
Objectives
The aim of this chapter is to introduce system models that may be
developed as part of requirements engineering and system design
processes. When you have read the chapter, you will:

■ understand how graphical models can be used to represent
software systems and why several types of model are needed to
fully represent a system;

■ understand the fundamental system modeling perspectives of
context, interaction, structure, and behavior;

■ understand the principal diagram types in the Unified Modeling
Language (UML) and how these diagrams may be used in system
modeling;

■ have been introduced to model-driven engineering, where an
executable system is automatically generated from structural and
behavioral models.

Contents
5.1 Context models

5.2 Interaction models

5.3 Structural models

5.4 Behavioral models

5.5 Model-driven engineering

System modeling
5

	 Chapter	5	 ■	 System	modeling	 	 139

System modeling is the process of developing abstract models of a system, with each
model presenting a different view or perspective of that system. System modeling
now usually means representing a system using some kind of graphical notation
based on diagram types in the Unified Modeling Language (UML). However, it is
also possible to develop formal (mathematical) models of a system, usually as a
detailed system specification. I cover graphical modeling using the UML here, and
formal modeling is briefly discussed in Chapter 10.

Models are used during the requirements engineering process to help derive the
detailed requirements for a system, during the design process to describe the system
to engineers implementing the system, and after implementation to document the
system’s structure and operation. You may develop models of both the existing sys-
tem and the system to be developed:

1. Models of the existing system are used during requirements engineering. They
help clarify what the existing system does, and they can be used to focus a stake-
holder discussion on its strengths and weaknesses.

2. Models of the new system are used during requirements engineering to help
explain the proposed requirements to other system stakeholders. Engineers use
these models to discuss design proposals and to document the system for imple-
mentation. If you use a model-driven engineering process (Brambilla, Cabot,
and Wimmer 2012), you can generate a complete or partial system implementa-
tion from system models.

It is important to understand that a system model is not a complete representation of
system. It purposely leaves out detail to make it easier to understand. A model is an
abstraction of the system being studied rather than an alternative representation of that
system. A representation of a system should maintain all the information about the entity
being represented. An abstraction deliberately simplifies a system design and picks out
the most salient characteristics. For example, the PowerPoint slides that accompany this
book are an abstraction of the book’s key points. However, if the book were translated
from English into Italian, this would be an alternative representation. The translator’s
intention would be to maintain all the information as it is presented in English.

You may develop different models to represent the system from different
 perspectives. For example:

1. An external perspective, where you model the context or environment of the
system.

2. An interaction perspective, where you model the interactions between a system
and its environment, or between the components of a system.

3. A structural perspective, where you model the organization of a system or the
structure of the data processed by the system.

4. A behavioral perspective, where you model the dynamic behavior of the system
and how it responds to events.

140	 	 Chapter	5	 ■	 System	modeling

When developing system models, you can often be flexible in the way that the
graphical notation is used. You do not always need to stick rigidly to the details of a
notation. The detail and rigor of a model depend on how you intend to use it. There
are three ways in which graphical models are commonly used:

1. As a way to stimulate and focus discussion about an existing or proposed sys-
tem. The purpose of the model is to stimulate and focus discussion among the
software engineers involved in developing the system. The models may be
incomplete (as long as they cover the key points of the discussion), and they
may use the modeling notation informally. This is how models are normally
used in agile modeling (Ambler and Jeffries 2002).

2. As a way of documenting an existing system. When models are used as docu-
mentation, they do not have to be complete, as you may only need to use models
to document some parts of a system. However, these models have to be correct—
they should use the notation correctly and be an accurate description of the
 system.

3. As a detailed system description that can be used to generate a system imple-
mentation. Where models are used as part of a model-based development pro-
cess, the system models have to be both complete and correct. They are used as
a basis for generating the source code of the system, and you therefore have to
be very careful not to confuse similar symbols, such as stick and block arrow-
heads, that may have different meanings.

In this chapter, I use diagrams defined in the Unified Modeling Language
(UML) (Rumbaugh, Jacobson, and Booch 2004; Booch, Rumbaugh, and
Jacobson 2005), which has become a standard language for object-oriented mod-
eling. The UML has 13 diagram types and so supports the creation of many
 different types of system model. However, a survey (Erickson and Siau 2007)
showed that most users of the UML thought that five diagram types could repre-
sent the essentials of a system. I therefore concentrate on these five UML diagram
types here:

The Unified Modeling Language

The Unified Modeling Language (UML) is a set of 13 different diagram types that may be used to model soft-
ware systems. It emerged from work in the 1990s on object-oriented modeling, where similar object-oriented
notations were integrated to create the UML. A major revision (UML 2) was finalized in 2004. The UML is uni-
versally accepted as the standard approach for developing models of software systems. Variants, such as SysML,
have been proposed for more general system modeling.

http://software-engineering-book.com/web/uml/

http://software-engineering-book.com/web/uml

	 5.1	 ■	 Context	models	 	 141

1. Activity diagrams, which show the activities involved in a process or in data
processing.

2. Use case diagrams, which show the interactions between a system and its
 environment.

3. Sequence diagrams, which show interactions between actors and the system and
between system components.

4. Class diagrams, which show the object classes in the system and the associa-
tions between these classes.

5. State diagrams, which show how the system reacts to internal and external events.

	 5.1		 Context	models

At an early stage in the specification of a system, you should decide on the system
boundaries, that is, on what is and is not part of the system being developed. This
involves working with system stakeholders to decide what functionality should be
included in the system and what processing and operations should be carried out in
the system’s operational environment. You may decide that automated support for
some business processes should be implemented in the software being developed but
that other processes should be manual or supported by different systems. You should
look at possible overlaps in functionality with existing systems and decide where
new functionality should be implemented. These decisions should be made early in
the process to limit the system costs and the time needed for understanding the sys-
tem requirements and design.

In some cases, the boundary between a system and its environment is relatively
clear. For example, where an automated system is replacing an existing manual or
computerized system, the environment of the new system is usually the same as the
existing system’s environment. In other cases, there is more flexibility, and you
decide what constitutes the boundary between the system and its environment during
the requirements engineering process.

For example, say you are developing the specification for the Mentcare patient
information system. This system is intended to manage information about patients
attending mental health clinics and the treatments that have been prescribed. In devel-
oping the specification for this system, you have to decide whether the system should
focus exclusively on collecting information about consultations (using other systems
to collect personal information about patients) or whether it should also collect per-
sonal patient information. The advantage of relying on other systems for patient
information is that you avoid duplicating data. The major disadvantage, however, is
that using other systems may make it slower to access information, and if these sys-
tems are unavailable, then it may be impossible to use the Mentcare system.

In some situations, the user base for a system is very diverse, and users have a
wide range of different system requirements. You may decide not to define

142	 	 Chapter	5	 ■	 System	modeling

 boundaries explicitly but instead to develop a configurable system that can be
adapted to the needs of different users. This was the approach that we adopted in the
iLearn systems, introduced in Chapter 1. There, users range from very young
 children who can’t read through to young adults, their teachers, and school adminis-
trators. Because these groups need different system boundaries, we specified a
 configuration system that would allow the boundaries to be specified when the
 system was deployed.

The definition of a system boundary is not a value-free judgment. Social and
organizational concerns may mean that the position of a system boundary may be
determined by nontechnical factors. For example, a system boundary may be delib-
erately positioned so that the complete analysis process can be carried out on one
site; it may be chosen so that a particularly difficult manager need not be consulted;
and it may be positioned so that the system cost is increased and the system develop-
ment division must therefore expand to design and implement the system.

Once some decisions on the boundaries of the system have been made, part of the
analysis activity is the definition of that context and the dependencies that a system
has on its environment. Normally, producing a simple architectural model is the first
step in this activity.

Figure 5.1 is a context model that shows the Mentcare system and the other
systems in its environment. You can see that the Mentcare system is connected to
an appointments system and a more general patient record system with which it
shares data. The system is also connected to systems for management reporting and
hospital admissions, and a statistics system that collects information for research.
Finally, it makes use of a prescription system to generate prescriptions for patients’
medication.

Context models normally show that the environment includes several other auto-
mated systems. However, they do not show the types of relationships between the
systems in the environment and the system that is being specified. External systems
might produce data for or consume data from the system. They might share data with
the system, or they might be connected directly, through a network or not connected
at all. They might be physically co-located or located in separate buildings. All of

«system»
Mentcare

«system»
Patient record

system

«system»
Appointments

system

«system»
Admissions

system

«system»
Management

reporting
system

«system»
Prescription

system

«system»
HC statistics

system

Figure 5.1 The context
of the Mentcare system

	 5.1	 ■	 Context	models	 	 143

Confirm
detention
decision Find secure

place

Admit to
hospital

Transfer to
police station

Transfer to
secure hospital

Inform next
of kin

Inform
social care

Inform
patient of

rights

Update
register

«system»
Admissions

system

«system»
Mentcare

«system»
Mentcare

Record
detention
decision

[dangerous]

[not available]

[not
dangerous]

[available]

Figure 5.2 A process
model of involuntary
detention

these relations may affect the requirements and design of the system being defined
and so must be taken into account. Therefore, simple context models are used along
with other models, such as business process models. These describe human and auto-
mated processes in which particular software systems are used.

UML activity diagrams may be used to show the business processes in which
systems are used. Figure 5.2 is a UML activity diagram that shows where the
Mentcare system is used in an important mental health care process—involuntary
detention.

Sometimes, patients who are suffering from mental health problems may be a
danger to others or to themselves. They may therefore have to be detained against
their will in a hospital so that treatment can be administered. Such detention is sub-
ject to strict legal safeguards—for example, the decision to detain a patient must be
regularly reviewed so that people are not held indefinitely without good reason. One
critical function of the Mentcare system is to ensure that such safeguards are imple-
mented and that the rights of patients are respected.

UML activity diagrams show the activities in a process and the flow of control
from one activity to another. The start of a process is indicated by a filled circle, the
end by a filled circle inside another circle. Rectangles with round corners represent
activities, that is, the specific subprocesses that must be carried out. You may include
objects in activity charts. Figure 5.2 shows the systems that are used to support dif-
ferent subprocesses within the involuntary detection process. I have shown that these
are separate systems by using the UML stereotype feature where the type of entity in
the box between chevrons is shown.

Arrows represent the flow of work from one activity to another, and a solid bar
indicates activity coordination. When the flow from more than one activity leads to a

144	 	 Chapter	5	 ■	 System	modeling

solid bar, then all of these activities must be complete before progress is possible.
When the flow from a solid bar leads to a number of activities, these may be exe-
cuted in parallel. Therefore, in Figure 5.2, the activities to inform social care and the
patient’s next of kin, as well as to update the detention register, may be concurrent.

Arrows may be annotated with guards (in square brackets) that specify when that
flow is followed. In Figure 5.2, you can see guards showing the flows for patients
who are dangerous and not dangerous to society. Patients who are dangerous to soci-
ety must be detained in a secure facility. However, patients who are suicidal and are
a danger to themselves may be admitted to an appropriate ward in a hospital, where
they can be kept under close supervision.

	 5.2		 Interaction	models

All systems involve interaction of some kind. This can be user interaction, which
involves user inputs and outputs; interaction between the software being developed and
other systems in its environment; or interaction between the components of a software
system. User interaction modeling is important as it helps to identify user requirements.
Modeling system-to-system interaction highlights the communication problems that
may arise. Modeling component interaction helps us understand if a proposed system
structure is likely to deliver the required system performance and dependability.

This section discusses two related approaches to interaction modeling:

1. Use case modeling, which is mostly used to model interactions between a sys-
tem and external agents (human users or other systems).

2. Sequence diagrams, which are used to model interactions between system com-
ponents, although external agents may also be included.

Use case models and sequence diagrams present interactions at different levels of
detail and so may be used together. For example, the details of the interactions
involved in a high-level use case may be documented in a sequence diagram. The
UML also includes communication diagrams that can be used to model interactions.
I don’t describe this diagram type because communication diagrams are simply an
alternative representation of sequence diagrams.

 5.2.1 Use case modeling

Use case modeling was originally developed by Ivar Jacobsen in the 1990s (Jacobsen
et al. 1993), and a UML diagram type to support use case modeling is part of the

Medical receptionist Patient record system

Transfer data

Figure 5.3 Transfer-data
use case

	 5.2	 ■	 Interaction	models	 	 145

UML. A use case can be taken as a simple description of what a user expects from a
system in that interaction. I have discussed use cases for requirements elicitation in
Chapter 4. As I said in Chapter 4, I find use case models to be more useful in the
early stages of system design rather than in requirements engineering.

Each use case represents a discrete task that involves external interaction with a
system. In its simplest form, a use case is shown as an ellipse, with the actors
involved in the use case represented as stick figures. Figure 5.3 shows a use case
from the Mentcare system that represents the task of uploading data from the
Mentcare system to a more general patient record system. This more general system
maintains summary data about a patient rather than data about each consultation,
which is recorded in the Mentcare system.

Notice that there are two actors in this use case—the operator who is transferring
the data and the patient record system. The stick figure notation was originally devel-
oped to cover human interaction, but it is also used to represent other external sys-
tems and hardware. Formally, use case diagrams should use lines without arrows as
arrows in the UML indicate the direction of flow of messages. Obviously, in a use
case, messages pass in both directions. However, the arrows in Figure 5.3 are used
informally to indicate that the medical receptionist initiates the transaction and data
is transferred to the patient record system.

Use case diagrams give a simple overview of an interaction, and you need to add
more detail for complete interaction description. This detail can either be a simple
textual description, a structured description in a table, or a sequence diagram. You
choose the most appropriate format depending on the use case and the level of detail
that you think is required in the model. I find a standard tabular format to be the most
useful. Figure 5.4 shows a tabular description of the “Transfer data” use case.

Composite use case diagrams show a number of different use cases. Sometimes it
is possible to include all possible interactions within a system in a single composite
use case diagram. However, this may be impossible because of the number of use
cases. In such cases, you may develop several diagrams, each of which shows related
use cases. For example, Figure 5.5 shows all of the use cases in the Mentcare system

Figure 5.4 Tabular
description of the
Transfer-data use case

Mentcare system: Transfer data

Actors Medical receptionist, Patient records system (PRS)

Description A receptionist may transfer data from the Mentcare system to a
general patient record database that is maintained by a health
authority. The information transferred may either be updated
personal information (address, phone number, etc.) or a
summary of the patient’s diagnosis and treatment.

Data Patient’s personal information, treatment summary

Stimulus User command issued by medical receptionist

Response Confirmation that PRS has been updated

Comments The receptionist must have appropriate security permissions to
access the patient information and the PRS.

146	 	 Chapter	5	 ■	 System	modeling

in which the actor “Medical Receptionist” is involved. Each of these should be
accompanied by a more detailed description.

The UML includes a number of constructs for sharing all or part of a use case in
other use case diagrams. While these constructs can sometimes be helpful for system
designers, my experience is that many people, especially end-users, find them diffi-
cult to understand. For this reason, these constructs are not described here.

 5.2.2 Sequence diagrams

Sequence diagrams in the UML are primarily used to model the interactions between
the actors and the objects in a system and the interactions between the objects them-
selves. The UML has a rich syntax for sequence diagrams, which allows many dif-
ferent kinds of interaction to be modeled. As space does not allow covering all
possibilities here, the focus will be on the basics of this diagram type.

As the name implies, a sequence diagram shows the sequence of interactions that
take place during a particular use case or use case instance. Figure 5.6 is an example
of a sequence diagram that illustrates the basics of the notation. This diagram models
the interactions involved in the View patient information use case, where a medical
receptionist can see some patient information.

The objects and actors involved are listed along the top of the diagram, with a
dotted line drawn vertically from these. Annotated arrows indicate interactions
between objects. The rectangle on the dotted lines indicates the lifeline of the object
concerned (i.e., the time that object instance is involved in the computation). You
read the sequence of interactions from top to bottom. The annotations on the arrows
indicate the calls to the objects, their parameters, and the return values. This example
also shows the notation used to denote alternatives. A box named alt is used with the

Medical
receptionist

Register
patient

Transfer data

Contact
patient

View patient
info.

Unregister
patient

Figure 5.5 Use cases
involving the role
“Medical receptionist”

	 5.2	 ■	 Interaction	models	 	 147

conditions indicated in square brackets, with alternative interaction options sepa-
rated by a dotted line.

You can read Figure 5.6 as follows:

1. The medical receptionist triggers the ViewInfo method in an instance P of the
PatientInfo object class, supplying the patient’s identifier, PID to identify the
required information. P is a user interface object, which is displayed as a form
showing patient information.

2. The instance P calls the database to return the information required, supplying
the receptionist’s identifier to allow security checking. (At this stage, it is not
important where the receptionist’s UID comes from.)

3. The database checks with an authorization system that the receptionist is author-
ized for this action.

4. If authorized, the patient information is returned and is displayed on a form on
the user’s screen. If authorization fails, then an error message is returned. The
box denoted by “alt” in the top-left corner is a choice box indicating that one of
the contained interactions will be executed. The condition that selects the choice
is shown in square brackets.

Figure 5.7 is a further example of a sequence diagram from the same system that
illustrates two additional features. These are the direct communication between the
actors in the system and the creation of objects as part of a sequence of operations. In
this example, an object of type Summary is created to hold the summary data that is

P: PatientInfo

ViewInfo (PID)
report (Info, PID,
UID)

authorize (Info,
UID)

Patient info

D: Mentcare-DB AS: Authorization

authorization

Error (no access)

[authorization OK]

[authorization fail]

Medical Receptionist

alt

Figure 5.6 Sequence
diagram for View patient
information

148	 	 Chapter	5	 ■	 System	modeling

to be uploaded to a national PRS (patient records system). You can read this diagram
as follows:

1. The receptionist logs on to the PRS.

2. Two options are available (as shown in the “alt” box). These allow the direct
transfer of updated patient information from the Mentcare database to the
PRS and the transfer of summary health data from the Mentcare database to
the PRS.

3. In each case, the receptionist’s permissions are checked using the authorization
system.

P: PatientInfo

login ()

D: Mentcare-DB AS: Authorization

authorization

[sendInfo]

[sendSummary]

Medical Receptionist PRS

ok

updateInfo() updatePRS (UID)

update (PID)

update OKMessage (OK)

summarize (UID)

authorize (TF, UID)

authorization

authorize (TF, UID)

:summary

update (PID)

UpdateSummary()

logout ()

alt

update OK
Message (OK)

Figure 5.7 Sequence
diagram for
Transfer Data

	 5.3	 ■	 Structural	models	 	 149

4. Personal information may be transferred directly from the user interface object
to the PRS. Alternatively, a summary record may be created from the database,
and that record is then transferred.

5. On completion of the transfer, the PRS issues a status message and the user logs off.

Unless you are using sequence diagrams for code generation or detailed docu-
mentation, you don’t have to include every interaction in these diagrams. If you
develop system models early in the development process to support requirements
engineering and high-level design, there will be many interactions that depend on
implementation decisions. For example, in Figure 5.7 the decision on how to get the
user identifier to check authorization is one that can be delayed. In an implementa-
tion, this might involve interacting with a User object. As this is not important at this
stage, you do not need to include it in the sequence diagram.

	 5.3		 Structural	models

Structural models of software display the organization of a system in terms of the
components that make up that system and their relationships. Structural models may
be static models, which show the organization of the system design, or dynamic
models, which show the organization of the system when it is executing. These are
not the same things—the dynamic organization of a system as a set of interacting
threads may be very different from a static model of the system components.

You create structural models of a system when you are discussing and designing
the system architecture. These can be models of the overall system architecture or
more detailed models of the objects in the system and their relationships.

In this section, I focus on the use of class diagrams for modeling the static struc-
ture of the object classes in a software system. Architectural design is an important
topic in software engineering, and UML component, package, and deployment dia-
grams may all be used when presenting architectural models. I cover architectural
modeling in Chapters 6 and 17.

 5.3.1 Class diagrams

Class diagrams are used when developing an object-oriented system model to show
the classes in a system and the associations between these classes. Loosely, an object
class can be thought of as a general definition of one kind of system object. An asso-
ciation is a link between classes indicating that some relationship exists between
these classes. Consequently, each class may have to have some knowledge of its
associated class.

When you are developing models during the early stages of the software engi-
neering process, objects represent something in the real world, such as a patient, a

150	 	 Chapter	5	 ■	 System	modeling

prescription, or a doctor. As an implementation is developed, you define implemen-
tation objects to represent data that is manipulated by the system. In this section, the
focus is on the modeling of real-world objects as part of the requirements or early
software design processes. A similar approach is used for data structure modeling.

Class diagrams in the UML can be expressed at different levels of detail. When
you are developing a model, the first stage is usually to look at the world, identify
the essential objects, and represent these as classes. The simplest way of writing
these diagrams is to write the class name in a box. You can also note the existence of
an association by drawing a line between classes. For example, Figure 5.8 is a sim-
ple class diagram showing two classes, Patient and Patient Record, with an associa-
tion between them. At this stage, you do not need to say what the association is.

Figure 5.9 develops the simple class diagram in Figure 5.8 to show that objects of
class Patient are also involved in relationships with a number of other classes. In this
example, I show that you can name associations to give the reader an indication of
the type of relationship that exists.

Figures 5.8 and 5.9, shows an important feature of class diagrams—the ability to
show how many objects are involved in the association. In Figure 5.8 each end of the
association is annotated with a 1, meaning that there is a 1:1 relationship between
objects of these classes. That is, each patient has exactly one record, and each record
maintains information about exactly one patient.

As you can see from Figure 5.9, other multiplicities are possible. You can define
that an exact number of objects are involved (e.g., 1..4) or, by using a *, indicate that
there are an indefinite number of objects involved in the association. For example,
the (1..*) multiplicity in Figure 5.9 on the relationship between Patient and Condition
shows that a patient may suffer from several conditions and that the same condition
may be associated with several patients.

Patient
Patient
record

1 1
Figure 5.8 UML Classes
and association

Patient General
practitioner

Consultation

Consultant

Medication

Treatment

Hospital
Doctor

Condition
referred-by

referred-to

diagnosed-
with

attends

prescribes

prescribesinvolves

1..*

1

1..* 11..*

1..*

1..*

1..*

1..4

1..*

1..*
1..*

1..*

1..*

Figure 5.9 Classes and
associations in the
Mentcare system

	 5.3	 ■	 Structural	models	 	 151

At this level of detail, class diagrams look like semantic data models. Semantic
data models are used in database design. They show the data entities, their associated
attributes, and the relations between these entities (Hull and King 1987). The UML
does not include a diagram type for database modeling, as it models data using
objects and their relationships. However, you can use the UML to represent a seman-
tic data model. You can think of entities in a semantic data model as simplified
object classes (they have no operations), attributes as object class attributes, and rela-
tions as named associations between object classes.

When showing the associations between classes, it is best to represent these classes
in the simplest possible way, without attributes or operations. To define objects in
more detail, you add information about their attributes (the object’s characteristics)
and operations (the object’s functions). For example, a Patient object has the attribute
Address, and you may include an operation called ChangeAddress, which is called
when a patient indicates that he or she has moved from one address to another.

In the UML, you show attributes and operations by extending the simple rectangle
that represents a class. I illustrate this in Figure 5.10 that shows an object represent-
ing a consultation between doctor and patient:

1. The name of the object class is in the top section.

2. The class attributes are in the middle section. This includes the attribute names
and, optionally, their types. I don’t show the types in Figure 5.10.

3. The operations (called methods in Java and other OO programming languages)
associated with the object class are in the lower section of the rectangle. I show
some but not all operations in Figure 5.10.

In the example shown in Figure 5.10, it is assumed that doctors record voice notes
that are transcribed later to record details of the consultation. To prescribe medication,
the doctor involved must use the Prescribe method to generate an electronic prescription.

Consultation

Doctors
Date
Time
Clinic
Reason
Medication prescribed
Treatment prescribed
Voice notes
Transcript
...

New ()
Prescribe ()
RecordNotes ()
Transcribe ()
...Figure 5.10 A

Consultation class

152	 	 Chapter	5	 ■	 System	modeling

 5.3.2 Generalization

Generalization is an everyday technique that we use to manage complexity.
Rather than learn the detailed characteristics of everything that we experience, we
learn about general classes (animals, cars, houses, etc.) and learn the characteris-
tics of these classes. We then reuse knowledge by classifying things and focus on
the differences between them and their class. For example, squirrels and rats are
members of the class “rodents,” and so share the characteristics of rodents.
General statements apply to all class members; for example, all rodents have teeth
for gnawing.

When you are modeling systems, it is often useful to examine the classes in a
 system to see if there is scope for generalization and class creation. This means
that common information will be maintained in one place only. This is good design
practice as it means that, if changes are proposed, then you do not have to look at
all classes in the system to see if they are affected by the change. You can make the
changes at the most general level. In object-oriented languages, such as Java,
 generalization is implemented using the class inheritance mechanisms built into
the language.

The UML has a specific type of association to denote generalization, as illus-
trated in Figure 5.11. The generalization is shown as an arrowhead pointing up to
the more general class. This indicates that general practitioners and hospital doctors
can be generalized as doctors and that there are three types of Hospital Doctor:
those who have just graduated from medical school and have to be supervised
(Trainee Doctor); those who can work unsupervised as part of a consultant’s team
(Registered Doctor); and consultants, who are senior doctors with full decision-
making responsibilities.

In a generalization, the attributes and operations associated with higher-level
classes are also associated with the lower-level classes. The lower-level classes are
subclasses that inherit the attributes and operations from their superclasses. These
lower-level classes then add more specific attributes and operations.

Doctor

General
practitioner

Hospital
doctor

Consultant Team doctor

Trainee
doctor

Qualified
doctorFigure 5.11 A

generalization hierarchy

	 5.3	 ■	 Structural	models	 	 153

For example, all doctors have a name and phone number, and all hospital doc-
tors have a staff number and carry a pager. General practitioners don’t have these
attributes, as they work independently, but they have an individual practice name
and address. Figure 5.12 shows part of the generalization hierarchy, which I have
extended with class attributes, for the class Doctor. The operations associated with
the class Doctor are intended to register and de-register that doctor with the
Mentcare system.

 5.3.3 Aggregation

Objects in the real world are often made up of different parts. For example, a study
pack for a course may be composed of a book, PowerPoint slides, quizzes, and rec-
ommendations for further reading. Sometimes in a system model, you need to illus-
trate this. The UML provides a special type of association between classes called
aggregation, which means that one object (the whole) is composed of other objects
(the parts). To define aggregation, a diamond shape is added to the link next to the
class that represents the whole.

Figure 5.13 shows that a patient record is an aggregate of Patient and an indefinite
number of Consultations. That is, the record maintains personal patient information
as well as an individual record for each consultation with a doctor.

Doctor

General practitionerHospital doctor

Name
Phone #
Email

register ()
de-register ()

Staff #
Pager #

Practice
AddressFigure 5.12 A

generalization hierarchy
with added detail

Patient record

Patient Consultation

11

1 1..*

Figure 5.13 The
aggregation association

154	 	 Chapter	5	 ■	 System	modeling

	 5.4		 Behavioral	models

Behavioral models are models of the dynamic behavior of a system as it is execut-
ing. They show what happens or what is supposed to happen when a system responds
to a stimulus from its environment. These stimuli may be either data or events:

1. Data becomes available that has to be processed by the system. The availability
of the data triggers the processing.

2. An event happens that triggers system processing. Events may have associated
data, although this is not always the case.

Many business systems are data-processing systems that are primarily driven by
data. They are controlled by the data input to the system, with relatively little exter-
nal event processing. Their processing involves a sequence of actions on that data
and the generation of an output. For example, a phone billing system will accept
information about calls made by a customer, calculate the costs of these calls, and
generate a bill for that customer.

By contrast, real-time systems are usually event-driven, with limited data pro-
cessing. For example, a landline phone switching system responds to events such as
“handset activated” by generating a dial tone, pressing keys on a handset by captur-
ing the phone number, and so on.

 5.4.1 Data-driven modeling

Data-driven models show the sequence of actions involved in processing input data
and generating an associated output. They can be used during the analysis of require-
ments as they show end-to-end processing in a system. That is, they show the entire
sequence of actions that takes place from an initial input being processed to the cor-
responding output, which is the system’s response.

Data-driven models were among the first graphical software models. In the 1970s,
structured design methods used data-flow diagrams (DFDs) as a way to illustrate the

Data flow diagrams

Data-flow diagrams (DFDs) are system models that show a functional perspective where each transformation
represents a single function or process. DFDs are used to show how data flows through a sequence of process-
ing steps. For example, a processing step could be the filtering of duplicate records in a customer database. The
data is transformed at each step before moving on to the next stage. These processing steps or transformations
represent software processes or functions, where data-flow diagrams are used to document a software design.
Activity diagrams in the UML may be used to represent DFDs.

http://software-engineering-book.com/web/dfds/

http://software-engineering-book.com/web/dfds

	 5.4	 ■	 Behavioral	models	 	 155

processing steps in a system. Data-flow models are useful because tracking and doc-
umenting how data associated with a particular process moves through the system
help analysts and designers understand what is going on in the process. DFDs are
simple and intuitive and so are more accessible to stakeholders than some other types
of model. It is usually possible to explain them to potential system users who can
then participate in validating the model.

Data-flow diagrams can be represented in the UML using the activity diagram
type, described in Section 5.1. Figure 5.14 is a simple activity diagram that shows
the chain of processing involved in the insulin pump software. You can see the
 processing steps, represented as activities (rounded rectangles), and the data flowing
between these steps, represented as objects (rectangles).

An alternative way of showing the sequence of processing in a system is to use
UML sequence diagrams. You have seen how these diagrams can be used to model
interaction, but if you draw these so that messages are only sent from left to right,
then they show the sequential data processing in the system. Figure 5.15 illustrates
this, using a sequence model of processing an order and sending it to a supplier.
Sequence models highlight objects in a system, whereas data-flow diagrams high-
light the operations or activities. In practice, nonexperts seem to find data-flow dia-
grams more intuitive, but engineers prefer sequence diagrams.

Calculate
pump

commands

Blood sugar
sensor

Insulin
pump

Blood sugar
level

Pump control
commands

Insulin
requirement

Get sensor
value

Sensor
data

Compute
sugar level

Calculate
insulin
delivery

Control
pump

Figure 5.14 An activity
model of the insulin
pump’s operation

:Order

Fillin ()

Purchase officer

Validate ()

[validation ok]

«datastore»
Orders

Budget

Update (amount)

Save ()

Supplier

Send ()Figure 5.15 Order
processing

156	 	 Chapter	5	 ■	 System	modeling

 5.4.2 Event-driven modeling

Event-driven modeling shows how a system responds to external and internal
events. It is based on the assumption that a system has a finite number of states
and that events (stimuli) may cause a transition from one state to another. For
example, a system controlling a valve may move from a state “Valve open” to a
state “Valve closed” when an operator command (the stimulus) is received. This
view of a system is particularly appropriate for real-time systems. Event-driven
modeling is used extensively when designing and documenting real-time systems
(Chapter 21).

The UML supports event-based modeling using state diagrams, which are based
on Statecharts (Harel 1987). State diagrams show system states and events that cause
transitions from one state to another. They do not show the flow of data within the
system but may include additional information on the computations carried out in
each state.

I use an example of control software for a very simple microwave oven to illus-
trate event-driven modeling (Figure 5.16). Real microwave ovens are much more
complex than this system, but the simplified system is easier to understand. This
simple oven has a switch to select full or half power, a numeric keypad to input the
cooking time, a start/stop button, and an alphanumeric display.

Full power

Enabled

do: operate
oven

Full
power

Half
power

Half
power

Full
power

Number

Door
open

Door
closed

Door
closed

Door
open

Start

do: set power
= 600

Half power
do: set power

= 300

Set time

do: get number
exit: set time

Disabled

Operation

Cancel

Waiting

do: display
time

Waiting

do: display
time

do: display
 'Ready'

do: display
'Waiting'

Timer

Timer

Figure 5.16 A state
diagram of a
microwave oven

	 5.4	 ■	 Behavioral	models	 	 157

Cook
do: run

generator

Done

do: buzzer on
for 5 secs.

Waiting

Alarm

do: display
event

do: check
status

Checking

Turntable
fault

Emitter
fault

Disabled

OK

Timeout

Time

Door open Cancel

Operation

Figure 5.17 A state
model of the
Operation state

I have assumed that the sequence of actions in using the microwave is as follows:

1. Select the power level (either half power or full power).

2. Input the cooking time using a numeric keypad.

3. Press Start and the food is cooked for the given time.

For safety reasons, the oven should not operate when the door is open, and, on
completion of cooking, a buzzer is sounded. The oven has a simple display that is
used to display various alerts and warning messages.

In UML state diagrams, rounded rectangles represent system states. They may
include a brief description (following “do”) of the actions taken in that state. The
labeled arrows represent stimuli that force a transition from one state to another. You
can indicate start and end states using filled circles, as in activity diagrams.

From Figure 5.16, you can see that the system starts in a waiting state and
responds initially to either the full-power or the half-power button. Users can change
their minds after selecting one of these and may press the other button. The time is
set and, if the door is closed, the Start button is enabled. Pushing this button starts the
oven operation, and cooking takes place for the specified time. This is the end of the
cooking cycle, and the system returns to the waiting state.

The problem with state-based modeling is that the number of possible states
increases rapidly. For large system models, therefore, you need to hide detail in the
models. One way to do this is by using the notion of a “superstate” that encapsulates
a number of separate states. This superstate looks like a single state on a high-level
model but is then expanded to show more detail on a separate diagram. To illustrate
this concept, consider the Operation state in Figure 5.16. This is a superstate that can
be expanded, as shown in Figure 5.17.

158	 	 Chapter	5	 ■	 System	modeling

The Operation state includes a number of substates. It shows that operation starts
with a status check and that if any problems are discovered an alarm is indicated and
operation is disabled. Cooking involves running the microwave generator for the
specified time; on completion, a buzzer is sounded. If the door is opened during
operation, the system moves to the disabled state, as shown in Figure 5.17.

State models of a system provide an overview of event processing, but you nor-
mally have to extend this with a more detailed description of the stimuli and the system
states. You may use a table to list the states and events that stimulate state transitions
along with a description of each state and event. Figure 5.18 shows a tabular descrip-
tion of each state and how the stimuli that force state transitions are generated.

 5.4.3 Model-driven engineering

Model-driven engineering (MDE) is an approach to software development whereby
models rather than programs are the principal outputs of the development process

Figure 5.18 States and
stimuli for the
microwave oven

State Description

Waiting The oven is waiting for input. The display shows the
current time.

Half power The oven power is set to 300 watts. The display shows
“Half power.”

Full power The oven power is set to 600 watts. The display shows
“Full power.”

Set time The cooking time is set to the user’s input value. The display
shows the cooking time selected and is updated as the time
is set.

Disabled Oven operation is disabled for safety. Interior oven light is on.
Display shows “Not ready.”

Enabled Oven operation is enabled. Interior oven light is off. Display
shows “Ready to cook.”

Operation Oven in operation. Interior oven light is on. Display shows the
timer countdown. On completion of cooking, the buzzer is
sounded for 5 seconds. Oven light is on. Display shows
“Cooking complete” while buzzer is sounding.

Stimulus Description

Half power The user has pressed the half-power button.

Full power The user has pressed the full-power button.

Timer The user has pressed one of the timer buttons.

Number The user has pressed a numeric key.

Door open The oven door switch is not closed.

Door closed The oven door switch is closed.

Start The user has pressed the Start button.

Cancel The user has pressed the Cancel button.

	 5.5	 ■	 Model-driven	architecture	 	 159

(Brambilla, Cabot, and Wimmer 2012). The programs that execute on a hardware/
software platform are generated automatically from the models. Proponents of MDE
argue that this raises the level of abstraction in software engineering so that engineers
no longer have to be concerned with programming language details or the specifics
of execution platforms.

Model-driven engineering was developed from the idea of model-driven archi-
tecture (MDA). This was proposed by the Object Management Group (OMG) as a
new software development paradigm (Mellor, Scott, and Weise 2004). MDA
focuses on the design and implementation stages of software development, whereas
MDE is concerned with all aspects of the software engineering process. Therefore,
topics such as model-based requirements engineering, software processes for
model-based development, and model-based testing are part of MDE but are not
considered in MDA.

MDA as an approach to system engineering has been adopted by a number of
large companies to support their development processes. This section focuses on the
use of MDA for software implementation rather than discuss more general aspects of
MDE. The take-up of more general model-driven engineering has been slow, and
few companies have adopted this approach throughout their software development
life cycle. In his blog, den Haan discusses possible reasons why MDE has not been
widely adopted (den Haan 2011).

	 5.5		 Model-driven	architecture

Model-driven architecture (Mellor, Scott, and Weise 2004; Stahl and Voelter
2006) is a model-focused approach to software design and implementation that
uses a subset of UML models to describe a system. Here, models at different
levels of abstraction are created. From a high-level, platform independent model,
it is possible, in principle, to generate a working program without manual
 intervention.

The MDA method recommends that three types of abstract system model should
be produced:

1. A computation independent model (CIM) CIMs model the important domain
abstractions used in a system and so are sometimes called domain models. You
may develop several different CIMs, reflecting different views of the system.
For example, there may be a security CIM in which you identify important secu-
rity abstractions such as an asset, and a role and a patient record CIM, in which
you describe abstractions such as patients and consultations.

2. A platform-independent model (PIM) PIMs model the operation of the system
without reference to its implementation. A PIM is usually described using UML
models that show the static system structure and how it responds to external and
internal events.

160	 	 Chapter	5	 ■	 System	modeling

3. Platform-specific models (PSM) PSMs are transformations of the platform-
independent model with a separate PSM for each application platform. In
 principle, there may be layers of PSM, with each layer adding some platform-
specific detail. So, the first level PSM could be middleware-specific but
 database-independent. When a specific database has been chosen, a database-
specific PSM can then be generated.

Model-based engineering allows engineers to think about systems at a high
level of abstraction, without concern for the details of their implementation. This
reduces the likelihood of errors, speeds up the design and implementation process,
and allows for the creation of reusable, platform-independent application models.
By using powerful tools, system implementations can be generated for different
platforms from the same model. Therefore, to adapt the system to some new plat-
form technology, you write a model translator for that platform. When this is
available, all platform-independent models can then be rapidly re-hosted on the
new platform.

Fundamental to MDA is the notion that transformations between models can be
defined and applied automatically by software tools, as illustrated in Figure 5.19.
This diagram also shows a final level of automatic transformation where a transfor-
mation is applied to the PSM to generate the executable code that will run on the
designated software platform. Therefore, in principle at least, executable software
can be generated from a high-level system model.

In practice, completely automated translation of models to code is rarely possi-
ble. The translation of high-level CIM to PIM models remains a research problem,
and for production systems, human intervention, illustrated using a stick figure in
Figure 5.19, is normally required. A particularly difficult problem for automated
model transformation is the need to link the concepts used in different CIMS. For
example, the concept of a role in a security CIM that includes role-driven access
control may have to be mapped onto the concept of a staff member in a hospital
CIM. Only a person who understands both security and the hospital environment can
make this mapping.

Platform
specific model

Platform
independent

model

Executable
code

Translator Translator Translator

Domain specific
guidelines

Platform
specific patterns

and rules

Language
specific
patterns

Computation
independent

model

Figure 5.19 MDA
transformations

	 5.5	 ■	 Model-driven	architecture	 	 161

The translation of platform-independent to platform-specific models is a simpler
technical problem. Commercial tools and open-source tools (Koegel 2012) are avail-
able that provide translators from PIMS to common platforms such as Java and
J2EE. These use an extensive library of platform-specific rules and patterns to
 convert a PIM to a PSM. There may be several PSMs for each PIM in the system. If
a software system is intended to run on different platforms (e.g., J2EE and .NET),
then, in principle, you only have to maintain a single PIM. The PSMs for each
 platform are automatically generated (Figure 5.20).

Although MDA support tools include platform-specific translators, these
 sometimes only offer partial support for translating PIMS to PSMs. The execution
environment for a system is more than the standard execution platform, such as J2EE
or Java. It also includes other application systems, specific application libraries that
may be created for a company, external services, and user interface libraries.

These vary from one company to another, so off-the-shelf tool support is not
available that takes these into account. Therefore, when MDA is introduced into an
organization, special-purpose translators may have to be created to make use of the
facilities available in the local environment. This is one reason why many companies
have been reluctant to take on model-driven approaches to development. They do not
want to develop or maintain their own tools or to rely on small software companies,
who may go out of business, for tool development. Without these specialist tools,
model-based development requires additional manual coding which reduces the
cost-effectiveness of this approach.

I believe that there are several other reasons why MDA has not become a main-
stream approach to software development.

1. Models are a good way of facilitating discussions about a software design.
However, it does not always follow that the abstractions that are useful for dis-
cussions are the right abstractions for implementation. You may decide to use a
completely different implementation approach that is based on the reuse of off-
the-shelf application systems.

2. For most complex systems, implementation is not the major problem—
requirements engineering, security and dependability, integration with legacy

Platform
independent

model

Java program

C# code
generator

Java code
generator

J2EE Translator

.Net Translator C# program

J2EE specific
model

.NET specific
modelFigure 5.20 Multiple

platform-specific models

162	 	 Chapter	5	 ■	 System	modeling

systems and testing are all more significant. Consequently, the gains from the
use of MDA are limited.

3. The arguments for platform independence are only valid for large, long-lifetime
systems, where the platforms become obsolete during a system’s lifetime. For
software products and information systems that are developed for standard plat-
forms, such as Windows and Linux, the savings from the use of MDA are likely
to be outweighed by the costs of its introduction and tooling.

4. The widespread adoption of agile methods over the same period that MDA was
evolving has diverted attention away from model-driven approaches.

The success stories for MDA (OMG 2012) have mostly come from companies
that are developing systems products, which include both hardware and software.
The software in these products has a long lifetime and may have to be modified
to reflect changing hardware technologies. The domain of application (automo-
tive, air traffic control, etc.) is often well understood and so can be formalized in
a CIM.

Hutchinson and his colleagues (Hutchinson, Rouncefield, and Whittle 2012)
report on the industrial use of MDA, and their work confirms that successes in the
use of model-driven development have been in systems products. Their assessment
suggests that companies have had mixed results when adopting this approach, but
the majority of users report that using MDA has increased productivity and reduced
maintenance costs. They found that MDA was particularly useful in facilitating
reuse, and this led to major productivity improvements.

There is an uneasy relationship between agile methods and model-driven archi-
tecture. The notion of extensive up-front modeling contradicts the fundamental ideas
in the agile manifesto and I suspect that few agile developers feel comfortable with
model-driven engineering. Ambler, a pioneer in the development of agile methods,
suggests that some aspects of MDA can be used in agile processes (Ambler 2004)
but considers automated code generation to be impractical. However, Zhang and
Patel report on Motorola’s success in using agile development with automated code
generation (Zhang and Patel 2011).

Executable UML

The fundamental notion behind model-driven engineering is that completely automated transformation of
 models to code should be possible. To achieve this, you have to be able to construct graphical models with
clearly defined meanings that can be compiled to executable code. You also need a way of adding information
to graphical models about the ways in which the operations defined in the model are implemented. This is
 possible using a subset of UML 2, called Executable UML or xUML (Mellor and Balcer 2002).

http://software-engineering-book.com/web/xuml/

http://software-engineering-book.com/web/xuml

K e y P o i n t s

■ A model is an abstract view of a system that deliberately ignores some system details. Comple-
mentary system models can be developed to show the system’s context, interactions, structure,
and behavior.

■ Context models show how a system that is being modeled is positioned in an environment with
other systems and processes. They help define the boundaries of the system to be developed.

■ Use case diagrams and sequence diagrams are used to describe the interactions between users
and systems in the system being designed. Use cases describe interactions between a system
and external actors; sequence diagrams add more information to these by showing interactions
between system objects.

■ Structural models show the organization and architecture of a system. Class diagrams are used
to define the static structure of classes in a system and their associations.

■ Behavioral models are used to describe the dynamic behavior of an executing system. This
behavior can be modeled from the perspective of the data processed by the system or by the
events that stimulate responses from a system.

■ Activity diagrams may be used to model the processing of data, where each activity represents
one process step.

■ State diagrams are used to model a system’s behavior in response to internal or external events.

■ Model-driven engineering is an approach to software development in which a system is repre-
sented as a set of models that can be automatically transformed to executable code.

F u r t h e r 	 r e a d I n g

Any of the introductory books on the UML provide more information about the notation than I can
cover here. UML has only changed slightly in the last few years, so although some of these books
are almost 10 years old, they are still relevant.

Using UML: Software Engineering with Objects and Components, 2nd ed. This book is a short, read-
able introduction to the use of the UML in system specification and design. I think that it is excellent
for learning and understanding the UML notation, although it is less comprehensive than the
 complete descriptions of UML found in the UML reference manual. (P. Stevens with R. Pooley, Addi-
son-Wesley, 2006)

Model-driven Software Engineering in Practice. This is quite a comprehensive book on model-driven
approaches with a focus on model-driven design and implementation. As well as the UML, it also
covers the development of domain-specific modeling languages. (M. Brambilla, J. Cabot, and
M. Wimmer. Morgan Claypool, 2012)

	 Chapter	5	 ■	 Further	reading	 	 163

W e b s i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/requirements-and-design/

e x e r c i s e s

  5.1.  Scope creep can be defined as a continuous increase in the scope of a project that can
 significantly increase project cost. Explain how a proper model of the system context can
help prevent scope creeps.

  5.2.  The way in which a system boundary is defined and an appropriate context model is created
may have serious implications on the complexity and cost of a project. Give two examples
where this may be applicable.

  5.3.  You have been asked to develop a system that will help with planning large-scale events and
parties such as weddings, graduation celebrations, and birthday parties. Using an activity dia-
gram, model the process context for such a system that shows the activities involved in plan-
ning a party (booking a venue, organizing invitations, etc.) and the system elements that
might be used at each stage.

  5.4.  For the Mentcare system, propose a set of use cases that illustrates the interactions between a
doctor, who sees patients and prescribes medicine and treatments, and the Mentcare system.

  5.5.  Develop a sequence diagram showing the interactions involved when a student registers for a
course in a university. Courses may have limited enrollment, so the registration process must
include checks that places are available. Assume that the student accesses an electronic
course catalog to find out about available courses.

  5.6.  Look carefully at how messages and mailboxes are represented in the email system that you
use. Model the object classes that might be used in the system implementation to represent a
mailbox and an email message.

  5.7.  Based on your experience with a bank ATM, draw an activity diagram that models the data
processing involved when a customer withdraws cash from the machine.

  5.8.  Draw a sequence diagram for the same system. Explain why you might want to develop both
activity and sequence diagrams when modeling the behavior of a system.

  5.9.  Draw state diagrams of the control software for:

■ an automatic washing machine that has different programs for different types of clothes;

■ the software for a DVD player;

■ the control software for the camera on your mobile phone. Ignore the flash if you have one
on your phone.

164    Chapter 5  ■  System modeling

http://www.pearsonglobaleditions.com/Sommerville
http://software-engineering-book.com/videos/requirements-and-design

	 Chapter	5	 ■	 References	 	 165

5.10. In principle, it is possible to generate working programs from a high-level model without
 manual intervention when using model-driven architectures. Discuss some of the current
 challenges that stand in the way of the existence of completely automated translation tools.

r e F e r e n C e S

Ambler, S. W. 2004. The Object Primer: Agile Model-Driven Development with UML 2.0, 3rd ed.
 Cambridge, UK: Cambridge University Press.

Ambler, S. W., and R. Jeffries. 2002. Agile Modeling: Effective Practices for Extreme Programming
and the Unified Process. New York: John Wiley & Sons.

Booch, G., J. Rumbaugh, and I. Jacobson. 2005. The Unified Modeling Language User Guide, 2nd ed.
Boston: Addison-Wesley.

Brambilla, M., J. Cabot, and M. Wimmer. 2012. Model-Driven Software Engineering in Practice. San
Rafael, CA: Morgan Claypool.

Den Haan, J. 2011. “Why There Is No Future for Model Driven Development.” http://www.
theenterprisearchitect.eu/archive/2011/01/25/why-there-is-no-future-for-model-driven-
development/

Erickson, J,, and K Siau. 2007. “Theoretical and Practical Complexity of Modeling Methods.”
Comm. ACM 50 (8): 46–51. doi:10.1145/1278201.1278205.

Harel, D. 1987. “Statecharts: A Visual Formalism for Complex Systems.” Sci. Comput. Programming
8 (3): 231–274. doi:10.1016/0167-6423(87)90035-9.

Hull, R., and R King. 1987. “Semantic Database Modeling: Survey, Applications and Research
Issues.” ACM Computing Surveys 19 (3): 201–260. doi:10.1145/45072.45073.

Hutchinson, J., M. Rouncefield, and J. Whittle. 2012. “Model-Driven Engineering Practices in
 Industry.” In 34th Int. Conf. on Software Engineering, 633–642. doi:10.1145/1985793.1985882.

Jacobsen, I., M. Christerson, P. Jonsson, and G. Overgaard. 1993. Object-Oriented Software
 Engineering. Wokingham, UK: Addison-Wesley.

Koegel, M. 2012. “EMF Tutorial: What Every Eclipse Developer Should Know about EMF.” http://
eclipsesource.com/blogs/tutorials/emf-tutorial/

Mellor, S. J., and M. J. Balcer. 2002. Executable UML. Boston: Addison-Wesley.

Mellor, S. J., K. Scott, and D. Weise. 2004. MDA Distilled: Principles of Model-Driven Architecture.
Boston: Addison-Wesley.

OMG. 2012. “Model-Driven Architecture: Success Stories.” http://www.omg.org/mda/products_
success.htm

http://www.�theenterprisearchitect.eu/archive/2011/01/25/why-there-is-no-future-for-model-driven-�development
http://eclipsesource.com/blogs/tutorials/emf-tutorial
http://eclipsesource.com/blogs/tutorials/emf-tutorial
http://www.omg.org/mda/products_success.htm
http://www.omg.org/mda/products_success.htm
http://www.�theenterprisearchitect.eu/archive/2011/01/25/why-there-is-no-future-for-model-driven-�development

Rumbaugh, J., I. Jacobson, and G Booch. 2004. The Unified Modelling Language Reference Manual,
2nd ed. Boston: Addison-Wesley.

Stahl, T., and M. Voelter. 2006. Model-Driven Software Development: Technology, Engineering,
 Management. New York: John Wiley & Sons.

Zhang, Y., and S. Patel. 2011. “Agile Model-Driven Development in Practice.” IEEE Software 28 (2):
84–91. doi:10.1109/MS.2010.85.

166	 	 Chapter	5	 ■	 System	modeling

	Part 1 Introduction to Software Engineering��
	Chapter 5 System modeling��������������������������������
	5.1 Context models�������������������������
	5.2 Interaction models�����������������������������
	5.3 Structural models����������������������������
	5.4 Behavioral models����������������������������
	5.5 Model-driven architecture������������������������������������

