B. Boehm, IEEE Computer, January 2002) http://dx.doi.org/10.1109/2.976920

Extreme Programming Explained. This was the first book on XP and is still, perhaps, the most read-
able. It explains the approach from the perspective of one of its inventors, and his enthusiasm comes
through very clearly in the book. (K. Beck and C. Andres, Addison-Wesley, 2004) Essential Scrum: A
Practical Guide to the Most Popular Agile Process. This is a comprehensive and readable description
of the 2011 development of the Scrum method (K.S. Rubin, Addison-Wesley, 2013).

“Agility at Scale: Economic Governance, Measured Improvement and Disciplined Delivery.” This
paper discusses IBM's approach to scale agile methods, where they have a systematic approach to
integrating plan-based and agile development. It is an excellent and thoughtful discussion of the key
issues in scaling agile (A.W. Brown, S.W. Ambler, and W. Royce, Proc. 35th Int. Conf. on Software
Engineering, 2013) http://dx.doi.org/10.1145/12944.12948

W e b S i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/agile-methods/

http://dx.doi.org/10.1109/2.976920
http://dx.doi.org/10.1145/12944.12948
http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/agile-methods

 3.4 ■ Agile development techniques 99

e x e r C i S e S

 3.1. At the end of their study program, students in a software engineering course are typically
expected to complete a major project. Explain how the agile methodology may be very useful
for the students to use in this case.

 3.2. Explain how the principles underlying agile methods lead to the accelerated development and
deployment of software.

 3.3. Extreme programming expresses user requirements as stories, with each story written on a
card. Discuss the advantages and disadvantages of this approach to requirements description.

 3.4. In test-first development, tests are written before the code. Explain how the test suite may
compromise the quality of the software system being developed.

 3.5. Suggest four reasons why the productivity rate of programmers working as a pair might be
more than half that of two programmers working individually.

 3.6. Compare and contrast the Scrum approach to project management with conventional plan- based
approaches as discussed in Chapter 23. Your comparison should be based on the effectiveness
of each approach for planning the allocation of people to projects, estimating the cost of
 projects, maintaining team cohesion, and managing changes in project team membership.

 3.7. To reduce costs and the environmental impact of commuting, your company decides to close a
number of offices and to provide support for staff to work from home. However, the senior
management who introduce the policy are unaware that software is developed using Scrum.
Explain how you could use technology to support Scrum in a distributed environment to make
this possible. What problems are you likely to encounter using this approach?

 3.8. Why is it necessary to introduce some methods and documentation from plan-based
approaches when scaling agile methods to larger projects that are developed by distributed
development teams?

 3.9. Explain why agile methods may not work well in organizations that have teams with a wide
range of skills and abilities and well-established processes.

3.10. One of the problems of having a user closely involved with a software development team is
that they “go native.” That is, they adopt the outlook of the development team and lose sight
of the needs of their user colleagues. Suggest three ways how you might avoid this problem,
and discuss the advantages and disadvantages of each approach.

r e F e r e n C e S

Ambler, S. W. 2010. “Scaling Agile: A Executive Guide.” http://www.ibm.com/developerworks/
community/blogs/ambler/entry/scaling_agile_an_executive_guide10/

Arisholm, E., H. Gallis, T. Dyba, and D. I. K. Sjoberg. 2007. “Evaluating Pair Programming with
Respect to System Complexity and Programmer Expertise.” IEEE Trans. on Software Eng. 33 (2):
65–86. doi:10.1109/TSE.2007.17.

Beck, K. 1998. “Chrysler Goes to ‘Extremes.’” Distributed Computing (10): 24–28.

 Chapter 3 ■ References 99

http://www.ibm.com/developerworks/community/blogs/ambler/entry/scaling_agile_an_executive_guide10
http://www.ibm.com/developerworks/community/blogs/ambler/entry/scaling_agile_an_executive_guide10

100 Chapter 3 ■ Agile Software Development

 . 1999. “Embracing Change with Extreme Programming.” IEEE Computer 32 (10): 70–78.
doi:10.1109/2.796139.

Bellouiti, S. 2009. “How Scrum Helped Our A-Team.” http://www.scrumalliance.org/community/
articles/2009/2009-june/how-scrum-helped-our team

Bird, J. 2011. “You Can't Be Agile in Maintenance.” http://swreflections.blogspot.co.uk/2011/10/
you-cant-be-agile-in-maintenance.html

Deemer, P. 2011. “The Distributed Scrum Primer.” http://www.goodagile.com/distributedscrumprimer/.

Fowler, M., K. Beck, J. Brant, W. Opdyke, and D. Roberts. 1999. Refactoring: Improving the Design of
Existing Code. Boston: Addison-Wesley.

Hopkins, R., and K. Jenkins. 2008. Eating the IT Elephant: Moving from Greenfield Development to
Brownfield. Boston: IBM Press.

Jeffries, R., and G. Melnik. 2007. “TDD: The Art of Fearless Programming.” IEEE Software 24: 24–30.
doi:10.1109/MS.2007.75.

Kilner, S. 2012. “Can Agile Methods Work for Software Maintenance.” http://www.vlegaci.com/can-
agile-methods-work-for-software-maintenance-part-1/

Larman, C., and V. R. Basili. 2003. “Iterative and Incremental Development: A Brief History.” IEEE
Computer 36 (6): 47–56. doi:10.1109/MC.2003.1204375.

Leffingwell, D. 2007. Scaling Software Agility: Best Practices for Large Enterprises. Boston: Addison-Wesley.

Leffingwell, D. 2011. Agile Software Requirements: Lean Requirements Practices for Teams,
Programs and the Enterprise. Boston: Addison-Wesley.

Mulder, M., and M. van Vliet. 2008. “Case Study: Distributed Scrum Project for Dutch Railways.”
InfoQ. http://www.infoq.com/articles/dutch-railway-scrum

Rubin, K. S. 2013. Essential Scrum. Boston: Addison-Wesley.

Schatz, B., and I. Abdelshafi. 2005. “Primavera Gets Agile: A Successful Transition to Agile Develop-
ment.” IEEE Software 22 (3): 36–42. doi:10.1109/MS.2005.74.

Schwaber, K., and M. Beedle. 2001. Agile Software Development with Scrum. Englewood Cliffs, NJ:
Prentice-Hall.

Stapleton, J. 2003. DSDM: Business Focused Development, 2nd ed. Harlow, UK: Pearson Education.

Tahchiev, P., F. Leme, V. Massol, and G. Gregory. 2010. JUnit in Action, 2/e. Greenwich, CT: Manning
Publications.

Weinberg, G. 1971. The Psychology of Computer Programming. New York: Van Nostrand.

Williams, L., R. R. Kessler, W. Cunningham, and R. Jeffries. 2000. “Strengthening the Case for Pair
 Programming.” IEEE Software 17 (4): 19–25. doi:10.1109/52.854064.

100 Chapter 3 ■ Agile software development

http://www.scrumalliance.org/community/articles/2009/2009-june/how-scrum-helped-our team
http://swreflections.blogspot.co.uk/2011/10/you-cant-be-agile-in-maintenance.html
http://www.goodagile.com/distributedscrumprimer
http://www.vlegaci.com/can-agile-methods-work-for-software-maintenance-part-1
http://www.infoq.com/articles/dutch-railway-scrum
http://www.scrumalliance.org/community/articles/2009/2009-june/how-scrum-helped-our team
http://swreflections.blogspot.co.uk/2011/10/you-cant-be-agile-in-maintenance.html
http://www.vlegaci.com/can-agile-methods-work-for-software-maintenance-part-1

	Part 1 Introduction to Software Engineering��
	Chapter 3 Agile software development���
	3.1 Agile methods������������������������
	3.2 Agile development techniques���������������������������������������
	3.3 Agile project management�����������������������������������
	3.4 Scaling agile methods��������������������������������

