
Objectives
The aim of this chapter is to introduce system models that may be 
developed as part of requirements engineering and system design 
processes. When you have read the chapter, you will:

■ understand how graphical models can be used to represent 
software systems and why several types of model are needed to 
fully represent a system;

■ understand the fundamental system modeling perspectives of 
context, interaction, structure, and behavior;

■ understand the principal diagram types in the Unified Modeling 
Language (UML) and how these diagrams may be used in system 
modeling;

■ have been introduced to model-driven engineering, where an 
executable system is automatically generated from structural and 
behavioral models.
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System modeling is the process of developing abstract models of a system, with each 
model presenting a different view or perspective of that system. System modeling 
now usually means representing a system using some kind of graphical notation 
based on diagram types in the Unified Modeling Language (UML). However, it is 
also possible to develop formal (mathematical) models of a system, usually as a 
detailed system specification. I cover graphical modeling using the UML here, and 
formal modeling is briefly discussed in Chapter 10.

Models are used during the requirements engineering process to help derive the 
detailed requirements for a system, during the design process to describe the system 
to engineers implementing the system, and after implementation to document the 
system’s structure and operation. You may develop models of both the existing sys-
tem and the system to be developed:

1. Models of the existing system are used during requirements engineering. They 
help clarify what the existing system does, and they can be used to focus a stake-
holder discussion on its strengths and weaknesses.

2. Models of the new system are used during requirements engineering to help 
explain the proposed requirements to other system stakeholders. Engineers use 
these models to discuss design proposals and to document the system for imple-
mentation. If you use a model-driven engineering process (Brambilla, Cabot, 
and Wimmer 2012), you can generate a complete or partial system implementa-
tion from system models.

It is important to understand that a system model is not a complete representation of 
system. It purposely leaves out detail to make it easier to understand. A model is an 
abstraction of the system being studied rather than an alternative representation of that 
system. A representation of a system should maintain all the information about the entity 
being represented. An abstraction deliberately simplifies a system design and picks out 
the most salient characteristics. For example, the PowerPoint slides that accompany this 
book are an abstraction of the book’s key points. However, if the book were translated 
from English into Italian, this would be an alternative  representation. The translator’s 
intention would be to maintain all the information as it is presented in English.

You may develop different models to represent the system from different 
 perspectives. For example:

1. An external perspective, where you model the context or environment of the 
system.

2. An interaction perspective, where you model the interactions between a system 
and its environment, or between the components of a system.

3. A structural perspective, where you model the organization of a system or the 
structure of the data processed by the system.

4. A behavioral perspective, where you model the dynamic behavior of the system 
and how it responds to events.
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When developing system models, you can often be flexible in the way that the 
graphical notation is used. You do not always need to stick rigidly to the details of a 
notation. The detail and rigor of a model depend on how you intend to use it. There 
are three ways in which graphical models are commonly used:

1. As a way to stimulate and focus discussion about an existing or proposed sys-
tem. The purpose of the model is to stimulate and focus discussion among the 
software engineers involved in developing the system. The models may be 
incomplete (as long as they cover the key points of the discussion), and they 
may use the modeling notation informally. This is how models are normally 
used in agile modeling (Ambler and Jeffries 2002).

2. As a way of documenting an existing system. When models are used as docu-
mentation, they do not have to be complete, as you may only need to use models 
to document some parts of a system. However, these models have to be  correct—
they should use the notation correctly and be an accurate description of the 
 system.

3. As a detailed system description that can be used to generate a system imple-
mentation. Where models are used as part of a model-based development pro-
cess, the system models have to be both complete and correct. They are used as 
a basis for generating the source code of the system, and you therefore have to 
be very careful not to confuse similar symbols, such as stick and block arrow-
heads, that may have different meanings.

In this chapter, I use diagrams defined in the Unified Modeling Language 
(UML) (Rumbaugh, Jacobson, and Booch 2004; Booch, Rumbaugh, and 
Jacobson 2005), which has become a standard language for object-oriented mod-
eling. The UML has 13 diagram types and so supports the creation of many 
 different types of system model. However, a survey (Erickson and Siau 2007) 
showed that most users of the UML thought that five diagram types could repre-
sent the essentials of a system. I therefore concentrate on these five UML  diagram 
types here:

The Unified Modeling Language

The Unified Modeling Language (UML) is a set of 13 different diagram types that may be used to model soft-
ware systems. It emerged from work in the 1990s on object-oriented modeling, where similar object-oriented 
notations were integrated to create the UML. A major revision (UML 2) was finalized in 2004. The UML is uni-
versally accepted as the standard approach for developing models of software systems. Variants, such as SysML, 
have been proposed for more general system modeling.

http://software-engineering-book.com/web/uml/

http://software-engineering-book.com/web/uml
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1. Activity diagrams, which show the activities involved in a process or in data 
processing.

2. Use case diagrams, which show the interactions between a system and its 
 environment.

3. Sequence diagrams, which show interactions between actors and the system and 
between system components.

4. Class diagrams, which show the object classes in the system and the associa-
tions between these classes.

5. State diagrams, which show how the system reacts to internal and external events.

	 5.1		 Context	models

At an early stage in the specification of a system, you should decide on the system 
boundaries, that is, on what is and is not part of the system being developed. This 
involves working with system stakeholders to decide what functionality should be 
included in the system and what processing and operations should be carried out in 
the system’s operational environment. You may decide that automated support for 
some business processes should be implemented in the software being developed but 
that other processes should be manual or supported by different systems. You should 
look at possible overlaps in functionality with existing systems and decide where 
new functionality should be implemented. These decisions should be made early in 
the process to limit the system costs and the time needed for understanding the sys-
tem requirements and design.

In some cases, the boundary between a system and its environment is relatively 
clear. For example, where an automated system is replacing an existing manual or 
computerized system, the environment of the new system is usually the same as the 
existing system’s environment. In other cases, there is more flexibility, and you 
decide what constitutes the boundary between the system and its environment during 
the requirements engineering process.

For example, say you are developing the specification for the Mentcare patient 
information system. This system is intended to manage information about patients 
attending mental health clinics and the treatments that have been prescribed. In devel-
oping the specification for this system, you have to decide whether the system should 
focus exclusively on collecting information about consultations (using other systems 
to collect personal information about patients) or whether it should also  collect per-
sonal patient information. The advantage of relying on other systems for patient 
information is that you avoid duplicating data. The major disadvantage,  however, is 
that using other systems may make it slower to access information, and if these sys-
tems are unavailable, then it may be impossible to use the Mentcare  system.

In some situations, the user base for a system is very diverse, and users have a 
wide range of different system requirements. You may decide not to define 
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 boundaries explicitly but instead to develop a configurable system that can be 
adapted to the needs of different users. This was the approach that we adopted in the 
iLearn systems, introduced in Chapter 1. There, users range from very young 
 children who can’t read through to young adults, their teachers, and school adminis-
trators. Because these groups need different system boundaries, we specified a 
 configuration system that would allow the boundaries to be specified when the 
 system was deployed.

The definition of a system boundary is not a value-free judgment. Social and 
organizational concerns may mean that the position of a system boundary may be 
determined by nontechnical factors. For example, a system boundary may be delib-
erately positioned so that the complete analysis process can be carried out on one 
site; it may be chosen so that a particularly difficult manager need not be consulted; 
and it may be positioned so that the system cost is increased and the system develop-
ment division must therefore expand to design and implement the system.

Once some decisions on the boundaries of the system have been made, part of the 
analysis activity is the definition of that context and the dependencies that a system 
has on its environment. Normally, producing a simple architectural model is the first 
step in this activity.

Figure 5.1 is a context model that shows the Mentcare system and the other 
systems in its environment. You can see that the Mentcare system is connected to 
an appointments system and a more general patient record system with which it 
shares data. The system is also connected to systems for management reporting and 
hospital admissions, and a statistics system that collects information for research. 
Finally, it makes use of a prescription system to generate prescriptions for patients’ 
medication.

Context models normally show that the environment includes several other auto-
mated systems. However, they do not show the types of relationships between the 
systems in the environment and the system that is being specified. External systems 
might produce data for or consume data from the system. They might share data with 
the system, or they might be connected directly, through a network or not connected 
at all. They might be physically co-located or located in separate buildings. All of 
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these relations may affect the requirements and design of the system being defined 
and so must be taken into account. Therefore, simple context models are used along 
with other models, such as business process models. These describe human and auto-
mated processes in which particular software systems are used.

UML activity diagrams may be used to show the business processes in which 
systems are used. Figure 5.2 is a UML activity diagram that shows where the 
Mentcare system is used in an important mental health care process—involuntary 
detention.

Sometimes, patients who are suffering from mental health problems may be a 
danger to others or to themselves. They may therefore have to be detained against 
their will in a hospital so that treatment can be administered. Such detention is sub-
ject to strict legal safeguards—for example, the decision to detain a patient must be 
regularly reviewed so that people are not held indefinitely without good reason. One 
critical function of the Mentcare system is to ensure that such safeguards are imple-
mented and that the rights of patients are respected.

UML activity diagrams show the activities in a process and the flow of control 
from one activity to another. The start of a process is indicated by a filled circle, the 
end by a filled circle inside another circle. Rectangles with round corners represent 
activities, that is, the specific subprocesses that must be carried out. You may include 
objects in activity charts. Figure 5.2 shows the systems that are used to support dif-
ferent subprocesses within the involuntary detection process. I have shown that these 
are separate systems by using the UML stereotype feature where the type of entity in 
the box between chevrons is shown.

Arrows represent the flow of work from one activity to another, and a solid bar 
indicates activity coordination. When the flow from more than one activity leads to a 
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solid bar, then all of these activities must be complete before progress is possible. 
When the flow from a solid bar leads to a number of activities, these may be exe-
cuted in parallel. Therefore, in Figure 5.2, the activities to inform social care and the 
patient’s next of kin, as well as to update the detention register, may be concurrent.

Arrows may be annotated with guards (in square brackets) that specify when that 
flow is followed. In Figure 5.2, you can see guards showing the flows for patients 
who are dangerous and not dangerous to society. Patients who are dangerous to soci-
ety must be detained in a secure facility. However, patients who are suicidal and are 
a danger to themselves may be admitted to an appropriate ward in a hospital, where 
they can be kept under close supervision.

	 5.2		 Interaction	models

All systems involve interaction of some kind. This can be user interaction, which 
involves user inputs and outputs; interaction between the software being developed and 
other systems in its environment; or interaction between the components of a software 
system. User interaction modeling is important as it helps to identify user requirements. 
Modeling system-to-system interaction highlights the communication problems that 
may arise. Modeling component interaction helps us understand if a proposed system 
structure is likely to deliver the required system performance and dependability.

This section discusses two related approaches to interaction modeling:

1. Use case modeling, which is mostly used to model interactions between a sys-
tem and external agents (human users or other systems).

2. Sequence diagrams, which are used to model interactions between system com-
ponents, although external agents may also be included.

Use case models and sequence diagrams present interactions at different levels of 
detail and so may be used together. For example, the details of the interactions 
involved in a high-level use case may be documented in a sequence diagram. The 
UML also includes communication diagrams that can be used to model interactions. 
I don’t describe this diagram type because communication diagrams are simply an 
alternative representation of sequence diagrams.

 5.2.1  Use case modeling

Use case modeling was originally developed by Ivar Jacobsen in the 1990s (Jacobsen 
et al. 1993), and a UML diagram type to support use case modeling is part of the 
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UML. A use case can be taken as a simple description of what a user expects from a 
system in that interaction. I have discussed use cases for requirements elicitation in 
Chapter 4. As I said in Chapter 4, I find use case models to be more useful in the 
early stages of system design rather than in requirements engineering.

Each use case represents a discrete task that involves external interaction with a 
system. In its simplest form, a use case is shown as an ellipse, with the actors 
involved in the use case represented as stick figures. Figure 5.3 shows a use case 
from the Mentcare system that represents the task of uploading data from the 
Mentcare system to a more general patient record system. This more general system 
maintains summary data about a patient rather than data about each consultation, 
which is recorded in the Mentcare system.

Notice that there are two actors in this use case—the operator who is transferring 
the data and the patient record system. The stick figure notation was originally devel-
oped to cover human interaction, but it is also used to represent other external sys-
tems and hardware. Formally, use case diagrams should use lines without arrows as 
arrows in the UML indicate the direction of flow of messages. Obviously, in a use 
case, messages pass in both directions. However, the arrows in Figure 5.3 are used 
informally to indicate that the medical receptionist initiates the transaction and data 
is transferred to the patient record system.

Use case diagrams give a simple overview of an interaction, and you need to add 
more detail for complete interaction description. This detail can either be a simple 
textual description, a structured description in a table, or a sequence diagram. You 
choose the most appropriate format depending on the use case and the level of detail 
that you think is required in the model. I find a standard tabular format to be the most 
useful. Figure 5.4 shows a tabular description of the “Transfer data” use case.

Composite use case diagrams show a number of different use cases. Sometimes it 
is possible to include all possible interactions within a system in a single composite 
use case diagram. However, this may be impossible because of the number of use 
cases. In such cases, you may develop several diagrams, each of which shows related 
use cases. For example, Figure 5.5 shows all of the use cases in the Mentcare system 

Figure 5.4 Tabular 
description of the 
Transfer-data use case

Mentcare system: Transfer data

Actors Medical receptionist, Patient records system (PRS)

Description A receptionist may transfer data from the Mentcare system to a 
general patient record database that is maintained by a health 
authority. The information transferred may either be updated 
personal information (address, phone number, etc.) or a 
summary of the patient’s diagnosis and treatment.

Data Patient’s personal information, treatment summary

Stimulus User command issued by medical receptionist

Response Confirmation that PRS has been updated

Comments The receptionist must have appropriate security permissions to 
access the patient information and the PRS.
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in which the actor “Medical Receptionist” is involved. Each of these should be 
accompanied by a more detailed description.

The UML includes a number of constructs for sharing all or part of a use case in 
other use case diagrams. While these constructs can sometimes be helpful for system 
designers, my experience is that many people, especially end-users, find them diffi-
cult to understand. For this reason, these constructs are not described here.

 5.2.2  Sequence diagrams

Sequence diagrams in the UML are primarily used to model the interactions between 
the actors and the objects in a system and the interactions between the objects them-
selves. The UML has a rich syntax for sequence diagrams, which allows many dif-
ferent kinds of interaction to be modeled. As space does not allow covering all 
possibilities here, the focus will be on the basics of this diagram type.

As the name implies, a sequence diagram shows the sequence of interactions that 
take place during a particular use case or use case instance. Figure 5.6 is an example 
of a sequence diagram that illustrates the basics of the notation. This diagram models 
the interactions involved in the View patient information use case, where a medical 
receptionist can see some patient information.

The objects and actors involved are listed along the top of the diagram, with a 
dotted line drawn vertically from these. Annotated arrows indicate interactions 
between objects. The rectangle on the dotted lines indicates the lifeline of the object 
concerned (i.e., the time that object instance is involved in the computation). You 
read the sequence of interactions from top to bottom. The annotations on the arrows 
indicate the calls to the objects, their parameters, and the return values. This example 
also shows the notation used to denote alternatives. A box named alt is used with the 
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Figure 5.5 Use cases 
involving the role 
“Medical receptionist”
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conditions indicated in square brackets, with alternative interaction options sepa-
rated by a dotted line.

You can read Figure 5.6 as follows:

1. The medical receptionist triggers the ViewInfo method in an instance P of the 
PatientInfo object class, supplying the patient’s identifier, PID to identify the 
required information. P is a user interface object, which is displayed as a form 
showing patient information.

2. The instance P calls the database to return the information required, supplying 
the receptionist’s identifier to allow security checking. (At this stage, it is not 
important where the receptionist’s UID comes from.)

3. The database checks with an authorization system that the receptionist is author-
ized for this action.

4. If authorized, the patient information is returned and is displayed on a form on 
the user’s screen. If authorization fails, then an error message is returned. The 
box denoted by “alt” in the top-left corner is a choice box indicating that one of 
the contained interactions will be executed. The condition that selects the choice 
is shown in square brackets.

Figure 5.7 is a further example of a sequence diagram from the same system that 
illustrates two additional features. These are the direct communication between the 
actors in the system and the creation of objects as part of a sequence of operations. In 
this example, an object of type Summary is created to hold the summary data that is 
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Figure 5.6 Sequence 
diagram for View patient 
information 
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to be uploaded to a national PRS (patient records system). You can read this diagram 
as follows:

1. The receptionist logs on to the PRS.

2. Two options are available (as shown in the “alt” box). These allow the direct 
transfer of updated patient information from the Mentcare database to the 
PRS and the transfer of summary health data from the Mentcare database to 
the PRS.

3. In each case, the receptionist’s permissions are checked using the authorization 
system.

P: PatientInfo

login ( )

D: Mentcare-DB AS: Authorization

authorization

[sendInfo]

[sendSummary]

Medical Receptionist PRS

ok

updateInfo( ) updatePRS (UID )

update (PID)

update OKMessage (OK)

summarize (UID )

authorize (TF, UID)

authorization

authorize (TF, UID)

:summary

update (PID)

UpdateSummary( )

logout ()

alt

update OK
Message (OK)

Figure 5.7 Sequence 
diagram for 
Transfer Data 
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4. Personal information may be transferred directly from the user interface object 
to the PRS. Alternatively, a summary record may be created from the database, 
and that record is then transferred.

5. On completion of the transfer, the PRS issues a status message and the user logs off.

Unless you are using sequence diagrams for code generation or detailed docu-
mentation, you don’t have to include every interaction in these diagrams. If you 
develop system models early in the development process to support requirements 
engineering and high-level design, there will be many interactions that depend on 
implementation decisions. For example, in Figure 5.7 the decision on how to get the 
user identifier to check authorization is one that can be delayed. In an implementa-
tion, this might involve interacting with a User object. As this is not important at this 
stage, you do not need to include it in the sequence diagram.

	 5.3		 Structural	models

Structural models of software display the organization of a system in terms of the 
components that make up that system and their relationships. Structural models may 
be static models, which show the organization of the system design, or dynamic 
models, which show the organization of the system when it is executing. These are 
not the same things—the dynamic organization of a system as a set of interacting 
threads may be very different from a static model of the system components.

You create structural models of a system when you are discussing and designing 
the system architecture. These can be models of the overall system architecture or 
more detailed models of the objects in the system and their relationships.

In this section, I focus on the use of class diagrams for modeling the static struc-
ture of the object classes in a software system. Architectural design is an important 
topic in software engineering, and UML component, package, and deployment dia-
grams may all be used when presenting architectural models. I cover architectural 
modeling in Chapters 6 and 17. 

 5.3.1  Class diagrams

Class diagrams are used when developing an object-oriented system model to show 
the classes in a system and the associations between these classes. Loosely, an object 
class can be thought of as a general definition of one kind of system object. An asso-
ciation is a link between classes indicating that some relationship exists between 
these classes. Consequently, each class may have to have some knowledge of its 
associated class.

When you are developing models during the early stages of the software engi-
neering process, objects represent something in the real world, such as a patient, a 
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prescription, or a doctor. As an implementation is developed, you define implemen-
tation objects to represent data that is manipulated by the system. In this section, the 
focus is on the modeling of real-world objects as part of the requirements or early 
software design processes. A similar approach is used for data structure modeling.

Class diagrams in the UML can be expressed at different levels of detail. When 
you are developing a model, the first stage is usually to look at the world, identify 
the essential objects, and represent these as classes. The simplest way of writing 
these diagrams is to write the class name in a box. You can also note the existence of 
an association by drawing a line between classes. For example, Figure 5.8 is a sim-
ple class diagram showing two classes, Patient and Patient Record, with an associa-
tion between them. At this stage, you do not need to say what the association is.

Figure 5.9 develops the simple class diagram in Figure 5.8 to show that objects of 
class Patient are also involved in relationships with a number of other classes. In this 
example, I show that you can name associations to give the reader an indication of 
the type of relationship that exists.

Figures 5.8 and 5.9, shows an important feature of class diagrams—the ability to 
show how many objects are involved in the association. In Figure 5.8 each end of the 
association is annotated with a 1, meaning that there is a 1:1 relationship between 
objects of these classes. That is, each patient has exactly one record, and each record 
maintains information about exactly one patient.

As you can see from Figure 5.9, other multiplicities are possible. You can define 
that an exact number of objects are involved (e.g., 1..4) or, by using a *, indicate that 
there are an indefinite number of objects involved in the association. For example, 
the (1..*) multiplicity in Figure 5.9 on the relationship between Patient and Condition 
shows that a patient may suffer from several conditions and that the same condition 
may be associated with several patients.
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At this level of detail, class diagrams look like semantic data models. Semantic 
data models are used in database design. They show the data entities, their associated 
attributes, and the relations between these entities (Hull and King 1987). The UML 
does not include a diagram type for database modeling, as it models data using 
objects and their relationships. However, you can use the UML to represent a seman-
tic data model. You can think of entities in a semantic data model as simplified 
object classes (they have no operations), attributes as object class attributes, and rela-
tions as named associations between object classes.

When showing the associations between classes, it is best to represent these classes 
in the simplest possible way, without attributes or operations. To define objects in 
more detail, you add information about their attributes (the object’s characteristics) 
and operations (the object’s functions). For example, a Patient object has the attribute 
Address, and you may include an operation called ChangeAddress, which is called 
when a patient indicates that he or she has moved from one address to another.

In the UML, you show attributes and operations by extending the simple  rectangle 
that represents a class. I illustrate this in Figure 5.10 that shows an object represent-
ing a consultation between doctor and patient:

1. The name of the object class is in the top section.

2. The class attributes are in the middle section. This includes the attribute names 
and, optionally, their types. I don’t show the types in Figure 5.10.

3. The operations (called methods in Java and other OO programming languages) 
associated with the object class are in the lower section of the rectangle. I show 
some but not all operations in Figure 5.10.

In the example shown in Figure 5.10, it is assumed that doctors record voice notes 
that are transcribed later to record details of the consultation. To prescribe  medication, 
the doctor involved must use the Prescribe method to generate an electronic prescription.

Consultation

Doctors
Date
Time
Clinic
Reason
Medication prescribed
Treatment prescribed
Voice notes
Transcript
...

New ( )
Prescribe ( )
RecordNotes ( )
Transcribe ( )
...Figure 5.10 A 

Consultation class
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 5.3.2  Generalization

Generalization is an everyday technique that we use to manage complexity. 
Rather than learn the detailed characteristics of everything that we experience, we 
learn about general classes (animals, cars, houses, etc.) and learn the characteris-
tics of these classes. We then reuse knowledge by classifying things and focus on 
the differences between them and their class. For example, squirrels and rats are 
members of the class “rodents,” and so share the characteristics of rodents. 
General statements apply to all class members; for example, all rodents have teeth 
for gnawing.

When you are modeling systems, it is often useful to examine the classes in a 
 system to see if there is scope for generalization and class creation. This means 
that common information will be maintained in one place only. This is good design 
practice as it means that, if changes are proposed, then you do not have to look at 
all classes in the system to see if they are affected by the change. You can make the 
changes at the most general level. In object-oriented languages, such as Java, 
 generalization is implemented using the class inheritance mechanisms built into 
the language.

The UML has a specific type of association to denote generalization, as illus-
trated in Figure 5.11. The generalization is shown as an arrowhead pointing up to 
the more general class. This indicates that general practitioners and hospital doctors 
can be generalized as doctors and that there are three types of Hospital Doctor: 
those who have just graduated from medical school and have to be supervised 
(Trainee Doctor); those who can work unsupervised as part of a consultant’s team 
(Registered Doctor); and consultants, who are senior doctors with full decision-
making responsibilities.

In a generalization, the attributes and operations associated with higher-level 
classes are also associated with the lower-level classes. The lower-level classes are 
subclasses that inherit the attributes and operations from their superclasses. These 
lower-level classes then add more specific attributes and operations.

Doctor

General
practitioner

Hospital
doctor

Consultant Team doctor

Trainee
doctor

Qualified
doctorFigure 5.11 A 

generalization hierarchy
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For example, all doctors have a name and phone number, and all hospital doc-
tors have a staff number and carry a pager. General practitioners don’t have these 
attributes, as they work independently, but they have an individual practice name 
and address. Figure 5.12 shows part of the generalization hierarchy, which I have 
extended with class attributes, for the class Doctor. The operations associated with 
the class Doctor are intended to register and de-register that doctor with the 
Mentcare system.

 5.3.3  Aggregation

Objects in the real world are often made up of different parts. For example, a study 
pack for a course may be composed of a book, PowerPoint slides, quizzes, and rec-
ommendations for further reading. Sometimes in a system model, you need to illus-
trate this. The UML provides a special type of association between classes called 
aggregation, which means that one object (the whole) is composed of other objects 
(the parts). To define aggregation, a diamond shape is added to the link next to the 
class that represents the whole.

Figure 5.13 shows that a patient record is an aggregate of Patient and an indefinite 
number of Consultations. That is, the record maintains personal patient information 
as well as an individual record for each consultation with a doctor.

Doctor

General practitionerHospital doctor

Name
Phone #
Email

register ( )
de-register ( )

Staff #
Pager #

Practice
AddressFigure 5.12 A 

generalization hierarchy 
with added detail

Patient record

Patient Consultation

11

1 1..*

Figure 5.13 The 
aggregation association
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	 5.4		 Behavioral	models

Behavioral models are models of the dynamic behavior of a system as it is execut-
ing. They show what happens or what is supposed to happen when a system responds 
to a stimulus from its environment. These stimuli may be either data or events:

1. Data becomes available that has to be processed by the system. The availability 
of the data triggers the processing.

2. An event happens that triggers system processing. Events may have associated 
data, although this is not always the case.

Many business systems are data-processing systems that are primarily driven by 
data. They are controlled by the data input to the system, with relatively little exter-
nal event processing. Their processing involves a sequence of actions on that data 
and the generation of an output. For example, a phone billing system will accept 
information about calls made by a customer, calculate the costs of these calls, and 
generate a bill for that customer.

By contrast, real-time systems are usually event-driven, with limited data pro-
cessing. For example, a landline phone switching system responds to events such as 
“handset activated” by generating a dial tone, pressing keys on a handset by captur-
ing the phone number, and so on.

 5.4.1  Data-driven modeling

Data-driven models show the sequence of actions involved in processing input data 
and generating an associated output. They can be used during the analysis of require-
ments as they show end-to-end processing in a system. That is, they show the entire 
sequence of actions that takes place from an initial input being processed to the cor-
responding output, which is the system’s response.

Data-driven models were among the first graphical software models. In the 1970s, 
structured design methods used data-flow diagrams (DFDs) as a way to illustrate the 

Data flow diagrams

Data-flow diagrams (DFDs) are system models that show a functional perspective where each transformation 
represents a single function or process. DFDs are used to show how data flows through a sequence of process-
ing steps. For example, a processing step could be the filtering of duplicate records in a customer database. The 
data is transformed at each step before moving on to the next stage. These processing steps or transformations 
represent software processes or functions, where data-flow diagrams are used to document a software design. 
Activity diagrams in the UML may be used to represent DFDs.

http://software-engineering-book.com/web/dfds/

http://software-engineering-book.com/web/dfds
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processing steps in a system. Data-flow models are useful because tracking and doc-
umenting how data associated with a particular process moves through the system 
help analysts and designers understand what is going on in the process. DFDs are 
simple and intuitive and so are more accessible to stakeholders than some other types 
of model. It is usually possible to explain them to potential system users who can 
then participate in validating the model.

Data-flow diagrams can be represented in the UML using the activity diagram 
type, described in Section 5.1. Figure 5.14 is a simple activity diagram that shows 
the chain of processing involved in the insulin pump software. You can see the 
 processing steps, represented as activities (rounded rectangles), and the data flowing 
between these steps, represented as objects (rectangles).

An alternative way of showing the sequence of processing in a system is to use 
UML sequence diagrams. You have seen how these diagrams can be used to model 
interaction, but if you draw these so that messages are only sent from left to right, 
then they show the sequential data processing in the system. Figure 5.15 illustrates 
this, using a sequence model of processing an order and sending it to a supplier. 
Sequence models highlight objects in a system, whereas data-flow diagrams high-
light the operations or activities. In practice, nonexperts seem to find data-flow dia-
grams more intuitive, but engineers prefer sequence diagrams.
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pump

Blood sugar
level

Pump control
commands

Insulin
requirement

Get sensor
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Sensor
data
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Figure 5.14 An activity 
model of the insulin 
pump’s operation

:Order

Fillin ( )

Purchase officer

Validate ( )

[validation ok]

«datastore»
Orders

Budget

Update (amount)

Save ( )

Supplier

Send ( )Figure 5.15 Order 
processing



156	 	 Chapter	5	 ■	 System	modeling

 5.4.2  Event-driven modeling

Event-driven modeling shows how a system responds to external and internal 
events. It is based on the assumption that a system has a finite number of states 
and that events (stimuli) may cause a transition from one state to another. For 
example, a system controlling a valve may move from a state “Valve open” to a 
state “Valve closed” when an operator command (the stimulus) is received. This 
view of a system is particularly appropriate for real-time systems. Event-driven 
modeling is used extensively when designing and documenting real-time systems 
(Chapter 21).

The UML supports event-based modeling using state diagrams, which are based 
on Statecharts (Harel 1987). State diagrams show system states and events that cause 
transitions from one state to another. They do not show the flow of data within the 
system but may include additional information on the computations carried out in 
each state.

I use an example of control software for a very simple microwave oven to illus-
trate event-driven modeling (Figure 5.16). Real microwave ovens are much more 
complex than this system, but the simplified system is easier to understand. This 
simple oven has a switch to select full or half power, a numeric keypad to input the 
cooking time, a start/stop button, and an alphanumeric display.
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do: operate
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power
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Number

Door
open
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closed

Door
closed
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open
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Set time
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do: display
time
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Figure 5.16 A state 
diagram of a 
microwave oven 
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Figure 5.17 A state 
model of the 
Operation state

I have assumed that the sequence of actions in using the microwave is as follows:

1. Select the power level (either half power or full power).

2. Input the cooking time using a numeric keypad.

3. Press Start and the food is cooked for the given time.

For safety reasons, the oven should not operate when the door is open, and, on 
completion of cooking, a buzzer is sounded. The oven has a simple display that is 
used to display various alerts and warning messages.

In UML state diagrams, rounded rectangles represent system states. They may 
include a brief description (following “do”) of the actions taken in that state. The 
labeled arrows represent stimuli that force a transition from one state to another. You 
can indicate start and end states using filled circles, as in activity diagrams.

From Figure 5.16, you can see that the system starts in a waiting state and 
responds initially to either the full-power or the half-power button. Users can change 
their minds after selecting one of these and may press the other button. The time is 
set and, if the door is closed, the Start button is enabled. Pushing this button starts the 
oven operation, and cooking takes place for the specified time. This is the end of the 
cooking cycle, and the system returns to the waiting state.

The problem with state-based modeling is that the number of possible states 
increases rapidly. For large system models, therefore, you need to hide detail in the 
models. One way to do this is by using the notion of a “superstate” that encapsulates 
a number of separate states. This superstate looks like a single state on a high-level 
model but is then expanded to show more detail on a separate diagram. To illustrate 
this concept, consider the Operation state in Figure 5.16. This is a superstate that can 
be expanded, as shown in Figure 5.17.
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The Operation state includes a number of substates. It shows that operation starts 
with a status check and that if any problems are discovered an alarm is indicated and 
operation is disabled. Cooking involves running the microwave generator for the 
specified time; on completion, a buzzer is sounded. If the door is opened during 
operation, the system moves to the disabled state, as shown in Figure 5.17.

State models of a system provide an overview of event processing, but you nor-
mally have to extend this with a more detailed description of the stimuli and the system 
states. You may use a table to list the states and events that stimulate state transitions 
along with a description of each state and event. Figure 5.18 shows a tabular descrip-
tion of each state and how the stimuli that force state transitions are generated.

 5.4.3  Model-driven engineering

Model-driven engineering (MDE) is an approach to software development whereby 
models rather than programs are the principal outputs of the development process 

Figure 5.18 States and 
stimuli for the 
microwave oven

State Description

Waiting The oven is waiting for input. The display shows the 
current time.

Half power The oven power is set to 300 watts. The display shows 
“Half power.”

Full power The oven power is set to 600 watts. The display shows 
“Full power.”

Set time The cooking time is set to the user’s input value. The display 
shows the cooking time selected and is updated as the time 
is set.

Disabled Oven operation is disabled for safety. Interior oven light is on. 
Display shows “Not ready.”

Enabled Oven operation is enabled. Interior oven light is off. Display 
shows “Ready to cook.”

Operation Oven in operation. Interior oven light is on. Display shows the 
timer countdown. On completion of cooking, the buzzer is 
sounded for 5 seconds. Oven light is on. Display shows 
“Cooking complete” while buzzer is sounding.

Stimulus Description

Half power The user has pressed the half-power button.

Full power The user has pressed the full-power button.

Timer The user has pressed one of the timer buttons.

Number The user has pressed a numeric key.

Door open The oven door switch is not closed.

Door closed The oven door switch is closed.

Start The user has pressed the Start button.

Cancel The user has pressed the Cancel button.
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(Brambilla, Cabot, and Wimmer 2012). The programs that execute on a hardware/
software platform are generated automatically from the models. Proponents of MDE 
argue that this raises the level of abstraction in software engineering so that  engineers 
no longer have to be concerned with programming language details or the specifics 
of execution platforms.

Model-driven engineering was developed from the idea of model-driven archi-
tecture (MDA). This was proposed by the Object Management Group (OMG) as a 
new software development paradigm (Mellor, Scott, and Weise 2004). MDA 
focuses on the design and implementation stages of software development, whereas 
MDE is  concerned with all aspects of the software engineering process. Therefore, 
topics such as model-based requirements engineering, software processes for 
model-based development, and model-based testing are part of MDE but are not 
considered in MDA.

MDA as an approach to system engineering has been adopted by a number of 
large companies to support their development processes. This section focuses on the 
use of MDA for software implementation rather than discuss more general aspects of 
MDE. The take-up of more general model-driven engineering has been slow, and 
few companies have adopted this approach throughout their software development 
life cycle. In his blog, den Haan discusses possible reasons why MDE has not been 
widely adopted (den Haan 2011).

	 5.5		 Model-driven	architecture

Model-driven architecture (Mellor, Scott, and Weise 2004; Stahl and Voelter 
2006) is a model-focused approach to software design and implementation that 
uses a subset of UML models to describe a system. Here, models at different 
levels of abstraction are created. From a high-level, platform independent model, 
it is possible, in principle, to generate a working program without manual 
 intervention.

The MDA method recommends that three types of abstract system model should 
be produced:

1. A computation independent model (CIM) CIMs model the important domain 
abstractions used in a system and so are sometimes called domain models. You 
may develop several different CIMs, reflecting different views of the system. 
For example, there may be a security CIM in which you identify important secu-
rity abstractions such as an asset, and a role and a patient record CIM, in which 
you describe abstractions such as patients and consultations.

2. A platform-independent model (PIM) PIMs model the operation of the system 
without reference to its implementation. A PIM is usually described using UML 
models that show the static system structure and how it responds to external and 
internal events.
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3. Platform-specific models (PSM) PSMs are transformations of the platform- 
independent model with a separate PSM for each application platform. In 
 principle, there may be layers of PSM, with each layer adding some platform-
specific detail. So, the first level PSM could be middleware-specific but 
 database-independent. When a specific database has been chosen, a database-
specific PSM can then be generated.

Model-based engineering allows engineers to think about systems at a high 
level of abstraction, without concern for the details of their implementation. This 
reduces the likelihood of errors, speeds up the design and implementation process, 
and allows for the creation of reusable, platform-independent application models. 
By using powerful tools, system implementations can be generated for different 
platforms from the same model. Therefore, to adapt the system to some new plat-
form technology, you write a model translator for that platform. When this is 
available, all platform-independent models can then be rapidly re-hosted on the 
new platform.

Fundamental to MDA is the notion that transformations between models can be 
defined and applied automatically by software tools, as illustrated in Figure 5.19. 
This diagram also shows a final level of automatic transformation where a transfor-
mation is applied to the PSM to generate the executable code that will run on the 
designated software platform. Therefore, in principle at least, executable software 
can be generated from a high-level system model.

In practice, completely automated translation of models to code is rarely possi-
ble. The translation of high-level CIM to PIM models remains a research problem, 
and for production systems, human intervention, illustrated using a stick figure in 
Figure 5.19, is normally required. A particularly difficult problem for automated 
model transformation is the need to link the concepts used in different CIMS. For 
example, the concept of a role in a security CIM that includes role-driven access 
control may have to be mapped onto the concept of a staff member in a hospital 
CIM. Only a person who understands both security and the hospital environment can 
make this mapping.
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Platform
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model

Executable
code

Translator Translator Translator
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guidelines

Platform
specific patterns

and rules

Language
specific
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Computation
independent
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Figure 5.19 MDA 
transformations
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The translation of platform-independent to platform-specific models is a simpler 
technical problem. Commercial tools and open-source tools (Koegel 2012) are avail-
able that provide translators from PIMS to common platforms such as Java and 
J2EE. These use an extensive library of platform-specific rules and patterns to 
 convert a PIM to a PSM. There may be several PSMs for each PIM in the system. If 
a software system is intended to run on different platforms (e.g., J2EE and .NET), 
then, in principle, you only have to maintain a single PIM. The PSMs for each 
 platform are automatically generated (Figure 5.20).

Although MDA support tools include platform-specific translators, these 
 sometimes only offer partial support for translating PIMS to PSMs. The execution 
environment for a system is more than the standard execution platform, such as J2EE 
or Java. It also includes other application systems, specific application libraries that 
may be created for a company, external services, and user interface libraries.

These vary from one company to another, so off-the-shelf tool support is not 
available that takes these into account. Therefore, when MDA is introduced into an 
organization, special-purpose translators may have to be created to make use of the 
facilities available in the local environment. This is one reason why many companies 
have been reluctant to take on model-driven approaches to development. They do not 
want to develop or maintain their own tools or to rely on small software companies, 
who may go out of business, for tool development. Without these specialist tools, 
model-based development requires additional manual coding which reduces the 
cost-effectiveness of this approach.

I believe that there are several other reasons why MDA has not become a main-
stream approach to software development.

1. Models are a good way of facilitating discussions about a software design. 
However, it does not always follow that the abstractions that are useful for dis-
cussions are the right abstractions for implementation. You may decide to use a 
completely different implementation approach that is based on the reuse of off-
the-shelf application systems.

2. For most complex systems, implementation is not the major problem— 
requirements engineering, security and dependability, integration with legacy 
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systems and testing are all more significant. Consequently, the gains from the 
use of MDA are limited.

3. The arguments for platform independence are only valid for large, long-lifetime 
systems, where the platforms become obsolete during a system’s lifetime. For 
software products and information systems that are developed for standard plat-
forms, such as Windows and Linux, the savings from the use of MDA are likely 
to be outweighed by the costs of its introduction and tooling.

4. The widespread adoption of agile methods over the same period that MDA was 
evolving has diverted attention away from model-driven approaches.

The success stories for MDA (OMG 2012) have mostly come from companies 
that are developing systems products, which include both hardware and software. 
The software in these products has a long lifetime and may have to be modified 
to reflect changing hardware technologies. The domain of application (automo-
tive, air traffic control, etc.) is often well understood and so can be formalized in 
a CIM.

Hutchinson and his colleagues (Hutchinson, Rouncefield, and Whittle 2012) 
report on the industrial use of MDA, and their work confirms that successes in the 
use of model-driven development have been in systems products. Their assessment 
suggests that companies have had mixed results when adopting this approach, but 
the majority of users report that using MDA has increased productivity and reduced 
maintenance costs. They found that MDA was particularly useful in facilitating 
reuse, and this led to major productivity improvements.

There is an uneasy relationship between agile methods and model-driven archi-
tecture. The notion of extensive up-front modeling contradicts the fundamental ideas 
in the agile manifesto and I suspect that few agile developers feel comfortable with 
model-driven engineering. Ambler, a pioneer in the development of agile methods, 
suggests that some aspects of MDA can be used in agile processes (Ambler 2004) 
but considers automated code generation to be impractical. However, Zhang and 
Patel report on Motorola’s success in using agile development with automated code 
generation (Zhang and Patel 2011).

Executable UML

The fundamental notion behind model-driven engineering is that completely automated transformation of 
 models to code should be possible. To achieve this, you have to be able to construct graphical models with 
clearly defined meanings that can be compiled to executable code. You also need a way of adding information 
to graphical models about the ways in which the operations defined in the model are implemented. This is 
 possible using a subset of UML 2, called Executable UML or xUML (Mellor and Balcer 2002).

http://software-engineering-book.com/web/xuml/

http://software-engineering-book.com/web/xuml


K e y  P o i n t s

■ A model is an abstract view of a system that deliberately ignores some system details. Comple-
mentary system models can be developed to show the system’s context, interactions, structure, 
and behavior.

■ Context models show how a system that is being modeled is positioned in an environment with 
other systems and processes. They help define the boundaries of the system to be developed.

■ Use case diagrams and sequence diagrams are used to describe the interactions between users 
and systems in the system being designed. Use cases describe interactions between a system 
and external actors; sequence diagrams add more information to these by showing interactions 
between system objects.

■ Structural models show the organization and architecture of a system. Class diagrams are used 
to define the static structure of classes in a system and their associations.

■ Behavioral models are used to describe the dynamic behavior of an executing system. This 
behavior can be modeled from the perspective of the data processed by the system or by the 
events that stimulate responses from a system.

■ Activity diagrams may be used to model the processing of data, where each activity represents 
one process step.

■ State diagrams are used to model a system’s behavior in response to internal or external events.

■ Model-driven engineering is an approach to software development in which a system is repre-
sented as a set of models that can be automatically transformed to executable code.

F u r t h e r 	 r e a d I n g

Any of the introductory books on the UML provide more information about the notation than I can 
cover here. UML has only changed slightly in the last few years, so although some of these books 
are almost 10 years old, they are still relevant.

Using UML: Software Engineering with Objects and Components, 2nd ed. This book is a short, read-
able introduction to the use of the UML in system specification and design. I think that it is excellent 
for learning and understanding the UML notation, although it is less comprehensive than the 
 complete descriptions of UML found in the UML reference manual. (P. Stevens with R. Pooley, Addi-
son-Wesley, 2006)

Model-driven Software Engineering in Practice. This is quite a comprehensive book on model-driven 
approaches with a focus on model-driven design and implementation. As well as the UML, it also 
covers the development of domain-specific modeling languages. (M. Brambilla, J. Cabot, and 
M. Wimmer. Morgan Claypool, 2012)

	 Chapter	5	 ■	 Further	reading	 	 163



W e b s i t e

PowerPoint slides for this chapter:

www.pearsonglobaleditions.com/Sommerville

Links to supporting videos:

http://software-engineering-book.com/videos/requirements-and-design/

e x e r c i s e s

  5.1.  Scope creep can be defined as a continuous increase in the scope of a project that can 
 significantly increase project cost. Explain how a proper model of the system context can 
help  prevent scope creeps.

  5.2.  The way in which a system boundary is defined and an appropriate context model is created 
may have serious implications on the complexity and cost of a project. Give two examples 
where this may be applicable.

  5.3.  You have been asked to develop a system that will help with planning large-scale events and 
parties such as weddings, graduation celebrations, and birthday parties. Using an activity dia-
gram, model the process context for such a system that shows the activities involved in plan-
ning a party (booking a venue, organizing invitations, etc.) and the system elements that 
might be used at each stage.

  5.4.  For the Mentcare system, propose a set of use cases that illustrates the interactions between a 
doctor, who sees patients and prescribes medicine and treatments, and the Mentcare system.

  5.5.  Develop a sequence diagram showing the interactions involved when a student registers for a 
course in a university. Courses may have limited enrollment, so the registration process must 
include checks that places are available. Assume that the student accesses an electronic 
course catalog to find out about available courses.

  5.6.  Look carefully at how messages and mailboxes are represented in the email system that you 
use. Model the object classes that might be used in the system implementation to represent a 
mailbox and an email message.

  5.7.  Based on your experience with a bank ATM, draw an activity diagram that models the data 
processing involved when a customer withdraws cash from the machine.

  5.8.  Draw a sequence diagram for the same system. Explain why you might want to develop both 
activity and sequence diagrams when modeling the behavior of a system.

  5.9.  Draw state diagrams of the control software for:

■ an automatic washing machine that has different programs for different types of clothes;

■ the software for a DVD player;

■ the control software for the camera on your mobile phone. Ignore the flash if you have one 
on your phone.
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5.10.  In principle, it is possible to generate working programs from a high-level model without 
 manual intervention when using model-driven architectures. Discuss some of the current 
 challenges that stand in the way of the existence of completely automated translation tools.
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